
Recollection of linear algebra

U with a basis u1, . . . ,un, x ∈ U
x = x1u1 + · · · + xnun,

x 7→ (x1, . . . , xn) (coordinates)

A linear mapping L : U → R can be
written as

L(x) =
∑
i

xiL(ui) =
∑
i

Aixi

where L(ui) = Ai (compare with tot. diff.).

V with a basis v1, . . . , vm, α a linear
map U → V . Then α(ui) =

∑
j Aijvj

and A = (aij)ij

α(x) =
∑
i

xiL(ui) =
∑
i

xi
∑
j

Aijvj =

=
∑
j

(
∑
i

xiAij)vj = xA
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We multiply x represented as (x1, . . . , xn)
and A as matrices.

If we similarly have a β : V → W
with a matrix B we obtain for the com-
posed map

x 7→ (xA)B = x(AB).

Hence:
if we have linear maps represented

by matrices A and B, then their com-
position is represented by the matrix
product

AB.
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Repetition. Product, in particular
recall in (

∏n
i=1Xi, d) =

∏n
i=1(Xi, di)

the distance

d((x1, . . . , xn), (y1, . . . , yn)) = max
i
di(xi, yi).

Note that

(En, σ) =

n times︷ ︸︸ ︷
R× · · · × R = Rn.

Partial derivatives are standard
derivatives, that is, limits

lim
h→0

f (. . . xk−1, xk + h, xk+1 . . . )− f (x1, . . . )

h
.

Notation
∂f (x1, . . . , xn)

∂xk
P.d. are not very satisfactory. They even
do not imply continuity (no surprise af-
ter what we already know).
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In particular we miss a counterpart of
the formula

(∗) f (x + h)− f (x) = Ah + |h| · µ(h)

with the geometric (tangent) and apro-
ximative connotations.

The concept of total differential intro-
duced:
µ continuous in a neighborhood U of

o such that µ(o) = 0,
and numbers A1, . . . , Anfor which

f (a+h)− f (a) =

n∑
k=1

Akhk + ||h||µ(h)

This extends (∗), explain.
Partial derivatives are implied, not the

other way round.
BUT: TD follows from continuous

partial derivatives. Comment.
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Computing with partial derivatives: ari-
thmetic rules are the same as for stan-
dard partial derivatives, composition is
not quite so simple.

Theorem. Let f (x) have a
total differential in a. Let gk(t) have
derivatives in b and let gk(b) = ak for
k = 1, . . . , n. Set

F (t) = f (g(t)) = f (g1(t), . . . , gn(t)).

Then F has a derivative in b, namely

F ′(b) =

n∑
k=1

∂f (a)

∂xk
· g′k(b).
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Corollary. (Chain Rule) Let f (x)
have a total differential in a. Let gk(t1, . . . , tr)
have partial derivatives in b = (b1, . . . , br)
and let gk(b) = ak for k = 1, . . . , n.
Then the function

(f◦g)(t1, . . . , tr) = f (g(t)) = f (g1(t), . . . , gn(t))

has all the partial derivatives in b and

∂(f ◦ g)(b)

∂tj
=

n∑
k=1

∂f (a)

∂xk
· ∂gk(b)

∂tj
.
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We have composed

Ek
g−→ En

f−→ R
Now consider an m-tuple of functions

f = (f1 . . . , fm), that is, f : En→ Em
Ek

g−→ En
f−→ Em

The rule from the previous theorem yields

∂(fi ◦ g)(b)

∂tj
=

n∑
k=1

∂fi(a)

∂xk
· ∂gk(b)

∂tj
.

Introducing Df =
(
∂hi(a)
∂xk

)
ik

we get

D(f◦g) = Df·Dg (matrix multiplication)

and this is how it should be.
Dh is the matrix of the linear ap-

proximation of h and:
linear aproximations compose in pa-
rallel with the mappings approxima-
ted.
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Arithmetic rules obtained from
the chain one.

Multiplication.

f (u, v) = u · v. Then ∂f
∂u = v, ∂f∂v = u

and for u = φ(x) and v = ψ(x)

(φ(x).ψ(x))′ =
∂f

∂u
φ′(x) +

∂f

∂v
ψ′(x) =

= ψ(x)φ′(x) + φ(x)ψ′(x)

Division.
f (u, v) = u

v . Then ∂f
∂u = 1

v , ∂f∂v = − u
v2

and for u = φ(x) and v = ψ(x)(
φ(x)

ψ(x)

)′
=
∂f

∂u
φ′(x)− ∂f

∂v
ψ′(x) =

=
1

ψ(x)
φ′(x) +

φ(x)

ψ(x)2
ψ′(x) =

=
ψ(x)φ′(x)− φ(x)ψ′(x)

ψ(x)2
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U ⊆ En is convex if

x, y ∈ U ⇒ ∀t, 0 ≤ t ≤ 1, (1−t)x+ty = x+t(y−x) ∈ U.

Lagrange in several variables.

Proposition. Let f have continu-
ous partial derivatives in a convex open
U ⊆ En. Then for any two x, y ∈ D
there is a θ, 0 ≤ θ ≤ 1, such that

f (y)− f (x) =

n∑
j=1

∂f (x + θ(y − x))

∂xj
(yj − xj).

Proof. F (t) = f (x+ t(y− x)) is F =
f ◦ g with g where gj(t) = xj + t(yj −
xj), and

F ′(t) =

n∑
j=1

∂f (g(t))

∂xj
g′j(t) =

n∑
j=1

∂f (g(t))

∂xj
(yj − xj).

