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Abstract

For a graphG, agraph recurrence sequence Xg, X1, X2, . . . Of vectors is defined by the recurrence
Xp41 = AXt, t=0,1,...,

whereA is the adjacency matrix db andxg is an initial vector. Each vector in this sequence can be
thought of as a vertex labeling &, the label at a given vertex at steg 1 obtained by summing the

values at the adjacent vertices at stepased on graphical sequences, three concepts are defined:
(1) for a graph to beletermined by a set of vectors, (2) for two graphs to ben-equivalent, and (3)

for the vertices of the graph to Iseparated by a set of vectors. Results concerning these notions are
given, relations to the graph isomorphism problem are discussed, and numerous open problems are
posed. © 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Throughout this papein] = {1,2,...,n} and G is a simple connected graph with
vertex sefn]. If A is the adjacency matrix d& andxg is a vector inR", define agraph
recurrence sequence

X0, X1, X2, .+ ..
by the recurrence
Xt+1 = AXt, t=0,1,.... (1.1

Each vector in this sequence can be thought of as a vertex labeliGg Diie label at a
vertexi is the value of théth coordinatex(i ) of x. The label at a given vertex at step 1 is
obtained by summing the values at the adjacent vertices at.dtepig. 1the initial vector

isXo = (1,0, 0, 0), and the first few terms ang = (0,1,1,0), X2 = (2,1, 1, 2), X3 =
(2,5,5, 2). If the initial vector for an arbitrary graph i = (1, 1, ..., 1), then the first
termx; gives the vertex degrees of the graph. The broad question is, given an initial vector
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Fig. 1. Graph recurrence sequenck:0, 0,0), (0,1,1,0),(2,1,1,2),(2,5,5,2), .. ..

Xo (or a set of initial vectors), what information about the graph can be inferred from its
graph recurrence sequence.

Our initial motivation for investigating graph recurrences comes from the graph
isomorphism problem: given two graphs (in terms of their adjacency matrices for example),
to determine whether or not they are isomorphic. There are polynomial time algorithms for
graph isomorphism in the case of interval graphls planar graph$6], in fact graphs
of bounded genufb], graphs of bounded degré®], and graphs of bounded eigenvalue
multiplicity [2]. In general, however, this problem holds a special place in algorithmic
complexity theory because it remains open whether graph isomorphism is P or NP-
complete or neither. The intent of this paper is not to settle this question, but to introduce a
point of view and pose several questions. We sho®ention 2that a graphical sequence
for a graph onn vertices is determined by the firat+ 1 terms. The computation of
these terms is algorithmically straightforward. Clearly isomorphic graphs produce the same
graphical sequences up to a permutation of the coordinates. The question is to what extent
the converse is true.

Three concepts are introduced 8ections 2—4respectively. The first is for a graph
G to be determined by a graph recurrence sequence (or graph recurrence sequences).
Precise definitions of the three concepts appear in the respective sections, but basically
for a graphG to be determined by a graph recurrence sequence mean§ ttsathe
unique graph having that graph recurrence sequencest@ihéard vector g is a vector
with 1 at coordinate and all other coordinates 0. The graph recurrence sequence
whose initial vector isg will simply be referred to as the graph recurrence sequence
centered at vertex i. The graph recurrence sequenceFig. 1, for example, is centered
at vertex 1. If a graphG is determined by the graphical sequence centered at vertex
i, then we say thatG is determined by vertex i. For example, the graph ifig. 1
is determined by vertex 1; it is easy to show that it is the unique graph with the
sequence given in the caption Bfg. L Many graphs, for example complete graphs,
complete bipartite graphs, cycles, wheels and trees, are determined by a single vertex.
This is also the case if the vectors in the graph recurrence sequenc@®%phnthese
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casesG can be distinguished from any other graph in polynomial time. Several open
guestions concerning which graphs are determined by one, or a fixed humber, of vertices
appear at the end @ection 2 In fact, numerous open problems appear throughout the
paper.

The second concept is for two graphs taehaivalent. Basically this means that there is
a “fake isomorphism” between the two graphs, a bijection between the vertex sets such that
graphical sequences centered at corresponding vertices are identical (up to a permutation
of the vertices). Equivalence of graphs (and more generally a stronger notion alled
equivalence) can be tested in polynomial time as a function of the number of vertices. An
algorithm to do this, based on bipartite matching, is giveBégttion 3 Also in Section 3
an example is provided of a pair of non-isomorphic graphs that are 2-equivalent. Thus
2-equivalence is not a valid test for graph isomorphism.

