Recollection of linear algebra

U with a basis $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}, \mathbf{x} \in U$

$$
\begin{aligned}
& \mathbf{x}=x_{1} \mathbf{u}_{1}+\cdots+x_{n} \mathbf{u}_{n} \\
& \mathbf{x} \mapsto\left(x_{1}, \ldots, x_{n}\right) \quad \text { (coordinates) }
\end{aligned}
$$

A linear mapping $L: U \rightarrow \mathbb{R}$ can be written as

$$
L(\mathbf{x})=\sum_{i} x_{i} L\left(\mathbf{u}_{i}\right)=\sum_{i} A_{i} x_{i}
$$

where $L\left(\mathbf{u}_{i}\right)=A_{i}$ (compare with tot. diff.).
V with a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}, \alpha$ a linear map $U \rightarrow V$. Then $\alpha\left(\mathbf{u}_{i}\right)=\sum_{j} A_{i j} \mathbf{v}_{j}$ and $\mathbf{A}=\left(a_{i j}\right)_{i j}$

$$
\begin{aligned}
\alpha(\mathbf{x}) & =\sum_{i} x_{i} L\left(\mathbf{u}_{i}\right)=\sum_{i} x_{i} \sum_{j} A_{i j} \mathbf{v}_{j}= \\
& =\sum_{j}\left(\sum_{i} x_{i} A_{i j}\right) \mathbf{v}_{j}=\mathbf{x A}
\end{aligned}
$$

We multiply \mathbf{x} represented as $\left(x_{1}, \ldots, x_{n}\right)$ and \mathbf{A} as matrices.
If we similarly have a $\beta: V \rightarrow W$ with a matrix \mathbf{B} we obtain for the composed map

$$
\mathbf{x} \mapsto(\mathbf{x A}) \mathbf{B}=\mathbf{x}(\mathbf{A B})
$$

Hence:
if we have linear maps represented by matrices \mathbf{A} and \mathbf{B}, then their composition is represented by the matrix product

AB.

Repetition. Product, in particular recall in $\left(\prod_{i=1}^{n} X_{i}, d\right)=\prod_{i=1}^{n}\left(X_{i}, d_{i}\right)$ the distance
$d\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\max _{i} d_{i}\left(x_{i}, y_{i}\right)$.
Note that

$$
\left(\mathbb{E}_{n}, \sigma\right)=\overbrace{\mathbb{R} \times \cdots \times \mathbb{R}}^{n \text { times }}=\mathbb{R}^{n} .
$$

Partial derivatives are standard derivatives, that is, limits
$\lim _{h \rightarrow 0} \frac{f\left(\ldots x_{k-1}, x_{k}+h, x_{k+1} \ldots\right)-f\left(x_{1}, \ldots\right)}{h}$.
Notation

$$
\frac{\partial f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{k}}
$$

P.d. are not very satisfactory. They even do not imply continuity (no surprise after what we already know).

In particular we miss a counterpart of the formula
$(*) f(x+h)-f(x)=A h+|h| \cdot \mu(h)$ with the geometric (tangent) and aproximative connotations.
The concept of total differential introduced:
μ continuous in a neighborhood U of \mathbf{o} such that $\mu(\mathbf{o})=0$,
and numbers A_{1}, \ldots, A_{n} for which
$f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})=\sum_{k=1}^{n} A_{k} h_{k}+\|\mathbf{h}\| \mu(\mathbf{h})$
This extends $(*)$, explain.
Partial derivatives are implied, not the other way round.
BUT: TD follows from continuous partial derivatives. Comment.

Computing with partial derivatives: arithmetic rules are the same as for standard partial derivatives, composition is not quite so simple.

Theorem. Let $f(\mathbf{x})$ have a total differential in a. Let $g_{k}(t)$ have derivatives in b and let $g_{k}(b)=a_{k}$ for $k=1, \ldots, n$. Set

$$
F(t)=f(\mathbf{g}(t))=f\left(g_{1}(t), \ldots, g_{n}(t)\right)
$$

Then F has a derivative in b, namely

$$
F^{\prime}(b)=\sum_{k=1}^{n} \frac{\partial f(\mathbf{a})}{\partial x_{k}} \cdot g_{k}^{\prime}(b)
$$

