
Topics. Thanks for the questions sug-
gesting what topics I should return to
in this and the January lectures. There
is room for more.

So far I was asked to
(a) tell more about the basics of the

Implicit Functions Theorem,
(b) explain what is the role in the im-

plicit function theorem in the extremes
with constraints,

(c) tell some more about the Lebesgue
integral,

(d) from the tutorials: discuss some
points of metric spaces.
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(e) I would also like to return to series
(you had Taylor series). If there will be
time I will explain whether, when and
why

∞∑
n=1

an

can be viewed as a sum of infinitely
many summands (extending the concept
of finite sums of indexed summands)
and when it is just the limit

lim
n→∞

n∑
k=1

an
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(a) Implicit Functions Theorems.
Given F i(x1, . . . , xm, y1, . . . , yn), i =
1, . . . , n functions in n + m variables
and we wish to solve the system of equati-
ons

F 1(x1, . . . , xm, y1, . . . , yn) = 0,

. . . . . . . . .

Fn(x1, . . . , xm, y1, . . . , yn) = 0.

In what sense?

Rewrite it as follows

F 1
x1,...,xm(y1, . . . , yn) = 0,

. . . . . . . . .

Fnx1,...,xm(y1, . . . , yn) = 0.

Just a more suggestive terminology: we
will speak of the variables y1, . . . , yn as
of unknowns.
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Thus we have for each vector x = (x1, . . . , xn)
a system of
n equations in n unknowns y1, . . . , yn

F 1
x (y1, . . . , yn) = 0,

. . . . . . . . .

Fnx (y1, . . . , yn) = 0

and it should have under reasonable con-
ditions (recall n linear equations in n
unknowns) a unique solution

y1x, . . . , ynx.

With changing x we have changing sys-
tems of equations and hence of course,
changing solutions ykx. Thus we obtain
functions in m variables

fk(x1, . . . , xm) = fk(x) = ykx

and Implicit Functions Theorem speaks
about these functions.
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Recall linear algebra: a system of li-
near equations

L1(y1, . . . , yn) = 0,

. . . . . . . . .

Ln(y1, . . . , yn) = 0

that is,
n∑
j=1

A1jyj − b1 = 0

. . . . . . . . .
n∑
j=1

Anjyj − bn = 0,

has a unique solution iff

detAij 6= 0.
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Now remember that if our functions
Fk(x1, . . . , xm, y1, . . . , yn) have conti-
nuous partial derivatives, they have to-
tal differentials, and the functions F kx (y1, . . . , yn)
are in a (small) neighborhood of a point
of a solution y0 well approximated by li-
near
n∑
j=1

Akj(yj−y0
j)+F

...
j (y0) =

n∑
j=1

Akjyj+Bj

with Akj =
∂Fk
∂yj

.

Thus it should not come as a surprise
that the condition for unique solution
is expressed by non-zero Jacobi deter-
minant

det

(
∂Fk
∂yj

)
.
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(b) The role of IFT in extremes
with constraints.

Situation: We seek local extremes of a
function

f (x1, . . . , xn)

defined on a domain D. No problem in
the interior of D: there they are among
the points with all partial derivatives
zero. Trouble with the extremes that are
on the border on D.

Suppose the border of D expressed by
conditions (constraints)

gi(x1, . . . , xn) = 0, i = 1, . . . , k.

The theorem solving the problem,
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Theorem. Let f, g1, . . . , gk be real functions defi-

ned in an open set D ⊆ En, and let them have con-

tinuous partial derivatives. Suppose that the rank of

the matrix

M =


∂g1
∂x1

, . . . ,
∂g1
∂xn

. . . , . . . , . . .
∂gk
∂x1

, . . . ,
∂gk
∂xn


is the largest possible, that is k, everywhere in D.

If the function f achieves at a point a = (a1, . . . , an)

a local extreme subject to the constraints

gi(x1, . . . , xn) = 0, i = 1, . . . , k

then there exist numbers λ1, . . . , λk such that for each

i = 1, . . . , n we have

∂f (a)

∂xi
+

k∑
j=1

λj ·
∂gj(a)

∂xi
= 0.
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is subjected to the condition that the
rank of the matrix

M =


∂g1

∂x1
, . . . ,

∂g1

∂xn
. . . , . . . , . . .
∂gk
∂x1

, . . . ,
∂gk
∂xn


is maximal possible, that is, k (we have
k < n). Why is that, and how it helps?