We are unable, however, to provide an example of two non-isomorphic graphs that are
3-equivalent. In an attempt to provide such an example, the notiorrefjular graphs, a
generalization of strongly regular graphs, is define8éation 4 It is proved that a pair of
m-regular graphs with the same set of parametersraegjuivalent. So the existence of a
pair of non-isomorphic 3-regular graphs with the same set of parameters would also be an
example of a non-isomorphic, 3-equivalent pair of graphs. Howevemfer 3 and 4, a
non-isomorphic pair om-regular graphs with the same set of parameters is elusive, and
for m > 5, no such pair can exist.

The third concept is for a graph to Iseparated by a vertex i (or setl of vertices).
Basically this means that, for any pair of vertices, the values at the two vertices differ at
some term in the graph recurrence sequence centered ativ@ytesome vertex € 1). For
the collection of graphs that can be separated by a single (or fixed number) of vertices, the
graph isomorphism problem has a polynomial time solution. To what degree the vertices
of a graph can be separated by a set of vertices is discusSettiion 5

There is an extensive literature on the graph isomorphism problem. Although we are not
aware of other papers using graph recurrence sequences, there are some similarities with
known heuristics. For example, a common paradigm for heuristics is that of partitioning the
vertices and refining the partition. Certainly our third concept, separating the set of vertices
using graph recurrence sequences, can be put into that framework. Also it was recently
pointed out that our notion of equivalence is closely related to a clever vertex labeling
algorithm of Corneil and Gotliept], although they do not use linear algebraic techniques.

It has long been known that strongly regular graphs are particularly troublesome with
respect to graph isomorphism; so it is not surprising to alsorir@gular graphs in the
paper cited above and in a paper of CamdBjn

There are several questions posed at the end of eggbatibns 2—5It is our hope that
the concepts introduced in this paper lead to interesting future work.

2. Determined graphs

HereafterG a will denote the graph whose adjacency matrixAisThe notatior is
used for graph isomorphism. Gra®g is said to have theame X-sequences as graph
Ga if, for some reordering of the vertices &, the graph recurrence sequerftel) for
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Gg andGp are identical for all initial values irX. More precisely, there exists a single
permutation matrixP such that

Alx = (P71BP)!x

forallt > 0 and for allx € X. A setX c R" is said todistinguish a graphGa from
a graphGg if Gg does not have the samé-sequences as grafba. Note that this
is not a symmetric relationX distinguishingGa from Gg does not necessarily imply
that X distinguishesGg from Ga. A set X c R" is said todetermine a graphGa if X
distinguishess A from any graph not isomorphic @ a.

A graph recurrence sequence is an infinite sequdrerama 2.1 however, implies that
just the firstn + 1 terms are sufficient when considering whether a graph is determined by
a set of vectors.

Lemma 2.1. Let Aand B ben x n matricesand x € R". If Alx = Bixforn >t > 0,
then Alx = Bix for all t > 0.

Proof. The proof is by induction on. SinceA'x = B!x forn >t > 0, alsoAlx = B'x
form >t > 0, wherem is the degree of the minimal polynomial f&. Now assume that
Alx = B!x for k > t > 0. After reducing by the minimal polynomial we ha@¥ = g(B)
where degg) < m. Now Aktlx = AAKx = ABKx = Ag(B)x = Ag(A)x = Bg(B)x =
BK*1x. The second to last inequality follows because[gggx)] < m. O

Remark 2.2. It is an immediate consequence lofmma 2.1and the Cayley—Hamilton
theorem that ifA and B have the same characteristic polynomial andik = B'x for
n>t>0,thenAlx = Bixforallt > 0.

Theorem 2.3. Let G beagraphand X c R". If {Alx | x € X, t =0,1,...} spansR",
then G is determined by X.

Proof. Assume thatA'x = (P~1BP)!x fort > 0 and for allx € X. Then A(Alx) =
Aty = (P1BP)!*lx = (P 1BP)(P~1B!P)x = (P~1BP)A!X. Since{Alx | t >
0,x € X} spanR" we haveAx = P~1BPx for all x € R". ThereforeA = P~1BP and
Ga~ Gg. O

That the terms in the graph recurrence sequence &bais a sufficient, but not
a necessary, condition for a vector to determine a graph. Consider the graph in
Fig. 1 If xo = (1,1, 0,0), then the first four terms in the recurrence atel, 0, 0),
(1,1,2,1),(3,4,3,3), (7,9, 10, 7), which spanR?*. Thereforexo determines the graph.
Note, however, thatp = (1, 0, 0, 0) also determines this graph, but the terms in the graph
recurrence sequence do not sjidn

Theorem 2.4. Any graph is determined by a single vector.