Corollary. (Chain Rule) Let $f(\mathbf{x})$
have a total differential in \mathbf{a}. Let $g_{k}\left(t_{1}, \ldots, t_{r}\right)$ have partial derivatives in $\mathbf{b}=\left(b_{1}, \ldots, b_{r}\right)$ and let $g_{k}(\mathbf{b})=a_{k}$ for $k=1, \ldots, n$. Then the function
$(f \circ \mathbf{g})\left(t_{1}, \ldots, t_{r}\right)=f(\mathbf{g}(t))=f\left(g_{1}(t), \ldots, g_{n}(t)\right)$ has all the partial derivatives in \mathbf{b} and

$$
\frac{\partial(f \circ \mathbf{g})(\mathbf{b})}{\partial t_{j}}=\sum_{k=1}^{n} \frac{\partial f(\mathbf{a})}{\partial x_{k}} \cdot \frac{\partial g_{k}(\mathbf{b})}{\partial t_{j}}
$$

We have composed

$$
\mathbb{E}_{k} \xrightarrow{\mathbf{g}} \mathbb{E}_{n} \xrightarrow{f} \mathbb{R}
$$

Now consider an m-tuple of functions $\mathbf{f}=\left(f_{1} \ldots, f_{m}\right), \quad$ that is, $\quad \mathbf{f}: \mathbb{E}_{n} \rightarrow \mathbb{E}_{m}$

$$
\mathbb{E}_{k} \xrightarrow{\mathbf{g}} \mathbb{E}_{n} \xrightarrow{\mathbf{f}} \mathbb{E}_{m}
$$

The rule from the previous theorem yields $\frac{\partial\left(f_{i} \circ \mathbf{g}\right)(\mathbf{b})}{\partial t_{j}}=\sum_{k=1}^{n} \frac{\partial f_{i}(\mathbf{a})}{\partial x_{k}} \cdot \frac{\partial g_{k}(\mathbf{b})}{\partial t_{j}}$.
Introducing $D \mathbf{f}=\left(\frac{\partial h_{i}(\mathbf{a})}{\partial x_{k}}\right)_{i k}$ we get
$D(\mathbf{f} \circ \mathbf{g})=D \mathbf{f} \cdot D \mathbf{g} \quad$ (matrix multiplication) and this is how it should be.
$D \mathbf{h}$ is the matrix of the linear approximation of \mathbf{h} and: linear aproximations compose in parallel with the mappings approximated.

Arithmetic rules obtained from the chain one.

Multiplication.
$f(u, v)=u \cdot v$. Then $\frac{\partial f}{\partial u}=v, \frac{\partial f}{\partial v}=u$ and for $u=\phi(x)$ and $v=\psi(x)$

$$
\begin{aligned}
(\phi(x) \cdot \psi(x))^{\prime} & =\frac{\partial f}{\partial u} \phi^{\prime}(x)+\frac{\partial f}{\partial v} \psi^{\prime}(x)= \\
& =\psi(x) \phi^{\prime}(x)+\phi(x) \psi^{\prime}(x)
\end{aligned}
$$

Division.
$f(u, v)=\frac{u}{v}$. Then $\frac{\partial f}{\partial u}=\frac{1}{v}, \frac{\partial f}{\partial v}=-\frac{u}{v^{2}}$ and for $u=\phi(x)$ and $v=\psi(x)$

$$
\begin{aligned}
\left(\frac{\phi(x)}{\psi(x)}\right)^{\prime} & =\frac{\partial f}{\partial u} \phi^{\prime}(x)-\frac{\partial f}{\partial v} \psi^{\prime}(x)= \\
& =\frac{1}{\psi(x)} \phi^{\prime}(x)+\frac{\phi(x)}{\psi(x)^{2}} \psi^{\prime}(x)= \\
& =\frac{\psi(x) \phi^{\prime}(x)-\phi(x) \psi^{\prime}(x)}{\psi(x)^{2}}
\end{aligned}
$$

$U \subseteq \mathbb{E}_{n}$ is convex if

$\mathbf{x}, \mathbf{y} \in U \quad \Rightarrow \quad \forall t, 0 \leq t \leq 1,(1-t) \mathbf{x}+\mathbf{t} \mathbf{y}=\mathbf{x}+t(\mathbf{y}-\mathbf{x}) \in U$.

Lagrange in several variables.

