
Repetition.
Total differential:
µ continuous in a neighborhood U of

o such that µ(o) = 0,
and numbers A1, . . . , An for which

f (a+h)− f (a) =

n∑
k=1

Akhk + ||h||µ(h)

Implies partial derivatives,
follows from continuous partial deri-

vatives.

Interpretations:
Tangent hyperplane.
Aproximations.
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Computing: arihtmetic rules quite like
with plain derivatives,
Chain Rule. Let f (x) have a to-

tal differential in a. Let gk(t1, . . . , tr)
have partial derivatives in b = (b1, . . . , br)
and let gk(b) = ak for k = 1, . . . , n.
Then

(f◦g)(t1, . . . , tr) = f (g(t)) = f (g1(tt), . . . , gn(t))

has all the p. d. in b, and one has

∂(f ◦ g)(b)

∂tj
=

n∑
k=1

∂f (a)

∂xk
· ∂gk(b)

∂tj
.

If we compose

Ek
g−→ En

f−→ Em
we obtain

D(f ◦ g) = Df ·Dg

where Dh =
(
∂hi(a)
∂xk

)
ik
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Lagrange in several variables.

Proposition. Let f have continu-
ous partial derivatives in a convex open
set U ⊆ En. Then for any two x, y ∈
D there is a θ, 0 ≤ θ ≤ 1, such that

f (y)− f (x) =

n∑
j=1

∂f (x + θ(y − x))

∂xj
(yj − xj).

Often encountered in the form

f (x + h)− f (x) =

n∑
j=1

∂f (x + θh)

∂xj
hj.
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Partial derivative as a function
∂f

∂xk
: D′→ R,

higher order partial derivatives

∂2f (x)

∂xk∂xl
,

∂rf (x)

∂xk1
∂xk2

. . . ∂xkr
,

partial derivatives of order r.
The order is determined by the num-

ber of taking derivatives

∂3f (x, y, z)

∂x∂y∂z
a

∂3f (x, y, z)

∂x∂x∂x

are derivatives of order 3.
Subsequent taken of derivative by the

same variable is written as an exponent,
e.g.

∂5f (x, y)

∂x2∂y3
=

∂5f (x, y)

∂x∂x∂x∂y∂y
,

∂5f (x, y)

∂x2∂y2∂x
=

∂5f (x, y)

∂x∂x∂y∂y∂x
.
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Proposition. Let partial derivati-

ves ∂2f
∂x∂y and ∂2f

∂y∂x be defined and let

them be continuous in a neighborhood
of (x, y). Then

∂2f (x, y)

∂x∂y
=
∂2f (x, y)

∂y∂x
.

Theorem. Let f in n variables have
continuous partial derivatives up to
order k. Then the values of the de-
rivatives depend only on the numbers
of taking derivatives in the individual
variables .

∂rf

∂x
r1
1 ∂x

r2
2 . . . ∂xrnn

kde r1+r2+· · ·+rn = r.
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From preceding semester
In the sequel we will need more about

metric spaces, in particular something
on compactness and completeness. Re-
call the compact (that is, closed and
bounded) intervals, and that

� each sequence in such 〈a, b〉 has a
convergent subsequence,

� and that every continuous function
on them attains a maximum and a
minimum.

In more detail:
Supremum of a set M :

(1) for every x ∈M , x ≤ s, and

(2) if x ≤ y for every x ∈M then s ≤ y.

For linear ≤ equivalent with

(1) for every x ∈M , x ≤ s, and

(2) if y < s then there is an x ∈M such that y < x.
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Theorem. Each sequence on a com-
pact interval contains a convergent sub-
sequence.

Explicitely: Let a, b are reals such
that a ≤ xn ≤ b for all n. Then
there is a subsequence (xkn)n of (xn)n
converging in R, and we have a ≤
limn xkn ≤ b.

Proof. Set

M = {x |x ∈ R, x ≤ xn for infinitely many n}.
M is non-void and bounded as a ∈ M
and b is an upper bound of M . thus
there exists s = supM

a plat́ı a ≤ s ≤ b.
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M = {x |x ∈ R, x ≤ xn for infinitely many n}.

For every n, the set

K(n) = {k | s− 1

n
< xk < s +

1

n
}

is infinite: indeed, there is an x > s−ε such that xn > x

for infinitely many n, while by the definition of M there

are only finitely many n such that

Pick a k1 such that

s− 1 < xk1 < s + 1.

Let k1 < k2 < · · · < kn be chosen so that for j =

1, . . . , n

s− 1

j
< xkj < s +

1

j
.

Since K(n + 1) is infinite, we can choose avkn+1 > kn
such that

s− 1

n + 1
< xkn+1 < s +

1

n + 1
.

Thus chosen subsequence (xkn)n of (xn)n obviously con-

verges to s.
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Compact spaces.

A metric space (X, d) is compact if
every sequence in (X, d) contains a con-
vergent subsequence.

Proposition. A subspace of a com-
pact space is compact iff it is closed.

Proof. I. Let Y be a closed subspace of
a compactX and let (yn)n be a sequence
in Y . As a sequence in X it has a sub-
sequence with limit in X , and by clo-
sedness this limit is in Y .

II. If Y is not closed then there is a
sequence (yn)n in Y konvergent in X
such that y = limn yn /∈ Y . Then (yn)n
cannot have a subsequence convergent
in Y because each subsequence conver-
ges to y.
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Proposition. Let (X, d) be arbit-
rary and let a subspace Y of X be
compact. Then Y is closed in (X, d).

Proof. Let (yn)n in Y converge in X to y. Then every

subsequence of (yn)n converges to y and hence y ∈ Y .