By Lagrange’s theorem

f (y)− f (x) = F (1)− F (0) = F ′(θ).
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Note. This formula is often used in
the form

f (x + h)− f (x) =

n∑
j=1

∂f (x + θh)

∂xj
hj.

Compare with the formula for total di-
fferential:

f (x+h)−f (x) =

n∑
j=1

∂f (x)

∂xj
hj+||h||µ(h)

10



If partial derivatives
∂f (x1,...,xn)

∂xk
exist

for all (x1, . . . , xn) in a domain D′ we
have a function

∂f

∂xk
: D′→ R.

If we have g(x) =
∂f (x)
∂xk

then similarly

like asking about the second derivative
of a function in one variable we can con-
sider second derivatives of f (x), that is,

∂g(x)

∂xl
.

The result, if it exists, is then denoted
by

∂2f (x)

∂xk∂xl
.
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Iterating this procedure we obtain

∂rf (x)

∂xk1
∂xk2

. . . ∂xkr
,

partial derivatives of order r.
The order is determined by the num-

ber of taking derivatives, not by repeti-
tions in individual variables.

∂3f (x, y, x)

∂x∂y∂z
and

∂3f (x, y, x)

∂x∂x∂x

are third order derivatives.
Consecutive taking derivatives by the

same variable is written as an exponent,
e.g.,

∂5f (x, y)

∂x2∂y3
=

∂5f (x, y)

∂x∂x∂x∂y∂y
,

∂5f (x, y)

∂x2∂y2∂x
=

∂5f (x, y)

∂x∂x∂y∂y∂x
.
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A suggestive example.
Compute “mixed” second order deriva-
tives of

f (x, y) = x sin(y2 + x).

First we obtain

∂f (x, y)

∂x
= sin(y2 + x) + x cos(y2 + x),

∂f (x, y)

∂y
= 2xy cos(y2 + x).

and then the second order derivatives,

∂2f

∂x∂y
= 2y cos(y2 + x)− 2xy sin(y2 + x)

∂2f

∂y∂x
= 2y cos(y2 + x)− 2xy sin(y2 + x).

We have got the same result!
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Proposition. Let f (x, y) have con-

tinuous partial derivatives ∂2f
∂x∂y and

∂2f
∂y∂x in a neighborhood of (x, y). Then

∂2f (x, y)

∂x∂y
=
∂2f (x, y)

∂y∂x
.

Note that we have assumed

continuous partial derivatives,
hence

more than just a total differential.
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Proof. Let us try to compute both
the derivatives in one step, thus, let us
compute the limit limh→0F (h) of the
function

F (h) =
f (x + h, y + h)− f (x, y + h)− f (x + h, y) + f (x, y)

h2
.

If we set

ϕh(y) = f (x + h, y)− f (x, y) and

ψk(x) = f (x, y + k)− f (x, y),

we obtain for F (h) two formulas:

F (h) =
1

h2
(ϕh(y + h)− ϕh(y))

F (h) =
1

h2
(ψh(x + h)− ψh(x)).

First: The function ϕh has a derivative
(by y, it has no other variable)

ϕ′h(y) =
∂f (x + h, y)

∂y
− ∂f (x, y)

∂y
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and hence by Lagrange’s formula we ob-
tain
F (h) =

1

h2
(ϕh(y + h)− ϕh(y)) =

1

h
ϕ′h(y + θ1h) =

=
∂f (x + h, y + θ1h)

∂y
− ∂f (x, y + θ1h)

∂y
.

Then, again using the L. formula,

F (h) =
∂

∂x

(
∂f (x + θ2h, y + θ1h)

∂y

)
(∗)

for some θ1, θ2 between 0 and 1.

Second, 1
h2(ψh(x+h)−ψh(x)) yields

similarly

F (h) =
∂

∂y

(
∂f (x + θ4h, y + θ2h)

∂x

)
. (∗∗)

Both functions ∂
∂y(∂f∂x) and ∂

∂x(∂f∂y ) are

continuous in (x, y), and limh→0F (h)
can be computed from any of the ex-
pressions (∗) or (∗∗):

lim
h→0

F (h) =
∂2f (x, y)

∂x∂y
=
∂2f (x, y)

∂y∂x
.
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Iterating the exchanges as in the Pro-
position we obtain

Corollary. Let a function f in n
variables have continuous partial de-
rivatives up to an order k. Then the
values of these derivative depend only
on the numbers of taking derivative
in each of the individual variables x1, . . . , xn.

Under these assumptions, hence, we can
write general partial derivatives of order
r ≤ k as

∂rf

∂x
r1
1 ∂x

r2
2 . . . ∂xrnn

kde r1+r2+· · ·+rn = r

(rj = 0 indicates the absence of the
symbol ∂xj).
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In the sequel we will need more about
metric spaces, in particular a few facts
about compactness and completenes. Re-
call the behavior of compact (closed boun-
ded) intervals, in particular that

� in such intervals every sequence has
a convergent subsequence, and this
holds in no other type of interval,

� and that a continuous function on
such interval attains a maximum and
a minimum.

Also, refresh the concept of a cauchy
sequence.
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Informations and material to
MA2

https://kam.mff.cuni.cz/ma2/

Details to the lectures: (In the
text)

MA2.1: XIII,1,2,3,4

MA2.2: I; XIII,5; XIV,2,3,5

MA2.3: XIV,3,5,4
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