
Images and preimages

f : X → Y , A ⊆ X , B ⊆ Y

The image of a subset A ⊆ X in Y :
f [A] = {f (x) |x ∈ A}

The preimage of a subset B ⊆ Y in
X :

f−1[B] = {x | f (x) ∈ B}

Thus we have maps

P(X)
f [−]

//

P(Y ).
f−1[−]

oo

One has:

f [A] ⊆ B ≡ A ⊆ f−1[B],

f [f−1[B]] ⊆ B f−1[f [A]] ⊇ A
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Caution: f−1 appears in two roles:

inverse f−1 : Y → X , may not exist,

part of f−1[−], always making sense

Exercise. 1. Is there some relation be-
tween these two f−1 a f−1[−] ?

2. When one has f−1[f [A]] = A ?

3. When one has f [f−1[B]] = B ?
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Repetition. Trouble with functions
of several variables, example

f (x, y) =

{
xy

x2+y2 pro (x, y) 6= (0, 0),

0 for (x, y) = (0, 0).

We will need it again.

Metric space, metric (distance), trian-
gle inequality. Subspaces. R,C, En

Neighborhood, open and closed sets,
closure.

Continuity, convergence, preimages of
open resp. closed sets.

Equivalent and strongly equivalent me-
trics

α · d1(x, y) ≤ d2(x, y) ≤ β · d1(x, y).

In En we can replace
√∑

i(xi − yi)2

by

maxi |xi − yi|.
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A real function in n variables
will be here

f : D → R, D ⊆ En
Similarly like in the case of one variable
we cannot restrict ourselves to the case
of domains being the whole of En. In
case of one variable the domains were
usually intervals or simple unions of in-
tervals. Here the domainsD will be more
complicated, often (but not always) open
sets in En.
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Products. For (X1, di), i = 1, . . . , n
we endow the cartesian product

∏n
i=1Xi

with metric

d((x1, . . . , xn), (y1, . . . , yn)) = max
i
di(xi, yi).

The obtained

(

n∏
i=1

Xi, d) =

n∏
i=1

(Xi, di)

is called the product of spaces (Xi, di).

We also write

(X1, d1)× · · · × (Xn, dn).

Thus,

(En, σ) =

n times︷ ︸︸ ︷
R× · · · × R = Rn.
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Theorem. 1. The projections pj =
((xi)i 7→ xj) :

∏n
i=1(Xi, di)→ (Xj, dj)

are continuous maps.
2. Let fj : (Y, d′) → (Xj, dj) be

arbitrary continuous maps. Then the
uniquely defined map f : (Y, d′) →∏n
i=1(Xi, di) satisfying pj ◦ f = fj,

namely the map defined by f (y) =
(f1(y), . . . , fn(y)), is continuous.
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It looks as follows:

(Y, d)

f1

��

f2

##

f3

''

f
//

∏3
i=1(Xi, di)

p1

��

p2

��

p3

��

(X1, d1) (X2, d2) (X3, d3)

There is precisely one f with pi ◦ f =
fi and it is continuous.

Hence, if we study continuous maps

f = (f1, . . . , fm) : En→ Em
unlike the situation with the domain the
continity depends regarding range on
the continuity in the individual coordi-
nates only.
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2. Partial derivatives.

This is in individual coordinates. For
f (x1, . . . , xn) consider

φk(t) = f (x1, . . . , xk−1, t, xk+1, . . . , xn)

Partial derivative of f by xk (in (x1, . . . , xn))
is

(the usual) derivative of the function φk,
that is,

lim
h→0

f (. . . xk−1, xk + h, xk+1 . . . )− f (x1, . . . )

h
.

Notation
∂f (x1, . . . , xn)

∂xk
nebo

∂f

∂xk
(x1, . . . , xn),

For f (x, y) we write

∂f (x, y)

∂x
a

∂f (x, y)

∂y
, etc.
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If
∂f (x1,...,xn)

∂xk
exists for all (x1, . . . , xn)

in a domain D we have a function
∂f

∂xk
: D → R.

When speaking of a partial derivative it
will be always obvious whether we have
in mind such a function or just a num-
ber (the value of the limit above).
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Note that the discontinuous function
f from the example of continuity by va-
riables has both partial derivatives in
every point. Thus,

the existence of partial derivatives
does not imply continuity !

We will need something stronger.
Recall the statement equivalent with

the existence of a derivative:
There is a µ converging to 0 for h→ 0

and A such that

f (x + h)− f (x) = Ah + |h| · µ(h)

Geometrically:
f (x + h)− f (x) = Ah describes a tangent

to the graph of f in (x, f (x)).

|h| · µ(h) is a small error.
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Let us view f (x, y) similarly and con-
sider the surface

S = {(t, u, f (t, u)) | (t, u) ∈ D}.
The two partial derivatives express the
directions of two tangent lines S in (x, y, f (x, y)),

but not a tangent plane

and only that could be a suitable ex-
tension of the fact above.

For x ∈ En set

||x|| = max
i
|xi|

This will come instead of the absolute
value, instead of the h there will be an
n-tuple close to o.
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Total differential.
f has a total differential in x if there

is a
function µ continuous in a neighbor-

hood U of o such that µ(o) = 0,
and numbers A1, . . . , An such that

f (a+h)−f (a) =

n∑
k=1

Akhk+ ||h||µ(h).