Proof. Let Ga be a graph om vertices; take the vertex setto f& 1, 2,...,n — 1}. Let
xo=(1,2,4,....,2" Y andxy = Axg = (a1,...,an). If g = > je32) is the unique
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base 2 representation af, then vertex must be adjacent to exactly the verticesdin
Thereforexg determinesc. 0O

Remark 2.5 (Isomorphism testing)Theorem 2.4is unsatisfactory from an algorithmic
point of view. The theorem shows that a given graph is determined by the vector
Xo=(1,2,4,...,2"1). Suppose we would like to test whether another graphGagyis
isomorphic toG a. This involves computing the graph recurrence sequeBb@sg), t = 0,
1,... where, in the worst casgy ranges over all vectors obtained by permuting the
coordinates okg. Computing each sequence can be done efficiently, but there aueh
permutations of the coordinates xf, an intractable situation. If, on the other ha@i,
is determined by a single standard veotpthen there are only permutations of the
coordinates oéto check. Itis for this reason that, in the remainder of the paper, the initial
vectors are always taken to be standard vectors.

We say that a grapt is determined by a séi of vertices ifG is determined by the
corresponding s€f | i € U} of standard vectors.

Theorem 2.6. The complete graphs Ky, complete bipartite graphs Km.n, cycles Cp,
wheels W, and trees are determined by a single vertex.

Proof. We prove the result for trees and leave the other more routine cases as exercises,
noting that the initial vector for the wheel should have coordinate 1 at a vertex other than
the hub.

Consider tred rooted at vertex 1, and ley = (1,0, ..., 0). Thedepth of a vertex is
its distance from the root and is denotgd). It is easy to show by induction that, for
odd,

0 if d(i)isevenord(i) >t
Xx(i)=41 ifdi)=t
>0 ifd()isoddand(i) <t

and, fort even,

0 if d(i)isoddord(i) >t
Xx(i)=41 ifdi)=t
>0 ifd()isevenandi(i) <t.

Now let G be a graph with the same graph recurrence sequentesssign alevel

I(i) = min{t | x¢(i) # 0}

to each vertex of G. By the formula above for the graph recurrence sequence, it is clear
that fork > 0 we have: (1) no two leved vertices are adjacent and (2) each vertex at level
k + 1 is adjacent to a unique vertex at lekeThereforeG must be a tree rooted at vertex
landl(i) =d()foralli.

Assume that to depththe graph& andT are isomorphic. This is certainly true flor=
0, 1. ThenG andT will be isomorphic to deptk + 1 if the degrees of the vertices at depth
k are the same i andT. Leti be a vertex at depth Thenxx,2(i) = dedi)+Xk+1(p(i))
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wherep(i) is the parent of vertex Therefore defl) = Xk+2(i) —Xk+1(p(i)) is determined
by just the graph recurrence sequence, the same valu€sdndT. [

Example 2.7 (A graph not determined by particular vertices). To say that a gra@his
determined by a single vertex is not to say t@ais determined by any single vertex. It is
easy to give, for any positive integer, an example of a graph and a particularldetf m

of its vertices such thas is not determined by . Let H andH’ be two non-isomorphic
graphs with the same number of vertices and both regular of the same degr&bket
the graph obtained by joining each vertex of the complete gkapio each vertex ofH.
Similarly, let G’ be the graph obtained by joining each vertexgf to each vertex oH’.
ThenG andG’ have the same graph recurrence sequences for each veikigx Therefore
G is not determined by the set of verticesd,.

Theorem 2.Gists some graphs that are determined by a single vertex. Examples are
given inSections 3and4 of graphs that are not determined by any vertex, or even any two
vertices.

Questions 2.8. Several open questions naturally arise.

1. Classify the graphs determined by a single standard vector.

2. Does there exist a natural numipesuch that any connected graph is determined by
somem vertices?

3. If the answer to Question 2 is no, then are all graphs with maximum degree
determined byn vertices?

4. If the eigenvalues of a graph are distinct, then is the graph determined by a single
vertex? Are graphs with maximum eigenvalue multiplicity determined bym
vertices?

