Images and preimages

f:X—-Y ACX, BCY

The image of a subset A C X in Y:
fIAl ={f(2)|z € A}

The preimage of a subset B C Y in
X:
[ Bl = {z| f(z) € B}

Thus we have maps




Caution: f~! appears in two roles:
inverse f~1:Y — X, may not exist,
part of f~1[—], always making sense

Exercise. 1. Is there some relation be-
tween these two f~1a f~1[—] ?

2. When one has f~1[f[A]] = A ?

3. When one has f[f1B]] = B 7



Repetition. Trouble with functions
of several variables, example

| 0 for (x,y)=(0,0).
We will need it again.

Metric space, metric (distance), trian-
ole inequality. Subspaces. R, C, E,,

Neighborhood, open and closed sets,
closure.

Continuity, convergence, preimages of
open resp. closed sets.

Equivalent and strongly equivalent me-
trics

Q- dl(CU,y) < dQ(CE’,y) < 5 ) dl(ﬂ?,y)

In E,, we can replace \/ So(wp — y)?
by

max; [z; — yil.
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A real function in n variables
will be here

f:D >R, DCE,

Similarly like in the case of one variable
we cannot restrict ourselves to the case
of domains being the whole of [E,. In
case of one variable the domains were
usually intervals or simple unions of in-
tervals. Here the domains D will be more
complicated, often (but not always) open
sets in [K,.



Products. For (X1,d;),i=1,...,n
we endow the cartesian product [[;1; X
with metric

(w1, o), (- yn)) = max (i, ).
The obtained

n n

1 x:d) =] (X, d)

1=1 1=1
is called the product of spaces (X, d;).

We also write
Thus,

n times

(Ep,0) =R x "X R=R"




Theorem. 1. The projections p; =
(zi)i = ) - TLima (X5, di) — (X, dy)
are continuous maps.

2. Let f] Z (Y,d/) — (Xj,dj) be
arbitrary continuous maps. Then the
uniquely defined map f : (Y,d) —
[Ti21(X;,d;) satisfying pj o f = fj,
namely the map defined by f(y) =
(fily), ..., fnly)), is continuous.



It looks as follows:

Yod) LK dy)
/3 D
h J " X

(X1,d1) (X2, do) (X3,d3)

There is precisely one f with p;o f =
f; and it is continuous.

Hence, if we study continuous maps

f:(flaafm)En%Em

unlike the situation with the domain the
continity depends regarding range on
the continuity in the individual coordi-
nates only:.




2. Partial derivatives.

This i1s in individual coordinates. For
f(x1,...,xy) consider

gbk(t) — f(ajla .. 7561-6—17157 Lht1s--- ,Q?n)

Partial derivative of f by xy. (in (z1,...,zy))
1S

(the usual) derivative of the function ¢y,
that is,

flthp Bt o) — flan...)

I
e h
Notation
of(xq1,...,x 0
f( 18$k n) nebo a—af;(gjl’ . ,In),

For f(x,y) we write

0f(z.y)  Of(@y)
O0x oy
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etc.




If 8f(x17---755n>
(%k
in a domain DD we have a function
of

—: D — R.
(951%

exists for all (x4, ..., xp)

When speaking of a partial derivative it
will be always obvious whether we have
in mind such a function or just a num-
ber (the value of the limit above).



Note that the discontinuous function
f from the example of continuity by va-
riables has both partial derivatives in
every point. Thus,

the existence of partial derivatives
does not imply continuity !

We will need something stronger.

Recall the statement equivalent with
the existence of a derivative:

There is a 4 converging to 0 for h — 0
and A such that

flz +h) = f(z) = Ah + [h] - p(h)

Geometrically:

f(x 4+ h) — f(x) = Ah describes a tangent

to the graph of f in (z, f(x)).
|h| - u(h) is a small error.
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Let us view f(x,y) similarly and con-
sider the surface

S = {(t,u, ft,u))|({t,u) € Dj.

The two partial derivatives express the
directions of two tangent lines S'in (z, y, f(x,y)),

but not a tangent plane

and only that could be a suitable ex-
tension of the fact above.