Proposition. Let f have a total di-
fferential in a. Then we have that

1. f is continuous in a and
2. f has all partial derivatives in a,

with values

∂f (a)

∂xk
= Ak.
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1. We have

|f (x−y)| ≤ |A(x−y)|+|µ(x−y)||x− y||
and the limit on the right hand side for
y→ x is 0.

2. We have
1

h
(f (. . . xk−1, xk + h, xk+1, . . . )− f (x1, . . . )) =

= Ak + µ((. . . , 0, h, 0, . . . ))
||(0, . . . , h, . . . , 0)||

h
,

and the right hand side limit is obvi-
ously Ak.

This time we have continuity!
Note that in the case of one variable

there is no difference between the exis-
tence of derivative and possessing total
differential in a. In case of several vari-
ables the difference is fundamental.
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It may come as a surprise that while
the existence of partial derivatives is not
of much help,

the existence of continuous partial derivatives

is quite another story.

We have

Theorem. Let f have continuous
partial derivatives in a neighborhood
of a. Then it has in a a total diffe-
rential.
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Set

h(0) = h, h(1) = (0, h2, . . . , hn), h(2) = (0, 0, h3, . . . , hn) etc.

(so that h(n) = o). Then we have

f(a + h)− f(a) =
n∑

k=1

(f(a + h(k−1))− f(a + h(k))) = M.

By Lagrange’s Theorem there are 0 ≤ θk ≤ 1 such that

f(a+h(k−1))−f(a+h(k)) =
∂f(a1, . . . , ak−1, ak + θkhk, ak+1, . . . , an)

∂xk
hk

nd we can proceed

M =
∑ ∂f(a1, . . . , ak + θkhk, . . . , an)

∂xk
hk =

=
∑ ∂f(a)

∂xk
hk +

∑(
∂f(a1, . . . , ak + θkhk, . . . , an)

∂xk
− ∂f(a)

∂xk

)
hk =

=
∑ ∂f(a)

∂xk
hk + ||h||

∑(
∂f(a1, . . . , ak + θkhk, . . . , an)

∂xk
− ∂f(a)

∂xk

)
hk
||h||

.

Set

µ(h) =
∑(

∂f(a1, . . . , ak + θkhk, . . . , an)

∂xk
− ∂f(a)

∂xk

)
hk
||h||

.

Since

∣∣∣∣ hk||h||
∣∣∣∣ ≤ 1 and since ∂f

∂xk
are continuous, limh→o µ(h) = 0.

We can conclude that

continuous PD ⇒ TD ⇒ PD
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The rules for computing par-
tial derivatives.

Arithmetic rules are the same as for
standard derivatives (here, partial deri-
vatives are just the standard ones).

The composition rule differs. Recall
that even for the standard derivative it
is proved from the formula

f (a + h)− f (a) = Ah + |h|µ(h),

that is, using the differential (which, of
course, is there the existence of deriva-
tive).
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The composition rule in simplest form:

Theorem. Let f (x) have total di-
fferential in a. Let gk(t) have deri-
vatives in b and let gk(b) = ak for
k = 1, . . . , n. Set

F (t) = f (g(t)) = f (g1(t), . . . , gn(t)),

Then F has a derivative in b, namely

F ′(b) =

n∑
k=1

∂f (a)

∂xk
· g′k(b).
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How one proves it :

1

h
(F (b+ h)− F (b)) =

1

h
(f(g(b+ h))− f(g(b)) =

=
1

h
(f(g(b) + (g(b+ h)− g(b)))− f(g(b)) =

=
n∑

k=1

Ak
gk(b+ h)− gk(b)

h
+ µ(g(b+ h)− g(b)) max

k

|gk(b+ h)− gk(b)|
h

.

We have limh→0 µ(g(b + h) − g(b)) = 0 as gk are continuous in

b. Since gk have derivatives, maxk
|gk(b+h)−gk(b)|

h are bounded in a
sufficiently small neighborhood of 0. Hence the limit of the last
summand is 0 and

lim
h→0

1

h
(F (b+ h)− F (b)) = lim

h→0

n∑
k=1

Ak
gk(b+ h)− gk(b)

h
=

=
n∑

k=1

Ak lim
h→0

gk(b+ h)− gk(b)
h

=
n∑

k=1

∂f(a)

∂xk
g′k(b).

What happens, geometrically: The tan-
gent hyperplane expressed by the diffe-
rential of f has no reason for preferring
the main axes in which happen the de-
rivatives in the functions gk. Hence just
partial derivatives would not suffice.
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Corollary. (Chain rule) Let f (x) have
total differential in a. Let functions
gk(t1, . . . , tr) have partial derivatives
in b = (b1, . . . , br) and let gk(b) = ak
for k = 1, . . . , n. Then the function

(f◦g)(t1, . . . , tr) = f (g(t)) = f (g1(t), . . . , gn(t))

has all partial derivatives in b, and
one has

∂(f ◦ g)(b)

∂tj
=

n∑
k=1

∂f (a)

∂xk
· ∂gk(b)

∂tj
.
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