We will study real functions of several real variables

$$
f\left(x_{1}, \ldots, x_{n}\right)
$$

We already know quite a few facts about functons of one variable; thus, let us consider (fixing all the variables but one) instead

$$
f\left(a_{1}, \ldots, a_{k-1}, x, a_{k+1}, \ldots a_{n}\right)
$$

a system of functions of one variables that we understand.

This will not work, though.

$f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { for }(x, y) \neq(0,0), \\ 0 \text { for } & (x, y)=(0,0) .\end{cases}$
$f(x, 0)=0, f(0, x)=0$ are both nicely continuous
for $a \neq 0$ are $f(x, a)$ and $f(a, x)$ given on all the domain as simple arithmetic formulas
but $f(0,0)=0$, and for arbitrarily small ε, hence arbitratily close to $(0,0)$ we have

$$
f(\varepsilon, \varepsilon)=\frac{1}{2}
$$

Metric space

$$
\begin{aligned}
& (X, d), \quad d: X \times X \rightarrow \mathbb{R} \\
& d(x, y) \geq 0, \quad d(x, y)=0 \Leftrightarrow x=y \\
& d(x, y)=d(y, x) \\
& d(x, z) \leq d(x, y)+d(y, z)
\end{aligned}
$$

So far we worked in a special one

$$
(\mathbb{R},|x-y|)
$$

Similarily we have another

$$
(\mathbb{C},|x-y|)
$$

(Caution: triangle inequality for $\mid x-$ $y \mid$ is not quite as trivial as in \mathbb{R})

Euclidean spaces $\mathbb{E}_{n}: \quad\left(\mathbb{R}^{n}, d\right)$

$d\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\sqrt{\sum_{i}\left(x_{i}-y_{i}\right)^{2}}$
For our purposes it will be particularly important. You know it also from linear algebra in the form of the vector space \mathbf{V}_{n} with scalar product $\mathbf{u v}$ and norm $\|\mathbf{u}\|=\sqrt{\mathbf{u u}}$ - and distance $\|\mathbf{u}-\mathbf{v}\|$
(X, d) with $d(x, y)=1$ for $x \neq y$ (discrete space)
$F(a, b)$ set of all bounded functions on an interval $\langle a, b\rangle$
$d(f, g)=\sup \{|f(x)-g(x)| \mid a \leq x \leq b\}$

Subspace. $(X, y) \mathrm{m}$. space, $Y \subseteq X$

$$
\left(Y, d^{\prime}\right) \quad \text { where } \quad d^{\prime}(x, y)=d(x, y)
$$

Continuous map(ping)s $f:(X, d) \rightarrow$

(Y, $\left.d^{\prime}\right)$
$\forall x \in X, \forall \varepsilon>0 \exists \delta>0$,

$$
d(x, y)<\delta \Rightarrow d^{\prime}(f(x), f(y))<\varepsilon
$$

(Compare with

$$
\begin{aligned}
& \forall x \in X, \forall \varepsilon>0 \exists \delta>0, \\
&\quad|x-y|<\delta \Rightarrow|f(x)-f(y)|<\varepsilon)
\end{aligned}
$$

Trivialities: Identical map id : $(X, d) \rightarrow$ (X, d),
Embedding of a subspace $j=(x \mapsto$ $x):\left(Y, d^{\prime}\right) \rightarrow(X, d)$
Composition $g f:(X, d) \rightarrow\left(Z, d^{\prime \prime}\right)$ of continuous maps $f:(X, d) \rightarrow\left(y, d^{\prime}\right)$ a $g:\left(Y, d^{\prime}\right) \rightarrow\left(Z, d^{\prime \prime}\right)$ is continuous

Convergence. $\lim _{n} x_{n}=x$:

$$
\forall \varepsilon>0 \exists n_{0}\left(n \geq n_{0} \Rightarrow d\left(x, x_{n}\right)<\varepsilon\right)
$$

(Compare with

$$
\forall \varepsilon>0 \exists n_{0}\left(n \geq n_{0} \Rightarrow\left|x-x_{n}\right|<\varepsilon\right)
$$

