Recollection of linear algebra

U with a basisuy,...,u,, x e U

X =2x1u1 + -+ Tpup,
X — (x1,...,xy) (coordinates)

A linear mapping L : U — R can be
written as

= ZflﬁiL(Uz) = Z Az

where L(UZ) = AZ (compare with tot. diff.).

V with a basis vi, ..., vy, a a linear
map U — V. Then a(u;) = > _; A;;v;
and A = (a”)w

:ZaﬁiL uZ ZxZZAZJ Vj =
—7 2 i)




We multiply x represented as (x1, ..., Zp)
and A as matrices.

If we similarly have a 8 : V. — W
with a matrix B we obtain for the com-
posed map

x — (xA)B = x(AB).

Hence:

if we have linear maps represented
by matrices A and B, then their com-
position 1s represented by the matrix

product
AB.



Repetition. Product, in particular
recall in (H?:l X;,d) = ?:1(Xi,dz-)
the distance

d(([lﬁl, s 751771)7 (yla s 7yn)> — mZaXdZ(xlv yZ)
Note that

n times

(Ep,0) =R x "X R=R"

Partial derivatives are standard
derivatives, that is, limits

Flotpoy @+ b apgy ) = flan,. )

A h
Notation
of(xq,...,xp)
5’:%

P.d. are not very satistactory. They even
do not imply continuity (no surprise af-
ter what we already know).
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In particular we miss a counterpart of
the formula

(%) flx+h) = f(z) = Ah + |h] - p(h)

with the geometric (tangent) and apro-
ximative connotations.

The concept of total differential intro-
duced:

1t continuous in a neighborhood U of
o such that p(o) = 0,

and numbers Ay, ..., Apfor which

n
fla+h)—f(@) =Y Aphi+[h]u(h)
k=1

This extends (), explain.

Partial derivatives are implied, not the
other way round.

BUT: TD follows from continuous
partial derivatives. Comment.
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Computing with partial derivatives: ari-
thmetic rules are the same as for stan-
dard partial derivatives, composition is
not quite so simple.

Theorem. Let f(x) have a
total differential in a. Let gi.(t) have

derivatives in b and let gi.(b) = ay. for
k=1,...,n. Set

F(t) = f(g(t) = f(g1(t), ..., gn(2)).

Then F' has a derivative in b, namely




Corollary. (Chain Rule) Let f(x)
have a total differential in a. Let gi.(t1, ..., tr)
have partial derivatives inb = (by, ..., by)
and let gi.(b) = ap. fork =1,...,n
Then the function

(fog)(tr, ..., tr) = f(g(t) = f(g1(t), ..., gn(l))

has all the partz’al derivatives in b and

fog Z f(a) (?gk b)
ox

k



We have composed

E, & E, LR

Now consider an m-tuple of functions

E, & E, 5 E,

The rule from the previous theorem yields
f i © g Z Ofi(a 69/{ b)

&ck

_ (9hi(a ))
Introducing Df = ( dey, ) . Ve oet

D(fog) = Df-Dg (matrix multiplication)
and this is how it should be.

Dh is the matriz of the linear ap-
proximation of h and:
linear aproximations compose in pa-

rallel with the mappings approxima-
ted.



Arithmetic rules obtained from
the chain one.

Multiplication.
f(u,v) = u-v. Then gf = g{j = U
and for u = ¢(x) and v = Y(x)

(0(@)0@)) = (@) + Pyt (a)

=w< )¢ (2 )+¢( )¢ ()
Division.
f(u,v) = 2. Then % — %, % ==
and for u = ¢(x) and v = Y(x)

(@)'— Y ()~ Pt () =

(@ .
= 3@ @t et @ =
(2)d () — dla) (@)

e
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U C K, i1s convex if

x,yceU = Vt,0<t<1, (1-t)x+ty = x+t(y—x) € U.

Lagrange in several variables.

Proposition. Let f have continu-
ous partial derivatives in a convexr open
U CLE,. Then for any two x,y € D
there is a 0, 0 < 60 <1, such that

) =0 = S AL, )

J=1

Proof. F(t) = f(x+t(y —x))is ' =
fog with g where g;(t) = x; +t(y; —
), and

Pl = >0 LBy - 5 L8y, )

By Lagrange’s theorem
fly) = f(x) = F(1) = F(0) = F'(6).