Proposition. Let f have continuous partial derivatives in a convex open $U \subseteq \mathbb{E}_{n}$. Then for any two $x, y \in D$ there is a $\theta, 0 \leq \theta \leq 1$, such that

$$
f(\mathbf{y})-f(\mathbf{x})=\sum_{j=1}^{n} \frac{\partial f(\mathbf{x}+\theta(\mathbf{y}-\mathbf{x}))}{\partial x_{j}}\left(y_{j}-x_{j}\right) .
$$

Proof. $F(t)=f(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))$ is $F=$ $f \circ \mathbf{g}$ with \mathbf{g} where $g_{j}(t)=x_{j}+t\left(y_{j}-\right.$ x_{j}), and

$$
F^{\prime}(t)=\sum_{j=1}^{n} \frac{\partial f(\mathbf{g}(t))}{\partial x_{j}} g_{j}^{\prime}(t)=\sum_{j=1}^{n} \frac{\partial f(\mathbf{g}(t))}{\partial x_{j}}\left(y_{j}-x_{j}\right) .
$$

By Lagrange's theorem
$f(\mathbf{y})-f(\mathbf{x})=F(1)-F(0)=F^{\prime}(\theta)$.

Note. This formula is often used in the form

$$
f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})=\sum_{j=1}^{n} \frac{\partial f(\mathbf{x}+\theta \mathbf{h})}{\partial x_{j}} h_{j}
$$

Compare with the formula for total differential:

$$
f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})=\sum_{j=1}^{n} \frac{\partial f(\mathbf{x})}{\partial x_{j}} h_{j}+\|\mathbf{h}\| \mu(\mathbf{h})
$$

If partial derivatives $\frac{\partial f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{k}}$ exist for all $\left(x_{1}, \ldots, x_{n}\right)$ in a domain D^{\prime} we have a function

$$
\frac{\partial f}{\partial x_{k}}: D^{\prime} \rightarrow \mathbb{R}
$$

If we have $g(\mathbf{x})=\frac{\partial f(\mathbf{x})}{\partial x_{k}}$ then similarly like asking about the second derivative of a function in one variable we can consider second derivatives of $f(\mathbf{x})$, that is,

$$
\frac{\partial g(\mathbf{x})}{\partial x_{l}}
$$

The result, if it exists, is then denoted by

$$
\frac{\partial^{2} f(\mathbf{x})}{\partial x_{k} \partial x_{l}}
$$

Iterating this procedure we obtain

$$
\frac{\partial^{r} f(\mathbf{x})}{\partial x_{k_{1}} \partial x_{k_{2}} \ldots \partial x_{k_{r}}}
$$

partial derivatives of order r.
The order is determined by the number of taking derivatives, not by repetitions in individual variables.

$$
\frac{\partial^{3} f(x, y, x)}{\partial x \partial y \partial z} \quad \text { and } \frac{\partial^{3} f(x, y, x)}{\partial x \partial x \partial x}
$$

are third order derivatives.
Consecutive taking derivatives by the same variable is written as an exponent, e.g.,

$$
\begin{aligned}
\frac{\partial^{5} f(x, y)}{\partial x^{2} \partial y^{3}} & =\frac{\partial^{5} f(x, y)}{\partial x \partial x \partial x \partial y \partial y} \\
\frac{\partial^{5} f(x, y)}{\partial x^{2} \partial y^{2} \partial x} & =\frac{\partial^{5} f(x, y)}{\partial x \partial x \partial y \partial y \partial x}
\end{aligned}
$$

A suggestive example.

Compute "mixed" second order derivatives of

$$
f(x, y)=x \sin \left(y^{2}+x\right)
$$

First we obtain
$\frac{\partial f(x, y)}{\partial x}=\sin \left(y^{2}+x\right)+x \cos \left(y^{2}+x\right)$,
$\frac{\partial f(x, y)}{\partial y}=2 x y \cos \left(y^{2}+x\right)$.
and then the second order derivatives,

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x \partial y} & =2 y \cos \left(y^{2}+x\right)-2 x y \sin \left(y^{2}+x\right) \\
\frac{\partial^{2} f}{\partial y \partial x} & =2 y \cos \left(y^{2}+x\right)-2 x y \sin \left(y^{2}+x\right)
\end{aligned}
$$

We have got the same result!