For x € [E,, set

x| = max |z

This will come instead of the absolute
value, instead of the h there will be an
n-tuple close to o.
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Total differential.

f has a total differential in x if there
1S a

function @ continuous in a neighbor-
hood U of o such that p(o) = 0,

and numbers Ay, ..., A, such that

fla+h)—f(a)=)  Aphp+[h]u(h).

k=1

Proposition. Let f have a total di-
fferential in a. Then we have that
1. f is continuous in a and
2. f has all partial derivatives in a,
with values
0f(a)

C?CU]{

— A,
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1. We have

| f(x—=y)| < |A(x—y)[+|px=y)|x —y|

and the limit on the right hand side for

y — x1s 0.
2. We have

L gy o+ By, ) — (. ) =

h
0. . h... . .0
= g+ (0,0, I OF

and the right hand side limit is obvi-
ously A;..

This time we have continuity!

Note that in the case of one variable
there is no difference between the exis-
tence of derivative and possessing total
differential in a. In case of several vari-
ables the difference is fundamental.
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It may come as a surprise that while
the existence of partial derivatives is not
of much help,

the existence of continuous partial derivatives

is quite another story:.

We have

Theorem. Let f have continuous

partial derivatives in a netghborhood
of a. Then it has in a a total diffe-
rential.
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Set
h@ =h, h) = (0,h,...,h,), ' =(0,0,hs,..., hy) etc.

(so that h™ = o). Then we have

n

f@a+h)—f@=> (fla+h" ) - fa+h®)) =M.

k=1

By Lagrange’s Theorem there are 0 < 6, < 1 such that

f(a+h(k_1))_f(a+h(k)> _ 8f(a’lu ceey A1, ak:a'i‘ ekhk, Aki1y .- ,CLn) hk
Tk

nd we can proceed

8f(a1, oy ap + Oihyg, .. .,an)
M = h
Z Oy k

. 8f(a) 8f(a1, cee,Qp T+ Hkhk, ce ,an) 6f(a) o
—Z 8$k hk;"‘Z( ka B 8$k>hk_

o 8f(a) 8f(a1, cee,Qp + Gkhk, ce ,a,n) af(a) hk-
=2 Oz, h””h”Z( O T O ) [h[

. af(ala"'7ak+9khk7"'aan) af(a) hk:
ulh) = Z( o, " o, ) ]
of

h
”?k”‘ < 1 and since 92y, are continuous, limp_, p(h) = 0.

We can conclude that

continuous PD = TD = PD
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The rules for computing par-
tial derivatives.

Arithmetic rules are the same as for
standard derivatives (here, partial deri-
vatives are just the standard ones).

The composition rule differs. Recall
that even for the standard derivative it
is proved from the formula

fla+h) = fla) = Ah + [h|u(h),

that is, using the differential (which, of
course, i1s there the existence of deriva-
tive).
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The composition rule in simplest form:

Theorem. Let f(x) have total di-
fferential in a. Let gi.(t) have deri-

vatives in b and let gi.(b) = ay for
k=1,...,n. Set

F(t) = f(g(t) = f(g1(t),- -, gn(t)),

Then F' has a derivative in b, namely
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How one proves it :

— g+ 1)~ (g0) =

(f(g(b) + (g(b+h) —g(d)) — f(g(b)) =

Ny 50t 1) = )

3
S
+
=
|
3
=
|

+ u(g(b+h) —g(b)) m

x gk (b + h) — gk(b)|.

h k h

We have limy,_o pu(g(b+ h) — g(b)) = 0 as gx are continuous in
b. Since g; have derivatives, maxy M
sufficiently small neighborhood of 0. Hence the limit of the last

summand is 0 and

are bounded in a

! ey gkb+h) = ge(b)
i P04 = FO9) = fig >~ 000

S A O ) §n08@)
k=1

What happens, geometrically: The tan-
ogent hyperplane expressed by the diffe-
rential of f has no reason for preferring
the main axes in which happen the de-
rivatives in the functions g;.. Hence just
partial derivatives would not suffice.
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Corollary. (Chain rule) Let f(x) have
total differential in a. Let functions
gr(t1, ..., tr) have partial derivatives
inb=(by,...,br) and let gi.(b) = ay,
fork=1,...,n. Then the function

(fog)(tr, ..., tr) = f(g(t)) = f(g1(t), ..., gn(l))

has all partial derivatives in b, and
one has

19



