Repetition.
Fubini Theorem. Interval J = J' x J"
J CE,,, J'CE,, f:J—=R.

/ F(x,y)dxy = / ([ rix,y)dy)dx
J J'JJ"

Thus in particular in two variables

[ [ ([ s

and generally

b1 bo bn
/ (/ (( f(xl,xg...,xn)dxn>---)dx2>dx1

so that we can compute multivariable
integral using primitive functions.

Problem: Like in other parts of mul-
tivariable calculus, we have a problem
with domains of functions f : D — R.
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While in one variable, a compact in-
terval (a, b) is a quite common domain,
starting with [ the n-dimensional in-
tervals (bricks) are very special and one
would wish (at least, for integration sa-
tisfactory) compact domains D.

Compacts subspaces of [E,, are preci-
sely the bounded closed subsets, hence
one can approach the problem by

e first embedding the D into a brick J,

e and then extending f by values 0 on
JND.

Note that for the integration purposes it
does not matter which brick containing
D we choose.



But we have to recall also the assumpti-
ons of Fubini theorem, so far not re-
membered. One assumes the existence
of [ 7J, and it is not obvious that for
(say) a continuous f the function thus
extended (typically badly discontinuous
on the border of D) qualifies.

Intuitively: The volume of the border A of D is ty-
pically 0. The volume of the union of the bricks of a
partition P meeting the border is diminishing with di-
minishing mesh and is smaller than a given € > 0 for
sufficiently fine P. Then, in the lower and upper sums
the contribution of the the brick meeting A

> {m(f,B)-vol(B)| B € B(P), BN A # {},
> M f,B )-vol(B)| B € B(P), BN A # 0}
)= {m(f.B) -vol( )| B € B(P)},
)=> {M(f B)-vol(B)| B € B(P)}
is negligible.
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Lebesgue integral (information, no
construction, no proofs).

Riemann integral is intuitively very sa-
tisfactory and does what one wishes to
be done — when it works.

e But it may not exist for quite natural
functions, or at least it is not easy to
see whether it exists or not,

e and we cannot perform useful ope-
rations (limiting, taking derivatives)
universally enough.

(In the latter, it is not that it would give wrong values —

those it yields are correct; but it may not yield any.)

Lebesgue integral is an extension of

Riemann integral where we can do practi-

cally everything

under conditions that are very easy to remember.




Some Lebesgue integration rules.
(In (3)-(7) existence on the left implied.)

(1) If J is an interval (brick) and Rie-
mann [ f exists, then it coincides
with the Lebesgue one.

(2) If fan exist for n = 1,2, ... then
fU p, [ exists
(3) If [ fn exist and (fy,)n is monotone

(4) If [ fn exist and | f,] < g for some
g such that [ g exists then

fD limy, fr, = limy, fD fn.

(5) (A practical consequence of (4))
I[f D is bounded, |fn(z)] < C and

[p fn exist then

b}






And some more:

(6) Let U be a neighborhood of ¢y and ¢
such that [ gexistsand [}, f(t, z)da
exist and | f(¢, x)| < g(x) for all t €
U~ {tp} then

tg, x)dx = 1
/f (0, x)da tgg@/Df(tax)dx

‘afg;’ ) < g(z).

and everything makes sense in a ne-

ighborhood U of ¢ then

Jo o =




Note. Very roughly: Riemann integral
was based on thinking of volumes that
add (with correction) for finite unions,
Recalling absolutely convergent series one
realizes that countable sums make per-
fect sense. One of the approaches to Le-
besgue integral is in analyzing volumes
of countable unions.

A somewhat surprising example indicating that it is a
quite substantial change. In the unit interval T = (0, 1)
order all the rational numbers into a sequence

r,roy ..., ...

and consider open intervals U, = (1, — 57,7 + 7). The

union J,~; U, is dense in T and the lengths of the con-

stituting intervals add to a volume

< 4e

while the lengths of fintely many open intervals constitu-

ting a dense subset of I always add to 1!



Integral on compact D as indi-
cated a week ago makes sense.

First let us learn, without proof, a usetul

Theorem. (Tietze) Let Y be closed in
a metric space X. Then each conti-
nuous real function f on'Y such that
a < f(x) < b for all x can be exten-
ded to an equally bounded continuous
g on X.



We had a bounded function
f:D—R

defined on a compact D C E,,. We cho-
ose a brick J 2 D, defined

~

f:J—R
by setting

~ | flz) for x € D,
f(x){() for xe J~D

D J

Problem. If, say, f is continuous, does
| g ] exist?



What we can do: Obviously ¢ = (x
d(x, D)) : J — R is continuous, hence

Jo={x|d(z, D) > —} = 67 ![( +o0)

is closed and J,, N D = (). Hence, obvi-
ously, fn : J, N D — R defined by

fola) = {f(x) for x € D

0 for x € J,

1s continuous and we can extend i1t to

equally bounded continuous g, on J by
Tietze Theorem. Then

—~

limg, = f

and the desired integral exists by the
Lebesgue rule (5) above.
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Substitution.

Let ¢ be an increasing function with de-
rivative defined on a neighorhood of a
compact interval (a, b) mapping it onto
(p(a), p(b)). Let f be a continuous function,

and let F' be a primitive function of f.
Then for G = f o ¢ we have

G'(z) = F'(6(2))¢' ()

and hence by the (consequence of the)
Fundamental Theorem of Calculus

/ f (6(a)) =

/ (o
The resulting rule

/ fade= [ f(ée)d(x)de
(d(a),o(D)) (a,b)

has a clear geometric interpretation.
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The increasing ¢ : {(a, b) — (p(a), (b))
describes a deformation of (a,b) stret-
ching resp. compressing small subinter-
vals (x,x + h) in the rate of approxi-
mately ¢’(x) (the interval of length h
is deformed by the mean value theo-
rem to one of length ¢'(x + 0h)h, ap-
proximately ¢'(z)h). If we compute the
integral of a function f over the de-
formed interval then in the the asso-
ciated integral before the deformation,
the summands of rectangles with bases
(x, x4+ h) correspond to rectangles with
length of bases (approx.) h - ¢'(z) — see
picture. Thus the ¢/(z) in the formula
is a compensation for the local defor-
mation of the basis at x.
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Substitution in multivalued in-
tegral.

Suppose we have a compact D C K,
and a one-to-one regular map ¢ : U —

E,, with D C U. Recall the Jacobian

D(¢) 09;
D(x) o <axj)z’,j1,...,m

The substitution formula for the inte-
gral over ¢|D

L' / i

Note: Concerns Lebesgue integral, and
holds for much more general D and much
more general f.

dx
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Instead of proof. Recall the com-
pensation of the deformation in one va-
riable given by ¢'(x). Here, a small cube
vith volume A"

(x1, x1+h) X (X9, T9+h) X+ - - X (X)), T1;+h)

is deformed, approximately, into the pa-
ralleipiped determined by the vectors

0d1(X) Opo(x 0, (X
o+ 1 (212260 Bont)
(2=1,...,n)
with volume
. [Dote)
D(x)

(see picture)
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Details.
Text: Chapter XIV, 5; Chapter X, 4
Tietze.pdf
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