Theorem. A mapping $f:\left(X_{1}, d_{1}\right) \rightarrow$ $\left(X_{2}, d_{2}\right)$ is continuous iff for each convergent $\left(x_{n}\right)_{n}$ in $\left(X_{1}, d_{1}\right)$ the sequence $\left(f\left(x_{n}\right)\right)_{n}$ converges in $\left(X_{2}, d_{2}\right)$ and it holds $\lim _{n} f\left(x_{n}\right)=f\left(\lim _{n} x_{n}\right)$.
Proof. I. Let f be continuous, let $\lim _{n} x_{n}=$ x. For $\varepsilon>0$ choose, using continuity, $\delta>0$ s.t. $d_{2}(f(y), f(x))<\varepsilon$ for $d_{1}(x, y)<\delta$. By definition of convergence there is an n_{0} s.t. for $n \geq n_{0}$ one has $d_{1}\left(x_{n}, x\right)<\delta$. Thus, if $n \leq n_{0}$ we have $d_{2}\left(f\left(x_{n}\right), f(x)\right)<\varepsilon$, and then $\lim _{n} f\left(x_{n}\right)=f\left(\lim _{n} x_{n}\right)$.
II. Let f not be continuous. Then there is an $x \in X_{1}$ and an $\varepsilon_{0}>0$ such that for every $\delta>0$ there is an $x(\delta)$ with
$d_{1}(x, x(\delta))<\delta \quad$ while $\quad d_{2}(f(x), f(x(\delta))) \geq \varepsilon_{0}$.
Set $x_{n}=x\left(\frac{1}{n}\right)$. Then $\lim _{n} x_{n}=x$ but $\left(f\left(x_{n}\right)\right)_{n}$ cannot converge to $f(x) . \quad \square$

Neighborhood. Set

$$
\Omega(x, \varepsilon)=\{y \mid d(x, y)<\varepsilon\}
$$

" U is a neighborhood of x "

$$
\equiv \exists \varepsilon>0, \Omega(x, \varepsilon) \subseteq U
$$

Observation: 1. U nbh. of x and $U \subseteq V \Rightarrow V$ nbh. of x.
2. U, V nbh.of $x \Rightarrow U \cap V$ nbh.of x.

Open sets. $U \subseteq(X, d)$ is open if it is a neighborhood of each of its point.
Observation. Each $\Omega_{X}(x, \varepsilon)$ is open in (X, d).
Observation. \emptyset and X are open. If $U_{i}, i \in$ Jare open then $\bigcup_{i \in J} U_{i}$ is open, and if U and V are open so is $U \cap V$.

Closed sets. $A \subseteq(X, d)$ is closed in $(X, d) \equiv$ for every $\left(x_{n}\right)_{n} \subseteq A$ convergent in $X, \lim _{n} x_{n}$ is in A.
Proposition. $A \subseteq(X, d)$ is closed in (X, d) iff $X \backslash A$ is open.
$\operatorname{Proof.}$. Let $X \backslash A$ not be open. Then there is an $x \in X \backslash A$ such that for every $n, \Omega\left(x, \frac{1}{n}\right) \nsubseteq X \backslash A$. Choose $x_{n} \in \Omega\left(x, \frac{1}{n}\right) \cap A$. Then $\left(x_{n}\right)_{n} \subseteq A$ and $\lim x_{n}=$ $x \notin A$, and hence A is not closed.
II. Let $X \backslash A$ be open and let $\left(x_{n}\right)_{n} \subseteq A$ converge to $x \in X \backslash A$. Then we have for some $\varepsilon>0, \Omega(x, \varepsilon) \subseteq$ $X \backslash A$ and hence for sufficiently large $n, x_{n} \in \Omega(x, \varepsilon) \subseteq$ $X \backslash A$ - a contradiction.

Corollary. \emptyset and X are closed sets. If $A_{i}, i \in J$ are closed, $\bigcap_{i \in J} A_{i}$ is closed, and if A and B are closed then so is $A \cup B$.

$$
d(x, A)=\inf \{d(x, a) \mid a \in A\} .
$$

Closure of a set A :

$$
\bar{A}=\{x \mid d(x, A)=0\} .
$$

Proposition. (1) $\bar{\emptyset}=\emptyset$.
(2) $A \subseteq \bar{A}$,
(3) $A \subseteq B \Rightarrow \bar{A} \subseteq \bar{B}$,
(5) $\overline{\bar{A}}=\bar{A}$.

Proof. (4): $\overline{A \cup B} \supseteq \bar{A} \cup \bar{B}$. If $x \in$
$\overline{A \cup B}$ but not $x \in \bar{A}$ we have $\alpha=$ $d(x, A)>0$ and hence $y \in A \cup B$ with $d(x, y)<\alpha$ are in B; thus $x \in \bar{B}$.
(5): Let $d(x, \bar{A})=0$. Choose $\varepsilon>0$. Then there is $z \in \bar{A}$ such that $d(x, z)<$ $\frac{\varepsilon}{2}$ and hence for this z we can choose $y \in$ A such that $d(z, y)<\frac{\varepsilon}{2}$. Thus $d(x, y)<$ $\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ and we see that $x \in \bar{A}$.

