Topics. Thanks for the questions sug-
gesting what topics I should return to
in this and the January lectures. There
is room for more.

So far I was asked to

(a) tell more about the basics of the
Implicit Functions Theorem,

(b) explain what is the role in the im-
plicit function theorem in the extremes
with constraints,

(¢) tell some more about the Lebesgue
integral,

(d) from the tutorials: discuss some
points of metric spaces.



(e) I would also like to return to series
(you had Taylor series). If there will be
time I will explain whether, when and
why
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n=1
can be viewed as a sum of infinitely
many summands (extending the concept
of finite sums of indexed summands)
and when it is just the limit
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(a) Implicit Functions Theorems.
Given FYz1, ..., Tm, YL, .- Yn), I =

1,...,n functions in n + m variables

and we wish to solve the system of equati-
ons

Fl(xl,...,mm,yl,...,yn) :Oa
Fn(fl,...,l'm,yl,...,yn) = 0.
In what sense?

Rewrite it as follows

Fﬁgl,...,xm(ylv JOR 7yn> — Oa

Fﬁgl,...,iljm(ylv et 7yn> = 0.
Just a more suggestive terminology: we

will speak of the variables yq, ..., y, as
of unknowns.



Thus we have for each vector x = (21, ..., 2p)
a system of
n equations i n unknowns yi, ..., Yn

F)}(ylaayn) :Oa

F)q(l(ylaayn) :O
and 1t should have under reasonable con-

ditions (recall n linear equations in n
unknowns) a unique solution

Yixs - -+ Ynx-
With changing x we have changing sys-
tems of equations and hence of course,
changing solutions y;.,. Thus we obtain
functions i m variables

fk@;lv s 7xm> — fk(x) = Ykx
and Implicit Functions Theorem speaks

about these functions.
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Recall linear algebra: a system of li-
near equations

Ll(yla s 7yn) — 07
L™(y1,.--,yn) =0
that is,

n
> _A1jy;— b =0
j=1

) ..
1=1

has a unique solution iff

det AZ] = 0.



Now remember that if our functions
Fi.(x1,...,2m,¥y1,...,Yn) have conti-
nuous partial derivatives, they have to-
tal differentials, and the functions F¥(y1, . .., yn)
are in a (small) neighborhood of a point
of a solution y" well approximated by li-
near

n n
Y Apily—y)+Fr(y) = Apjyi+B;
p =

with Ak] %Fk

Thus it should not come as a surprise
that the condition for unique solution
is expressed by non-zero Jacobi deter-

minant I
det ( k)
Y



(b) The role of IFT in extremes
with constraints.

Situation: We seek local extremes of a
function

flzy,...,zn)

defined on a domain D. No problem in
the interior of D: there they are among
the points with all partial derivatives
zero. Trouble with the extremes that are
on the border on D.

Suppose the border of D expressed by
conditions (constraints)

gi(xy,...,zn)=0,1=1,... k.

The theorem solving the problem,



Theorem. Let f,qg1,...,q. be real functions defi-
ned in an open set D C E,, and let them have con-
tinuous partial derivatives. Suppose that the rank of
the matriz

% dg1
or: ' Ox,
M=1 ..., ..., ...
% O
or: ' Ox,
18 the largest possible, that is k, everywhere in D.
If the function f achieves at a pointa = (ay, ..., ay)

a local extreme subject to the constraints

gi(xy,...,x,) =0, i=1,....k

then there exist numbers A1, ..., A\p such that for each
1=1,...,n we have
9/@) | \~, . 99(a
M- —2 L =,
8952- T ; J 8:5@



is subjected to the condition that the
rank of the matrix

(091 g1 )
oxr1  Oxp
M= ... ... ..
Ogr O,

\Doy" " B

is maximal possible, that is, k (we have
k < mn). Why is that, and how it helps?