A metric space (X, d) is bounded if we
have for some K that

∀x, y ∈ X, d(x, y) < K.

Proposition. Each compact space
is bounded.

Proof. Choose an arbitrary x1 and xn so that d(x1, xn) >

n. The sequence (xn)n has no convergent subsequence: if

x were a limit of such subsequence there would be for a

sufficiently large n infinitely many elements of this sub-

sequence closer to x1 thend(x1, xn) + 1, a contradiction.
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Theorem. A product of finitely many
compact spaces is compact.

Proof. Suffices for two spaces.
Let (X, d1), (Y, d2) be compact and

let ((xn, yn))n be a sequence in X×Y .
Choose a convergent subsequence (xkn)n
of (xn)n and a convergent subsequence
(ykln

)n of (ykn)n. Then

((xkln
, ykln

))n

is a convergent subsequence of ((xn, yn))n.
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A compact interval in En is a product
of closed bounded intervals 〈ai, bi〉
Theorem. A subspace of the euc-

lidean space En is compact iff it is
bounded and closed.

Proof. I. We already know it has to
be closed and bounded.

II. Now let Y ⊆ En be bounded and
closed. Since it is bounded,

Y ⊆ Jn ⊆ En
for a sufficiently large interval.
Jn is compact as a product of 〈ai, bi〉,

and since Y is closed in En it is also
closed in Jn and hence compact.
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Proposition. Let f : (X, d)→ (Y, d′)
be a continuous mapping and let A ⊆
X be compact. Then f [A] is compact.

Proof. Let (yn)n be a sequence in f [A].
Choose xn ∈ A so that yn = f (xn). Let
(xkn)n be convergent. Then (ykn)n =
(f (xkn))n is convergent (xn)n.

Proposition. Let (X, d) be compact.
Then every continuous mapping f :
(X, d) → R attains a minimum and
a maximum.

Proof. Y = f [X ] ⊆ R is compact.
Hence it is bounded and has to have a
supremum M and an infimum m. Ob-
viously d(m,Y ) = d(M,Y ) = 0 and
since Y is closed, m,M ∈ Y .
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We know that a continuous f is cha-
racterized by closed preimages of closed
sets. Now we see that if the domain is
compact we also have that the images
of closed subsets are closed. Consequenly
we have (a.o.) the following.

Theorem. If (X, d) is compact then
each f : (X, d) → (Y, d′) one-to one
onto continuous map is a homeomor-
phism.

More generally, let f : (X, d) → (Y, d′) and g :

(X, d)→ (Z, d′′) a be continuous and let h : (Y, d′)→
(Z, d′′) be such that h ◦ f = g. Then h is continuous.

Proof. Let B be closed in Z. Then A = g−1[B] is

closed and hence compact in X and hence f [A] is com-

pact, and hence closed in Y . since f is onto, we have

f [f−1[C]] = C for every C. Thus,

h−1[B] = f [f−1[h−1[B]]] = f [(h◦f )−1[B]] = f [g−1[B]] = f [A]

is closed.
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A sequence (xn)n in a metric space
(X, d) is Cauchy if
∀ε > 0 ∃n0 such that m,n ≥ n0 ⇒ d(xm, xn) < ε.

Observation. Each convergent sequence
is Cauchy.

Proposition. A Cauchy sequence
with a convergent subsequence con-
verges (and namely to the limit of the
subsequence).

Proof. Let (xn)n be Cauchy and let limn xkn = x. Let

d(xm, xn) < ε for m,n ≥ n1 and d(xkn, x) ≤ ε for

n ≥ n2. If we set n0 = max(n1, n2) we have for n ≥ n0
(since kn ≥ n)

d(xn, x) ≤ d(xn, xkn) + d(xkn, x) < 2ε.

A metric space (X, d) is complete if
each Cauchy sequence in (X, d) conver-
ges.
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Notes. 1. By the Bolzano-Cauchy the-
orem, the Euclidean line R is complete.

2. Calculus is possible.
3. Strong equivalence of distances pre-

serves the Cauchy property and comple-
teness, the plain equivalence does not.

Proposition. A subspace of a com-
plete space is complete iff it is closed.

Proof. I. Let Y ⊆ (X, d) be closed. Let (yn)n be Cau-

chy in Y . Then it is Cauchy and hence convergent in X ,

and by closedness the limit is in Y .

II. Let Y not be closed. Then there is a sequence (yn)n

in Y convergent in X such that limn yn /∈ Y . Then (yn)n

is Cauchy in X , and since the distance is the same, also

in Y . Bu it does not converge in Y .

Proposition. Every compact space
is complete.

Proof. A Cauchy sequence has, by compactness, a con-

vergent subsequence, and hence it converges.
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Lemma. A sequence

(x1
1, . . . , x

1
n), (x2

1, . . . , x
2
n), . . . , (xk1 , . . . , x

k
n), . . .

is Cauchy in
∏n
i=1(Xi, di) iff each (xki )k

is Cauchy in (Xi, di).
Proof. ⇒ follows immediately from the fact that di(ui, vi) ≤

d((uj)j, (vj)j).

⇐: Let each (xki )k be Cauchy. For ε > 0 and i choose

ki such that for k, l ≥ ki, di(x
k
i , x

l
i) < ε. Then for k, l ≥

maxi ki

d((xk1, . . . , x
k
n), (xl1, . . . , x

l
n)) < ε.

Theorem. A product of complete
spaces is complete. In particular En
is complete.

And from that immediately follows

Corollary. A subspace Y of the Euc-
lidean En is complete iff it is closed.

17



Details.
Text: Chapter XIII, Sections 7 and 6
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