Exercises for Combinatorial and Computational Geometry
Series 3 — Crossing numbers and incidences
deadline 29. 11. 2019

1. Prove that a graph with \(n \) vertices that has a rectilinear drawing in the plane with no three pairwise crossing edges has \(O(n^{3/2}) \) edges. You may use the crossing lemma. (A rectilinear drawing is a drawing where every edge is drawn as a straight-line segment.)

2. Let \(I_{\text{circ}}(n, m) \) be the maximum number of incidences of \(n \) points and \(m \) unit circles in the plane. Show that \(I_{\text{circ}}(n, n) = O(n^{4/3}) \).

3. Let \(\mathcal{M} = \{M_1, M_2, \ldots, M_n\} \) be a system of subsets of an \(n \)-element set \(N \) (that is, \(\forall i \in [n] \ M_i \subseteq N \) such that every pair of sets \(M_i, M_j \) has at most one common element. The number of incidences of \(N \) and \(\mathcal{M} \) is defined as \(I(N, \mathcal{M}) := \sum_{i=1}^{n} |M_i| \). Determine whether necessarily \(I(N, \mathcal{M}) = O(n^{4/3}) \). [2]

4. Find an \(n \)-point set in \(\mathbb{R}^4 \) with \(\Omega(n^2) \) unit distances.

5. Let \(P \) be an \(n \)-point set in the plane.

 (a) Let \(k > 1 \). Show that there are at most \(O(n^2/k^3 + n/k) \) lines such that each of them contains at least \(k \) points of \(P \), and that the number of incidences of these lines with \(P \) is at most \(O(n^2/k^2 + n) \). [3]

 (b) Let \(\alpha \in (0, \pi) \). Show that \(P \) determines at most \(O(n^{7/3}) \) triangles with at least one angle of size \(\alpha \). (Hint: split the triangles \(ABC \) with angle \(\alpha \) at \(A \) into two groups according to whether the line \(AC \) contains more than \(n^{1/3} \) points of \(P \).) [3]

web: http://kam.mff.cuni.cz/kvg