5. How many vertices suffice to determine any connected planar graph?

3. Equivalent graphs

Consider the action of a permutatign [n] — [n] on avectoa = (ay, ..., ay) defined
by g(@ = (agu, .. ., agn). Call two sequences of vectors

X = (X1, X2, ..., XN)
Y =(1Y2 - YN)

equivalent, denotedX =Y, if there exists a single permutatigrsuch that; = g(x;) for
alli. Given a graptG 5 onn vertices we will use the notation

Ai = (A%, Alg, A%, ..., A"g}

for the graph recurrence sequence centered at vertxpairs of graphsGa and Gg
on n vertices will be calledequivalent, denotedGa = Gg, if there exists a bijection
f : [n] — [n] such that

Ai =Bg()
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for all i € [n]. This means that there is a “fake isomorphism”, a bijection between
the vertex sets of the two graphs such that the graph recurrence sequences centered at
corresponding vertices are the same. AlthoAglis a finite sequencéemma 2.linsures
equivalence of the corresponding infinite graph recurrence sequences. GearyGp

implies thatGa = Gg.

Theorem 3.1. Equivalence of n vertex graphs can be tested in time polynomial in n.

The proof of the theorem uses the following algorithm.

Algorithm 1.
Input SequenceX = (X1, X2, ..., XN) andY = (Y4, Ys, ..., Yy) Of vectors inR".

Output Whether or noX = Y. Moreover, if it exists, a permutatiansuch thag(x;) =y;
foralli.

1. Denotingx; = (Xi1, Xi2,...,Xin) andy; = (Yi1,V¥i2,...,V¥n), let X; =
(Xai, X2i, ..., XNi) andy; = (yai, Yai, ..., YNi). _ _
2. Rearrang&xi, X2, ..., Xn) and(y1, Yo, . .., ¥,) in lexicographic order, withg, and

gy the permutations that realize the respective sortings. (The lexicographic order is

with respect to the usual order on the real numbers.)
3. Compare the sorted lists to determine whether they are identical. If they are, then

g= gy—l o gg Lis the required permutation.

Since only sorting and comparing corresponding elements are invoigdrithm 1 is
clearly polynomial. The algorithm that validat€eeorem 3.1s now as follows:

Algorithm 2.
Input GraphsG 4 andGg onn vertices.
Output Whether or noGp = Gg.

1. LetM; = {j € [n] | Ai = Bj}. The setM; is determined byn repetitions of
Algorithm 1.

2. A bijection f : [n] — [n] such thatAx = B¢, for everyk is given by a system
of distinct representatives &1, Mo, ..., M. This is equivalent to finding a perfect
matching in the bipartite graph, where one partite s¢hjsthe other partite set is
{M1, M2, ..., Mp}, and vertex is adjacent to verteX; if i € Mj.

Since bipartite matching is a classic algorithm with complexitgn?), Algorithm 2 is
polynomial.

Call two graphsGa and Gg equispectral if the set (not multiset) of non-zero
eigenvalues o6 p coincides with the set of non-zero eigenvalue§ef According to the
following theorem, any pair of non-equispectral graphs are distinguished by equivalence.

Theorem 3.2. If Gao = G, then Ga and G are equispectral.

Proof. AssumeGa and Gg are not equispectral, and It # 0 be an eigenvalue of
Ga but not of Gg. Let E; be the eigenspace @ corresponding ta. and lete be
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a standard vector with non-zero orthogonal projectionEgn By way of contradiction,
assume thaB o = Gg. Then there is a permutation matisuch thatAle = (P~1BP)'e
fort > 0. LetB’ = P~1BP and denote by; andy; the distinct eigenvalues & andB’,
respectively, with. = A1. Then} ; xi = e = }_; X{, wherex; andx; are the projections
of eon the eigenspacds,, andE,;, respectively. Hence

Zk}xi = Ale=B'e= Zy,fx,’ t=012.... (3.1)
i i

It may be that some; equal somej. In any case, terms with the same eigenvalues in
Eqg. (3.1)may be collected to obtain

S
Mxi+ ) nfy =0 (3.2)
i=2
for some distinct non-zero real numbefsand vectorsy;. Some coordinate of;, say
thekth coordinate, is non-zero. Considering only Ktle coordinate irEq. (3.2)yields the
linear system

1 1 .---1 a1 0
Aom2o-eeoms ap 0
st st | | a 0

wherea; # 0. But this Vandermonde matrix is non-singular, which is a contradictian.