Note. This formula is often used in

the form
n

flx+h)—f(x)=>"

j=1
Compare with the formula for total di-
fferential:

Of(x + 0h)
8xj

hyj.
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of(x1,...,xn)

If partial derivatives I exist
for all (z1,...,2n) in a domain D’ we
have a tunction

0
9 por
8xk

[f we have g(x) = %fT(;() then similarly

like asking about the second derivative
of a function in one variable we can con-
sider second derivatives of f(x), that is,

0g(x)
8xl'
The result, if it exists, is then denoted
by
0 f (x)

8xk8x[
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[terating this procedure we obtain

0" f(x)

8xk18xk2 . 8%’

partial derivatives of order .

The order is determined by the num-
ber of taking derivatives, not by repeti-
tions in individual variables.

Pfyx) o Of(ry )
0x0y0z OxOxrox

are third order derivatives.
Consecutive taking derivatives by the
same variable is written as an exponent,

e.g.,

Oflxy) P fl,y)

0x20y3  0x0x0x0ydy’
Oflxy)  Pf(zy)

Ox20y?0x  0x0x0ydydx
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A suggestive example.
Compute “mixed” second order deriva-
tives of

flz,y) = zsin(y® + z).

First we obtain

0
fgf’ Y) = sin(y2 +x)+x Cos(y2 + ),
x
0
fgl; Y) = 22y Cos(y2 + ).
and then the second order derivatives,
62
8x§y = 2y cos(y® + x) — 2zysin(y’ + )
0* f

9007 2y cos(y’ + ) — 2zy sin(y” + ).

We have got the same result!
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Proposition. Let f(x,y) have con-
0°f

tinuous partial derivatives D2y and

)
% in a neighborhood of (x,y). Then

O f(x,y) _ flxy)

0x0y Oyox

Note that we have assumed

continuous partial derivatives,
hence
more than just a total differential.
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Proof. Let us try to compute both
the derivatives in one step, thus, let us

compute the limit limy,_.o F'(h) of the
function

fle+hy+h)— flr,y+h)— flx+hy + flz,y)

F(h) = -

If we set

on(y) = f(z+h,y) — flz,y) and
pp(x) = flz,y + k) = flz,y),
we obtain for F'(h) two formulas:

= %(wh(y +h) —opy))

1
F(h) = 5(Wn(x + h) — ¥p(@)).
First: The function ¢j, has a derivative
(by y, it has no other variable)

, Of(x+ h, of(x,
o (1) — f( . y) féyy)

F(h)
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and hence by Lagrange’s formula we ob-
tain
F(h) = %(wh(y +h) —enly)) = %%(y +01h) =

_Of(x+hy+6ih)  Of(x,y+6ih)
- oy oy '

Then, again using the L. formula,

F(h) = aag; <8f(a; + egaf;,y + elh))

for some 61, 6o between 0 and 1.

Second, hQ(wh(az +h) — Yy (x)) yields

similarly

(*)

()

o [0 04h, Ooh
F(h)_ay< flz + gxy+ 2 ))

Both functions 59 (gf ) and 2 (g‘?]; ) are
continuous in (z, y) and hmh o F(h)
can be computed from any of the ex-
pressions (k) or (kx):
2 2
i F(h) = O flx,y) _ O flzy)
h—0 0xdy Oyox
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[terating the exchanges as in the Pro-
position we obtain

Corollary. Let a function f in n
variables have continuous partial de-
rivatives up to an order k. Then the
values of these derivative depend only
on the numbers of taking derivative
in each of the individual variables xv, ..., xy.

Under these assumptions, hence, we can

write general partial derivatives of order
r <k as

o kd +ro+- -+
e T1Frottrp =1
0110z ... Oxy) b "
(r; = 0 indicates the absence of the

symbol 0x ;).
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In the sequel we will need more about
metric spaces, in particular a few facts
about compactness and completenes. Re-
call the behavior of compact (closed boun-
ded) intervals, in particular that

e in such intervals every sequence has
a convergent subsequence, and this
holds in no other type of interval.

e and that a continuous function on
such interval attains a maximum and
a minimuin.

Also, refresh the concept of a cauchy
sequence.
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Informations and material to
MA?2

https://kam.mff.cuni.cz/ma2/

Details to the lectures: (In the

text)
MA2.1: XII11,2.3.4

MA2.2: T: XIIL5; XIV.2.3.5
MA2.3: XIV.3 5.4
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