
We will study real functions of several
real variables

f (x1, . . . , xn)

We already know quite a few facts about
functons of one variable; thus, let us
consider (fixing all the variables but one)
instead

f (a1, . . . , ak−1, x, ak+1, . . . an)

a system of functions of one variables
that we understand.

This will not work, though.
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f (x, y) =

{
xy

x2+y2 for (x, y) 6= (0, 0),

0 for (x, y) = (0, 0).

f (x, 0) = 0, f (0, x) = 0 are both nicely
continuous

for a 6= 0 are f (x, a) and f (a, x) given
on all the domain as simple arithmetic
formulas

but f (0, 0) = 0, and for arbitrarily small
ε, hence arbitratily close to (0, 0) we
have

f (ε, ε) =
1

2
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Metric space

(X, d), d : X ×X → R

d(x, y) ≥ 0, d(x, y) = 0⇔ x = y
d(x, y) = d(y, x)
d(x, z) ≤ d(x, y) + d(y, z)

So far we worked in a special one

(R, |x− y|)
Similarily we have another

(C, |x− y|)
(Caution: triangle inequality for |x−
y| is not quite as trivial as in R)
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Euclidean spaces En: (Rn, d)

d((x1, . . . , xn), (y1, . . . , yn)) =

√∑
i

(xi − yi)2

For our purposes it will be particularly
important. You know it also from linear
algebra in the form of the vector space
Vn with scalar product uv and norm
||u|| =

√
uu – and distance ||u− v||

—————————

(X, d) with d(x, y) = 1 for x 6= y
(discrete space)

—————————

F (a, b) set of all bounded functions on
an interval 〈a, b〉

d(f, g) = sup{|f (x)−g(x)| | a ≤ x ≤ b}
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Subspace. (X, y) m. space, Y ⊆ X

(Y, d′) where d′(x, y) = d(x, y)

Continuous map(ping)s f : (X, d)→
(Y, d′)
∀x ∈ X, ∀ε > 0∃δ > 0,

d(x, y) < δ ⇒ d′(f (x), f (y)) < ε
(Compare with

∀x ∈ X, ∀ε > 0∃δ > 0,

|x− y| < δ ⇒ |f (x)− f (y)| < ε)

Trivialities: Identical map id : (X, d)→
(X, d),

Embedding of a subspace j = (x 7→
x) : (Y, d′)→ (X, d)

Composition gf : (X, d) → (Z, d′′)
of continuous maps f : (X, d)→ (y, d′)
a g : (Y, d′)→ (Z, d′′) is continuous
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Convergence. limn xn = x :

∀ε > 0∃n0(n ≥ n0⇒ d(x, xn) < ε)
(Compare with

∀ε > 0∃n0(n ≥ n0 ⇒ |x− xn| < ε)

Theorem. A mapping f : (X1, d1)→
(X2, d2) is continuous iff for each con-
vergent (xn)n in (X1, d1) the sequence
(f (xn))n converges in (X2, d2) and it
holds limn f (xn) = f (limn xn).

Proof. I. Let f be continuous, let limn xn =
x. For ε > 0 choose, using continu-
ity, δ > 0 s.t. d2(f (y), f (x)) < ε for
d1(x, y) < δ. By definition of conver-
gence there is an n0 s.t. for n ≥ n0
one has d1(xn, x) < δ. Thus, if n ≤ n0
we have d2(f (xn), f (x)) < ε, and then
limn f (xn) = f (limn xn).
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II. Let f not be continuous. Then there
is an x ∈ X1 and an ε0 > 0 such that
for every δ > 0 there is an x(δ) with

d1(x, x(δ)) < δ while d2(f (x), f (x(δ))) ≥ ε0.

Set xn = x(1
n). Then limn xn = x but

(f (xn))n cannot converge to f (x). �
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Neighborhood. Set
Ω(x, ε) = {y | d(x, y) < ε}

“U is a neighborhood of x”
≡ ∃ε > 0,Ω(x, ε) ⊆ U

Observation: 1. U nbh. of x and
U ⊆ V ⇒ V nbh. of x.

2. U ,V nbh.of x ⇒ U ∩ V nbh.of x.

Open sets. U ⊆ (X, d) is open if it
is a neighborhood of each of its point.

Observation. Each ΩX(x, ε) is open
in (X, d).

Observation. ∅ and X are open.
If Ui, i ∈ Jare open then

⋃
i∈J Ui is

open, and if U and V are open so is
U ∩ V .
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Closed sets. A ⊆ (X, d) is closed
in (X, d) ≡ for every (xn)n ⊆ A con-
vergent in X , limn xn is in A.

Proposition. A ⊆ (X, d) is closed
in (X, d) iff X r A is open.