The matrix has to have a regular square
k x k submatrix, without loss of gene-
rality let

fon o\
or1 " Oy

det | ..., ..., ... | #0 (%)
Agy, gy,

\ 9oy Oy



The constraints constitute a system of
equations

g1(x1, ..., 2, Tpyqy. ., xn) =0,

gk(aj17 s 73:]{7 :Ek_|_1, « .. ,xn) = O
with unknowns x1, ..., x; and parame-
ters (variables) xj.1,...,Zn.

Now () is the Jacobi determinant con-
dition allowing us to use the IF'T to ob-
tain r; = ¢;(Tgy1, ..., on) and we can
compute the
extremes of f on the border of D

as extremes of the function

g, ) =
= f(O1(xpat, -5 Tn)se ooy Ok(Tpat, oo Tn)s Tl 1y - -+ 5 Ty
with x1_q, ..., 2, in an open set, hence

looking for the zero partial derivatives
(of the function F').
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(c) Lebesgue integral.
This was just information, without con-
struction or proofs.

The technique of Riemann integral can
be extended so that we can keep every-
thing we are able to do, without chan-
ges. Moreover, the following reckoning,
easy to remember, is safe.

If fan erist forn = 1,2, ..., then
fU an erists.

Let D be bounded and |fp(z)] < C
for a fivred C. Let limy, f,, exist.

If |p fn exist forn =1,2,..., then
[plimy, fp exists and we have

D n " JD
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These are rules very easy to remember.
One has much more, for instance

1) If [ frn exist and (fp)p is monotone

(2) If on the right hand side everything
makes sense and and | f (¢, z)| < g(x)
fot an integrable g then

/ft(), )dx = hm/f(t,x)d:z:
t—to J D

(3) If

‘afgt’ ) < g(z).

and everything makes sense in a ne-

ighborhood U of ¢ then

Jo = -
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(e) Infinite sums of reals.

Series (you had Taylor series). Given a
sequence (an )y of real numbers one spe-
aks of the associated series as of making
sense to a “sum” > °° ; ap. The basic

definition 1s the limit
o n

E an = lim an.
n—od
n=1 k=1
Here is an example showing that we may

have troubles viewing it as a sum of the
an, 1nvolved. Consider the series with

ap, = (—1)”“%7 that is,
1 1 1 1 1

[ S E S B
2+3 4+5 6Jr

Obviously limy—se0 > p—q an exists (it
is somewhere between % and 1).
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Divide the a,, into two sets
1 1 1

?1) 51 T 1 1 (%)
> T e

It is easy to see that the sets

{>r_qam—1|n=12,...} and

{>r_jaom|n=1,2,...}arebothun-

bounded.

Try to add the series in a new order as follows. First

1, ...,and

add the elements of the upper part in (x) until we get at
least 10, then follow with elements of the lower part in
(%) untill we are under 5; then follow in the upper part
untill get more than 100, continue in the lower part untill
we get under 50, etc.. In this reordering « of the sequence
the limit limy, o0 ;1 Ga(n) is infinite!

Note that in this manner one can reorder the series to
any sum.

Thus, we can hardly think of the limit of partial sums
as of a sum of the system of numbers.
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A sum s of an infinite sequence (ap)n
should be well approximated by finite
sums ) e 0, K C N finite. This is
so in case of the so called absolutely con-
vergent series.

A series Y 7 | ap is absolutely conver-
gent if > > |an| converges.

Theorem. Let s = > °° | a, converge
absolutely. Then for everye > 0 there
s a finite subset K C N such that
for any finite L with K C L C N,
|s—> 1 an| < € (in other words, such
that for each M C N disjoint with K,

|2 aran| <e).
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Proof. (> 1_1 lag|)n is a Cauchy sequence.
Let ng be such that for all m > n > ny,
Zgﬂ ay| — Z:?/Z:l ag| < %We have
> k=1 k| =2 k=1 lak] = 2 _k—pt1 lak]
and for every M finite disjoint with K =

{1,2,...,ng} we have an m such that
M C{n=mng+1, m} and

\Zakl <Z\%\ < Z ag| <e.

k=ng+1
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