Next extend the notion of equivalence as follows. indte a natural number and Iéﬂ)
denote the collection oh-element subsets ¢f, 2, ..., n}. ForeacH = (i1,i2,...,im) €
("), with elements in a particular order, let

A| = A(il,iz,...,im)

denote the concatenation of the graph recurrence sequénces,, . .., Aj,. A pair of
graphsG 4 andGg will be calledm-equivalent, denoted

Ga =mGs,
if there exists a bijectiorf : (") — (")) such that
Al =B+

for some ordering of the elements bfand f (I). Intuitively, m-equivalence means that
there is a bijection betwean-element subsets of vertices of the two graphs such that for
each corresponding pair of-element subsets (in some order) mlpairs of corresponding
graph recurrence sequences are identiggihg a single permutation).

Note that 1-equivalence is the same as equivalence. The following extension of
Algorithm 2 shows tham-equivalence is also testable in polynomial time.
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Algorithm 3.
Input GraphsGa andGg.
Output Whether or noGa =m Gg.

1. Foreach e (M), letM; = {J € (") | A| = B;}. The setM; is determined by
m!([r’T‘]]) repetitions ofAlgorithm 1, a polynomial imn sincem is a fixed constant. (The
m! comes from the possible necessity of testing each permutation of the elements

of J.)
2. A bijection f : (") — (") such thatA; = B, for every| is given by a
system of distinct representatives(®d, |1 € (I))}. Exactly as inAlgorithm 2, this

is equivalent to finding a perfect matching in a bipartite graph.

Remark 3.3. A concept stronger tham-equivalence would be obtained by requirifig
to be a bijection fronin] onto[n] rather than fron{'") onto (\")). However, for this more
stringent definition, there is probably no polynomial time testfieequivalence.

Proposition 3.4. If Ga =n Gg, then G =i Gg for all k < m.

Proof. Assume thatGa =5, G, m > 1. To be precise, we are given a bijection

f: (") — (") and a permutatiom : | — | foreachl e (")) suchtha®\| = Bq, (1(1)).
Itis sufficient to show thaG A =m-1 Gg. And for this it suffices to prove the existence

of a bijectionf’ : (I",) — ("), where, for each’ e (")), there is anl e (") such

thatl’ C I anda;, is the restriction ofy| to I'.
For a givenl’ € (") let

Ar=1a(N|1l'cle [n]
m

be the set of possiblén — 1)-element subsets to whicH can potentially be mapped

by f’. A map f’ is equivalent to a system of distinct representatives of the collection
of sets{A;r | I’ € (M",)}.By way of contradiction, assume that no such system of
distinct representatives exists. By P. Hall’'s theorem on distinct representatives there exists
anSc (")) such thaiT| < |3, where

T=JtAr|1I"es)
Now

ISSn—m+1) = UQU|Ve&Vc|e<T>”
—_ / / / [n]
= WM)JUD||es|cle(m>”

<, hl'eT,lI'cle (&T)” =|T|(n—m+1).

This implies thatT| > |S|, a contradiction. [J
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Fig. 2. Construction of non-isomorphic, 2-equivalent graphs.

Example 3.5 (Non-isomorphic, 2-equivalent graphs). The construction of such a pair of
graphs is as follows. LeH; and H, be two non-isomorphic graphs anvertices with

the same degree sequence. Such pairs are well known to exist, for example a pair of
non-isomorphic regular graphs of the same degree. Consider two copies of the complete
graphKy. In the first copy, label the edges of a subgraph isomorphid;tby (a) and the
remaining edges (b). Replace each eflgev} labeled (a) by the graph iRig. 2(a) and

each edggu, v} labeled (b) by the graph iig. 2(b). Call the resulting grap&;. For the
second copy oK}, do the same thing with respecttty. Call the resulting grapt®,.

Theorem 3.6. The graphs G; and G, described above are 2-equivalent but are not
isomorphic.

Proof. Although the graph&: andG; have the same order, it is clear that they are not
isomorphic. Consider either of the two graphdHig. 2 Partition the vertices as follows:

(W )(12)(3456(7). Notice that, for any initial vector that is constant on each block of
this partition, each term in the graph recurrence sequence is also constant on each block
and, in fact, has the same value whether it is the graphigpfX(a) or2(b).