Proposition. Let $f(x, y)$ have continuous partial derivatives $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$ in a neighborhood of (x, y). Then

$$
\frac{\partial^{2} f(x, y)}{\partial x \partial y}=\frac{\partial^{2} f(x, y)}{\partial y \partial x} .
$$

Note that we have assumed continuous partial derivatives, hence
more than just a total differential.

Proof. Let us try to compute both the derivatives in one step, thus, let us compute the limit $\lim _{h \rightarrow 0} F(h)$ of the function
$F(h)=\frac{f(x+h, y+h)-f(x, y+h)-f(x+h, y)+f(x, y)}{h^{2}}$.

If we set

$$
\begin{aligned}
& \varphi_{h}(y)=f(x+h, y)-f(x, y) \text { and } \\
& \psi_{k}(x)=f(x, y+k)-f(x, y)
\end{aligned}
$$

we obtain for $F(h)$ two formulas:

$$
\begin{aligned}
& F(h)=\frac{1}{h^{2}}\left(\varphi_{h}(y+h)-\varphi_{h}(y)\right) \\
& F(h)=\frac{1}{h^{2}}\left(\psi_{h}(x+h)-\psi_{h}(x)\right)
\end{aligned}
$$

First: The function φ_{h} has a derivative (by y, it has no other variable)

$$
\varphi_{h}^{\prime}(y)=\frac{\partial f(x+h, y)}{\partial y}-\frac{\partial f(x, y)}{\partial y}
$$

and hence by Lagrange's formula we obtain

$$
\begin{aligned}
F(h) & =\frac{1}{h^{2}}\left(\varphi_{h}(y+h)-\varphi_{h}(y)\right)=\frac{1}{h} \varphi_{h}^{\prime}\left(y+\theta_{1} h\right)= \\
& =\frac{\partial f\left(x+h, y+\theta_{1} h\right)}{\partial y}-\frac{\partial f\left(x, y+\theta_{1} h\right)}{\partial y}
\end{aligned}
$$

Then, again using the L. formula,

$$
\begin{equation*}
F(h)=\frac{\partial}{\partial x}\left(\frac{\partial f\left(x+\theta_{2} h, y+\theta_{1} h\right)}{\partial y}\right) \tag{*}
\end{equation*}
$$

for some θ_{1}, θ_{2} between 0 and 1 .
Second, $\frac{1}{h^{2}}\left(\psi_{h}(x+h)-\psi_{h}(x)\right)$ yields similarly

$$
F(h)=\frac{\partial}{\partial y}\left(\frac{\partial f\left(x+\theta_{4} h, y+\theta_{2} h\right)}{\partial x}\right) . \quad(* *)
$$

Both functions $\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)$ and $\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)$ are continuous in (x, y), and $\lim _{h \rightarrow 0} F(h)$ can be computed from any of the expressions $(*)$ or $(* *)$:

$$
\lim _{h \rightarrow 0} F(h)=\frac{\partial^{2} f(x, y)}{\partial x \partial y}=\frac{\partial^{2} f(x, y)}{\partial y \partial x}
$$

Iterating the exchanges as in the Proposition we obtain
Corollary. Let a function f in n variables have continuous partial derivatives up to an order k. Then the values of these derivative depend only on the numbers of taking derivative in each of the individual variables x_{1}, \ldots, x_{n}.

Under these assumptions, hence, we can write general partial derivatives of order $r \leq k$ as
$\frac{\partial^{r} f}{\partial x_{1}^{r_{1}} \partial x_{2}^{r_{2}} \ldots \partial x_{n}^{r_{n}}} \quad$ kde $\quad r_{1}+r_{2}+\cdots+r_{n}=r$
($r_{j}=0$ indicates the absence of the symbol $\left.\partial x_{j}\right)$.

In the sequel we will need more about metric spaces, in particular a few facts about compactness and completenes. Recall the behavior of compact (closed bounded) intervals, in particular that

- in such intervals every sequence has a convergent subsequence, and this holds in no other type of interval,
- and that a continuous function on such interval attains a maximum and a minimum.

Also, refresh the concept of a cauchy sequence.

Informations and material to MA2

https://kam.mff.cuni.cz/ma2/

Details to the lectures: (In the text)
MA2.1: XIII,1,2,3,4
MA2.2: I; XIII,5; XIV,2,3,5
MA2.3: XIV,3,5,4

