We will study real functions of several real variables

$$f(x_1,\ldots,x_n)$$

We already know quite a few facts about functons of one variable; thus, let us consider (fixing all the variables but one) instead

$$f(a_1, \ldots, a_{k-1}, x, a_{k+1}, \ldots, a_n)$$

a system of functions of one variables that we understand.

This will not work, though.

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{for } (x,y) \neq (0,0), \\ 0 & \text{for } (x,y) = (0,0). \end{cases}$$

f(x,0) = 0, f(0,x) = 0 are both nicely continuous

for $a \neq 0$ are f(x, a) and f(a, x) given on all the domain as simple arithmetic formulas

but f(0,0) = 0, and for arbitrarily small ε , hence arbitratily close to (0,0) we have

$$f(\varepsilon,\varepsilon) = \frac{1}{2}$$

Metric space

$$\begin{array}{ll} (X,d), \ d: X \times X \to \mathbb{R} \\ d(x,y) \geq 0, & d(x,y) = 0 \Leftrightarrow x = y \\ d(x,y) = d(y,x) \\ d(x,z) \leq d(x,y) + d(y,z) \end{array}$$

So far we worked in a special one

$$(\mathbb{R}, |x-y|)$$

Similarly we have another

$$(\mathbb{C}, |x-y|)$$

(**Caution**: triangle inequality for |x - y| is not quite as trivial as in \mathbb{R})

Euclidean spaces \mathbb{E}_n : (\mathbb{R}^n, d) $d((x_1, \dots, x_n), (y_1, \dots, y_n)) = \sqrt{\sum_i (x_i - y_i)^2}$

For our purposes it will be particularly important. You know it also from linear algebra in the form of the vector space \mathbf{V}_n with scalar product \mathbf{uv} and norm $||\mathbf{u}|| = \sqrt{\mathbf{uu}}$ – and distance $||\mathbf{u} - \mathbf{v}||$

(X,d) with d(x,y) = 1 for $x \neq y$ (discrete space)

F(a, b) set of all bounded functions on an interval $\langle a, b \rangle$

 $d(f,g)=\sup\{|f(x)-g(x)|\,|\,a\leq x\leq b\}$

Subspace. (X, y) m. space, $Y \subseteq X$ (Y, d') where d'(x, y) = d(x, y)

Continuous map(ping)s $f : (X, d) \rightarrow$ (Y, d') $\forall x \in X, \forall \varepsilon > 0 \exists \delta > 0,$ $d(x, y) < \delta \Rightarrow d'(f(x), f(y)) < \varepsilon$

(Compare with

$$\begin{aligned} \forall x \in X, \forall \varepsilon > 0 \exists \delta > 0, \\ |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon \end{aligned}$$

Trivialities: Identical map id : $(X, d) \rightarrow (X, d)$,

Embedding of a subspace $j = (x \mapsto x) : (Y, d') \to (X, d)$

Composition $gf : (X, d) \to (Z, d'')$ of continuous maps $f : (X, d) \to (y, d')$ a $g : (Y, d') \to (Z, d'')$ is continuous **Convergence.** $\lim_{n \to \infty} x_n = x$:

 $\forall \varepsilon > 0 \exists n_0 (n \ge n_0 \Rightarrow d(x, x_n) < \varepsilon)$

(Compare with

 $\forall \varepsilon > 0 \exists n_0 (n \ge n_0 \Rightarrow |x - x_n| < \varepsilon)$

Theorem. A mapping $f : (X_1, d_1) \rightarrow (X_2, d_2)$ is continuous iff for each convergent $(x_n)_n$ in (X_1, d_1) the sequence $(f(x_n))_n$ converges in (X_2, d_2) and it holds $\lim_n f(x_n) = f(\lim_n x_n)$.