Proposition. \bar{A} is the set of all limits of convergent $\left(x_{n}\right)_{n} \subseteq A$.
Proposition. \bar{A} is closed, and it is the least closed set containing A. Hence,

$$
\bar{A}=\bigcap\{B \mid A \subseteq B, B \text { closed }\}
$$

Proof. If $\left(x_{n}\right)_{n} \subseteq \bar{A}$ converges to x choose $y_{n} \in A$ with $d\left(x_{n}, y_{\underline{n}}\right)<\frac{1}{n}$. Then $\lim _{n} y_{n}=x$ and x is in \bar{A}.
If B is closed and $A \subseteq B$ choose $x \in$ \bar{A} anconvergent $\left(x_{n}\right)_{n}$ in A, tedy $\mathrm{v} B$, such that $\lim x_{n}=x$. Then $x \in B$. \square

Theorem. Bud'te $\left(X_{1}, d_{1}\right),\left(X_{2} . d_{2}\right)$ metric spaces and $f: X_{1} \rightarrow X_{2}$ a mapping Then the following are equivalent.
(1) f is continuous.
(2) For every $x \in X_{1}$ and every nh V of $f(x)$ there is a nth U of x such that $f[U] \subseteq V$.
(3) For every U open in X_{2} the preimage $f^{-1}[U]$ is open in X_{1}.
(4) For every A closed in X_{2} the areimage $f^{-1}[A]$ is closed in X_{1}.
(5) $\frac{\text { For every } A \subseteq X_{1} \text { we have } f[\bar{A}] \subseteq}{f[A]}$.

A property or concept is topological if it is preserved by homeomorphisms. Thus e.g. the following are topological concepts:

- convergence
- openness
- closedness
- closure
- neighborhood
- or continuity itself.

Equivalent and strongly equi-

 valent metrics:The identical map $\left(X, d_{1}\right) \rightarrow\left(X, d_{2}\right)$ is a homeomorphism (" d_{1} and d_{2} are equivalent").
d_{1} a d_{2} are strongly equivalent if there are positive constants α and β with

$$
\alpha \cdot d_{1}(x, y) \leq d_{2}(x, y) \leq \beta \cdot d_{1}(x, y)
$$

In the euclidean spaces where we had so far the distance
$d\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}$
set
$\lambda\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$, and
$\sigma\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\max _{i}\left|x_{i}-y_{i}\right|$.
Proposition. d, λ and σ are strongly equivalent metrics on \mathbb{E}_{n}.

Products. For $\left(X_{1}, d_{i}\right), i=1, \ldots, n$ define on the cartesian product $\prod_{i=1}^{n} X_{i}$ a metric
$d\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\max _{i} d_{i}\left(x_{i}, y_{i}\right)$.
The resulting space

$$
\left(\prod_{i=1}^{n} X_{i}, d\right)=\prod_{i=1}^{n}\left(X_{i}, d_{i}\right)
$$

is called the product of the $\left(X_{i}, d_{i}\right)$.
One also writes

$$
\left(X_{1}, d_{1}\right) \times \cdots \times\left(X_{n}, d_{n}\right)
$$

Hence

$$
\left(\mathbb{E}_{n}, \sigma\right)=\overbrace{\mathbb{R} \times \cdots \times \mathbb{R}}^{n \text { times }}=\mathbb{R}^{n} .
$$

Theorem. 1. The projections $p_{j}=$ $\left(\left(x_{i}\right)_{i} \mapsto x_{j}\right): \prod_{i=1}^{n}\left(X_{i}, d_{i}\right) \rightarrow\left(X_{j}, d_{j}\right)$ are continuous maps.
2. Let $f:\left(Y, d^{\prime}\right) \rightarrow\left(X_{j}, d_{j}\right)$ be arbitrary continuous maps. Then the uniquely defined $f:\left(Y, d^{\prime}\right) \rightarrow \prod_{i=1}^{n}\left(X_{i}, d_{i}\right) s a$ tisfying $p_{j} \circ f=f_{j}$, that is, the map defined by $f(y)=\left(f_{1}(y), \ldots, f_{n}(y)\right)$, is continuous.

Hence, if we study maps

$$
\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right): \mathbb{E}_{n} \rightarrow \mathbb{E}_{m}
$$

the continuity in the range depends on the continuity in the individual coordinates only, unlike in the domain.