The matrix has to have a regular square
k × k submatrix, without loss of gene-
rality let

det


∂g1

∂x1
, . . . ,

∂g1

∂xk
. . . , . . . , . . .
∂gk
∂x1

, . . . ,
∂gk
∂xk

 6= 0 (∗)
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The constraints constitute a system of
equations

g1(x1, . . . , xk, xk+1, . . . , xn) = 0,

. . . . . . . . .

gk(x1, . . . , xk, xk+1, . . . , xn) = 0.

with unknowns x1, . . . , xk and parame-
ters (variables) xk+1, . . . , xn.

Now (∗) is the Jacobi determinant con-
dition allowing us to use the IFT to ob-
tain xj = φj(xk+1, . . . , xn) and we can
compute the
extremes of f on the border of D
as extremes of the function
F (xk+1, . . . , xn) =

= f (φ1(xk+1, . . . , xn), . . . , φk(xk+1, . . . , xn), xk+1, . . . , xn)

with xk+1, . . . , xn in an open set, hence
looking for the zero partial derivatives
(of the function F ).
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(c) Lebesgue integral.

This was just information, without con-
struction or proofs.

The technique of Riemann integral can
be extended so that we can keep every-
thing we are able to do, without chan-
ges. Moreover, the following reckoning,
easy to remember, is safe.

If
∫
Dn

f exist for n = 1, 2, ..., then∫⋃
nDn

f exists.

Let D be bounded and |fn(x)| ≤ C
for a fixed C. Let limn fn exist.

If
∫
D fn exist for n = 1, 2, ..., then∫

D limn fn exists and we have∫
D

lim
n
fn = lim

n

∫
D
fn.
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These are rules very easy to remember.
One has much more, for instance

(1) If
∫
D fn exist and (fn)n is monotone

then
∫
D limn fn = limn

∫
D fn.

(2) If on the right hand side everything
makes sense and and |f (t, x)| ≤ g(x)
fot an integrable g then∫
D
f (t0, x)dx = lim

t→t0

∫
D
f (t, x)dx.

(3) If ∣∣∣∣∂f (t, x)

∂t

∣∣∣∣ ≤ g(x).

and everything makes sense in a ne-
ighborhood U of t0 then∫

D

∂f (t0,−)

∂t
=

d

dt

∫
D
f (t0,−).

12



(e) Infinite sums of reals.
Series (you had Taylor series). Given a
sequence (an)n of real numbers one spe-
aks of the associated series as of making
sense to a “sum”

∑∞
n=1 an. The basic

definition is the limit
∞∑
n=1

an = lim
n→∞

n∑
k=1

an.

Here is an example showing that we may
have troubles viewing it as a sum of the
an involved. Consider the series with
an = (−1)n+1 1

n, that is,

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · .

Obviously limn→∞
∑n
k=1 an exists (it

is somewhere between 1
2 and 1).
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Divide the an into two sets

1,
1

3
,

1

5
,

1

7
, . . . , and

− 1

2
,−1

4
,−1

6
,−1

8
, . . . .

(∗)

It is easy to see that the sets
{
∑n
k=1 a2n−1 |n = 1, 2, . . . } and

{
∑n
k=1 a2n |n = 1, 2, . . . } are both un-

bounded.
Try to add the series in a new order as follows. First

add the elements of the upper part in (∗) until we get at

least 10, then follow with elements of the lower part in

(∗) untill we are under 5; then follow in the upper part

untill get more than 100, continue in the lower part untill

we get under 50, etc.. In this reordering α of the sequence

the limit limn→∞
∑n

k=1 aα(n) is infinite!

Note that in this manner one can reorder the series to

any sum.

Thus, we can hardly think of the limit of partial sums

as of a sum of the system of numbers.

.
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A sum s of an infinite sequence (an)n
should be well approximated by finite
sums

∑
k∈K ak, K ⊆ N finite. This is

so in case of the so called absolutely con-
vergent series.

A series
∑∞
n=1 an is absolutely conver-

gent if
∑∞
n=1 |an| converges.

Theorem. Let s =
∑∞
n=1 an converge

absolutely. Then for every ε > 0 there
is a finite subset K ⊆ N such that
for any finite L with K ⊆ L ⊆ N,
|s−

∑
L an| < ε (in other words, such

that for each M ⊆ N disjoint with K,
|
∑
M an| < ε).
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Proof. (
∑n
k=1 |ak|)n is a Cauchy sequence.

Let n0 be such that for all m > n ≥ n0,∑m
k=1 |ak| −

∑n
k=1 |ak| < ε. We have∑m

k=1 |ak|−
∑n
k=1 |ak| =

∑m
k=n+1 |ak|

and for everyM finite disjoint withK =
{1, 2, . . . , n0} we have an m such that
M ⊆ {n = n0 + 1, . . .m} and

|
∑
M

ak| ≤
∑
M

|ak| ≤
m∑

k=n0+1

|ak| < ε.
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