Proof. I. Let X rA not be open. Then there is an

x ∈ X r A such that for every n, Ω(x, 1n) * X r A.

Choose xn ∈ Ω(x, 1n)∩A. Then (xn)n ⊆ A and limxn =

x /∈ A, and hence A is not closed.

II. Let X rA be open and let (xn)n ⊆ A converge to

x ∈ X r A. Then we have for some ε > 0, Ω(x, ε) ⊆

X rA and hence for sufficiently large n, xn ∈ Ω(x, ε) ⊆

X r A– a contradiction. �

Corollary. ∅ and X are closed sets.
If Ai, i ∈ J are closed,

⋂
i∈J Ai is

closed, and if A and B are closed then
so is A ∪B.

9



d(x,A) = inf{d(x, a) | a ∈ A}.
Closure of a set A:

A = {x | d(x,A) = 0}.

Proposition. (1) ∅ = ∅.
(2) A ⊆ A,
(3) A ⊆ B ⇒ A ⊆ B,
(4) A ∪B = A ∪B, a

(5) A = A.
Proof. (4): A ∪B ⊇ A ∪ B. If x ∈

A ∪B but not x ∈ A we have α =
d(x,A) > 0 and hence y ∈ A∪B with
d(x, y) < α are in B; thus x ∈ B.

(5): Let d(x,A) = 0. Choose ε > 0.
Then there is z ∈ A such that d(x, z) <
ε
2 and hence for this z we can choose y ∈
A such that d(z, y) < ε

2. Thus d(x, y) <
ε
2 + ε

2 = ε and we see that x ∈ A. �
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Proposition. A is the set of all li-
mits of convergent (xn)n ⊆ A.

Proposition. A is closed, and it
is the least closed set containing A.
Hence,

A =
⋂
{B |A ⊆ B, B closed}.

Proof. If (xn)n ⊆ A converges to x
choose yn ∈ A with d(xn, yn) < 1

n.

Then limn yn = x and x is in A.
If B is closed and A ⊆ B choose x ∈

A anconvergent (xn)n in A, tedy v B,
such that limxn = x. Then x ∈ B.
�
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Theorem. Bud’te (X1, d1), (X2.d2)
metric spaces and f : X1 → X2 a
mapping Then the following are equi-
valent.

(1) f is continuous.

(2) For every x ∈ X1 and every nbh V
of f (x)there is a nbh U of x such
that f [U ] ⊆ V .

(3) For every U open in X2 the prei-
mage f−1[U ] is open in X1.

(4) For every A closed in X2 the pre-
image f−1[A] is closed in X1.

(5) For every A ⊆ X1 we have f [A] ⊆
f [A].
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A property or concept is topological
if it is preserved by homeomorphisms.
Thus e.g. the following are topological
concepts:

� convergence

� openness

� closedness

� closure

� neighborhood

� or continuity itself.

Equivalent and strongly equi-
valent metrics:

The identical map (X, d1)→ (X, d2)
is a homeomorphism (“d1 and d2 are
equivalent”).
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d1 a d2 are strongly equivalent if there
are positive constants α and β with

α · d1(x, y) ≤ d2(x, y) ≤ β · d1(x, y).

In the euclidean spaces where we
had so far the distance

d((x1, . . . , xn), (y1, . . . , yn)) =

√√√√ n∑
i=1

(xi − yi)2

set

λ((x1, . . . , xn), (y1, . . . , yn)) =

n∑
i=1

|xi − yi|, and

σ((x1, . . . , xn), (y1, . . . , yn)) = max
i
|xi − yi|.

Proposition. d, λ and σ are stron-
gly equivalent metrics on En.
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Products. For (X1, di), i = 1, . . . , n
define on the cartesian product

∏n
i=1Xi

a metric

d((x1, . . . , xn), (y1, . . . , yn)) = max
i
di(xi, yi).

The resulting space

(

n∏
i=1

Xi, d) =

n∏
i=1

(Xi, di)

is called the product of the (Xi, di).

One also writes

(X1, d1)× · · · × (Xn, dn).

Hence

(En, σ) =

n times︷ ︸︸ ︷
R× · · · × R = Rn.
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Theorem. 1. The projections pj =
((xi)i 7→ xj) :

∏n
i=1(Xi, di)→ (Xj, dj)

are continuous maps.
2. Let f:(Y, d

′) → (Xj, dj) be arbit-
rary continuous maps. Then the uniquely
defined f : (Y, d′)→

∏n
i=1(Xi, di) sa-

tisfying pj ◦ f = fj, that is, the map
defined by f (y) = (f1(y), . . . , fn(y)),
is continuous.

Hence, if we study maps

f = (f1, . . . , fm) : En→ Em
the continuity in the range depends on
the continuity in the individual coordi-
nates only, unlike in the domain.
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