Proof. I. Let f be continuous, let $\lim_n x_n = x$. For $\varepsilon > 0$ choose, using continuity, $\delta > 0$ s.t. $d_2(f(y), f(x)) < \varepsilon$ for $d_1(x, y) < \delta$. By definition of convergence there is an n_0 s.t. for $n \ge n_0$ one has $d_1(x_n, x) < \delta$. Thus, if $n \le n_0$ we have $d_2(f(x_n), f(x)) < \varepsilon$, and then $\lim_n f(x_n) = f(\lim_n x_n)$. II. Let f not be continuous. Then there is an $x \in X_1$ and an $\varepsilon_0 > 0$ such that for every $\delta > 0$ there is an $x(\delta)$ with $d_1(x, x(\delta)) < \delta$ while $d_2(f(x), f(x(\delta))) \ge \varepsilon_0$. Set $x_n = x(\frac{1}{n})$. Then $\lim_n x_n = x$ but $(f(x_n))_n$ cannot converge to f(x). \Box Neighborhood. Set $\Omega(x, \varepsilon) = \{y \mid d(x, y) < \varepsilon\}$ "U is a neighborhood of x" $\equiv \exists \varepsilon > 0, \Omega(x, \varepsilon) \subseteq U$

Observation: 1. U nbh. of x and $U \subseteq V \Rightarrow V$ nbh. of x. 2. U,V nbh.of $x \Rightarrow U \cap V$ nbh.of x.

Open sets. $U \subseteq (X, d)$ is *open* if it is a neighborhood of each of its point.

Observation. Each $\Omega_X(x, \varepsilon)$ is open in (X, d).

Observation. \emptyset and X are open. If U_i , $i \in J$ are open then $\bigcup_{i \in J} U_i$ is open, and if U and V are open so is $U \cap V$. **Closed sets.** $A \subseteq (X, d)$ is *closed* in $(X, d) \equiv$ for every $(x_n)_n \subseteq A$ convergent in X, $\lim_n x_n$ is in A.

Proposition. $A \subseteq (X, d)$ is closed in (X, d) iff $X \smallsetminus A$ is open.

Proof. I. Let $X \\ A$ not be open. Then there is an $x \in X \\ A$ such that for every $n, \Omega(x, \frac{1}{n}) \notin X \\ A$. Choose $x_n \in \Omega(x, \frac{1}{n}) \cap A$. Then $(x_n)_n \subseteq A$ and $\lim x_n = x \notin A$, and hence A is not closed.

II. Let $X \smallsetminus A$ be open and let $(x_n)_n \subseteq A$ converge to $x \in X \smallsetminus A$. Then we have for some $\varepsilon > 0$, $\Omega(x, \varepsilon) \subseteq X \smallsetminus A$ and hence for sufficiently large $n, x_n \in \Omega(x, \varepsilon) \subseteq X \smallsetminus A$ – a contradiction. \Box

Corollary. \emptyset and X are closed sets. If A_i , $i \in J$ are closed, $\bigcap_{i \in J} A_i$ is closed, and if A and B are closed then so is $A \cup B$. $d(x, A) = \inf \{ d(x, a) \mid a \in A \}.$ Closure of a set A:

$$\overline{A} = \{ x \, | \, d(x, A) = 0 \}.$$

Proposition. (1) $\overline{\emptyset} = \emptyset$. (2) $A \subseteq \overline{A}$, (3) $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$, (4) $\overline{A \cup B} = \overline{A} \cup \overline{B}$, a(5) $\overline{\overline{A}} = \overline{A}$.

Proof. (4): $\overline{A \cup B} \supseteq \overline{A} \cup \overline{B}$. If $x \in \overline{A \cup B}$ but not $x \in \overline{A}$ we have $\alpha = d(x, A) > 0$ and hence $y \in A \cup B$ with $d(x, y) < \alpha$ are in B; thus $x \in \overline{B}$.

(5): Let $d(x, \overline{A}) = 0$. Choose $\varepsilon > 0$. Then there is $z \in \overline{A}$ such that $d(x, z) < \frac{\varepsilon}{2}$ and hence for this z we can choose $y \in A$ such that $d(z, y) < \frac{\varepsilon}{2}$. Thus $d(x, y) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ and we see that $x \in \overline{A}$. \Box **Proposition.** \overline{A} is the set of all limits of convergent $(x_n)_n \subseteq A$.

Proposition. A is closed, and it is the least closed set containing A. Hence,

 $\overline{A} = \bigcap \{ B \mid A \subseteq B, B \text{ closed} \}.$

Proof. If $(x_n)_n \subseteq \overline{A}$ converges to x choose $y_n \in A$ with $d(x_n, y_n) < \frac{1}{n}$. Then $\lim_n y_n = x$ and x is in \overline{A} .

If B is closed and $A \subseteq B$ choose $x \in \overline{A}$ anconvergent $(x_n)_n$ in A, tedy v B, such that $\lim x_n = x$. Then $x \in B$.

Theorem. Bud'te $(X_1, d_1), (X_2, d_2)$ metric spaces and $f : X_1 \to X_2$ a mapping Then the following are equivalent.

- (1) f is continuous.
- (2) For every $x \in X_1$ and every nbh Vof f(x) there is a nbh U of x such that $f[U] \subseteq V$.
- (3) For every U open in X_2 the preimage $f^{-1}[U]$ is open in X_1 .
- (4) For every A closed in X_2 the preimage $f^{-1}[A]$ is closed in X_1 .
- (5) For every $A \subseteq X_1$ we have $f[\overline{A}] \subseteq \overline{f[A]}$.

A property or concept is *topological* if it is preserved by homeomorphisms. Thus e.g. the following are topological concepts:

- convergence
- openness
- closedness
- closure
- neighborhood
- or continuity itself.

Equivalent and strongly equivalent metrics:

The identical map $(X, d_1) \rightarrow (X, d_2)$ is a homeomorphism (" d_1 and d_2 are equivalent"). $d_1 a d_2$ are strongly equivalent if there are positive constants α and β with $\alpha \cdot d_1(x, y) \leq d_2(x, y) \leq \beta \cdot d_1(x, y).$

In the euclidean spaces where we had so far the distance

$$d((x_1, \dots, x_n), (y_1, \dots, y_n)) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

set

$$\lambda((x_1, \dots, x_n), (y_1, \dots, y_n)) = \sum_{i=1}^n |x_i - y_i|, \text{ and} \\ \sigma((x_1, \dots, x_n), (y_1, \dots, y_n)) = \max_i |x_i - y_i|.$$

Proposition. d, λ and σ are strongly equivalent metrics on \mathbb{E}_n .

Products. For (X_1, d_i) , i = 1, ..., ndefine on the cartesian product $\prod_{i=1}^n X_i$ a metric

 $d((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = \max_i d_i(x_i,y_i).$

The resulting space

$$(\prod_{i=1}^{n} X_i, d) = \prod_{i=1}^{n} (X_i, d_i)$$

is called the product of the (X_i, d_i) .

One also writes

$$(X_1, d_1) \times \cdots \times (X_n, d_n).$$

Hence

$$(\mathbb{E}_n, \sigma) = \overbrace{\mathbb{R} \times \cdots \times \mathbb{R}}^{n \text{ times}} = \mathbb{R}^n.$$

Theorem. 1. The projections $p_j = ((x_i)_i \mapsto x_j) : \prod_{i=1}^n (X_i, d_i) \to (X_j, d_j)$ are continuous maps.

2. Let $f_{:}(Y, d') \to (X_{j}, d_{j})$ be arbitrary continuous maps. Then the uniquely defined $f: (Y, d') \to \prod_{i=1}^{n} (X_{i}, d_{i})$ satisfying $p_{j} \circ f = f_{j}$, that is, the map defined by $f(y) = (f_{1}(y), \ldots, f_{n}(y))$, is continuous.

Hence, if we study maps

$$\mathbf{f} = (f_1, \ldots, f_m) : \mathbb{E}_n \to \mathbb{E}_m$$

the continuity in the range depends on the continuity in the individual coordinates only, <u>unlike in the domain</u>.