A subgraph ofG; or G, of the type inFig. 2(a) will be referred to as a subgraph of
type (a); similarly a subgraph of the typefing. 2(b) will be referred to as a subgraph of
type (b). Letw be any vertex of51. Consider any bijection of the vertices Kf, onto the
vertices ofK,, and extend to a bijectiop between the vertices &; andG, that preserves
labels{u, v, 1, 2, 3, 4,5, 6, 7}. Moreover, ifw is not a vertex labeled or v in Fig. 2, then
¢ should be chosen so thatiflies in a subgraph of type (a) (type (b)), thetw) also lies
in a subgraph of type (a) (type (b)). Consider the initial vertex labelinG pfvith value
1 at vertexw and value O at all vertices, and the initial vertex labelingsefwith value 1
at vertex¢ (w) and value 0 at all vertices. Then, by the comments in the paragraph above,
it is easy to prove by induction that the corresponding graph recurrence sequen@es for
andG» are identical.
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To emphasize the role of the adjacency matrices, denote the two gra@s&ydGg
instead ofG1 andG,. To show thaGa =, Gg construct a bijectiorf : (1)) — (1)
such thath| = B¢(j) as follows. There are two cases.

Case 1. Consider a pai(w, z) of vertices inGa, both in the same subgraph of type (a).
This pair corresponds unddr to a pair(w’, Z') of vertices from any subgraph of type
(a) in Gg. The verticesw, w’ should have the same labels frdqm v, 1, 2, 3, 4,5, 6, 7};
similarly for the verticeg, Z'. It is possible to define such a bijection becaGseandGg
have the same number of subgraphs of type (a). This is because the HragridH, have
the same degree sequence and hence the same number of edges. The bijsaddiefined
analogously for a pair of vertices i@ a, both in a subgraph of the type (b), because the
complements o1 andH; have the same number of edges. Clearly there is a bijegtion
from the set of vertices 0B a onto the set of vertices dbg as described in the second
paragraph of this proof so th&p(w), ¢(2)) = (w’, Z) = f(w, 2). ThenA| = B for

all such paird = (w, 2).

Case 2. BecauseH; and Hz have the same degree sequence, the two copils dfave

the same number of pairs of incident edges both labeled (a), and hence the same number
of non-incident pairs of edges both labeled (a). Egtand F» be the subgraphs of the

two copies ofKy induced by the edges labeled (b). Thenand F, also have the same
degree sequence; hence the two copiek phave the same number of pairs of incident
edges both labeled (b) and the same number of pairs of non-incident edges both labeled
(b). ThatH1 andH> have the same degree sequence also implies that the number of pairs
of incident edges, one labeled (a) the other (b), is the same in both copigs which,

in turn, implies the same for non-incident edges. Now consider pairs of vertid®g in

that are contained in distinct subgraphs of type (a) (respectively type (b)) that come from
incident edges (respectively non-incident edgesKin Then, by the comments above,
these pairs of vertices can be bijectively matched with pairs of vertic&sgirthat are
contained in distinct subgraphs of type (a) (respectively type (b)) that come from incident
edges (respectively non-incident edgesKifn This bijection f should be such that, for
corresponding pairsw, z) and (w’, Z'), the verticesw, w’ have the same labels from
{u,v,1,2,3,4,5,6, 7}; similarly for z, Z. Again there is clearly a bijectios from the

set of vertices 065 5 onto the set of vertices @ as described in the second paragraph of
this proof so thate (w), ¢(2)) = (w’, Z) = f(w, 2). ThenA; = B¢ for all such pairs

| =(w,2). O

The graphs in the example are 2-connected, but not 3-connected. A 3-connected
example can be obtained by joining @y (and alsoG) each vertex labeled 7 to each
vertex of the originaKy,.

Questions 3.7. The first question below is probably difficult since an affirmative answer
would imply a polynomial time algorithm for the graph isomorphism problem.

1. Does there exist a fixed integarsuch thalG; =, G2 impliesG1 = Go.
2. What is the leastn such thatG; =, G2 implies G1 ~ G» for connected planar

graphs?
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4. M-regular graphs

From the point of view of the graph isomorphism problem, strongly regular graphs
have proved particularly troublesome. Several known algorithms that are fast for arbitrarily
selected graphs fail badly for non-isomorphic pairs of strongly regular graphs with the
same parameters. In fact, there are random graph algorithms that run in polynomial time
for almost all graphs and fail for strongly regular graphls

This section concerns a generalization of strongly regular graphs and indicates why
such graphs are problematic. For a given induced subgrapha graphG, let A(H) be
the number of vertices d&~\H adjacent to all vertices dfi. For a non-negative integer
m call a graphG m-regular if A(H) depends only on the isomorphic type Idf for all
induced subgraphid with order(H) < m. Call the set of value§\.(H) | orde(H) < m}
theparameter set of G. Vacuously, all graphs are 0-regular with parametefrgethe order
of the graph. A graph is 1-regular if and only if it is regular in the ordinary sense, i.e., each
vertex has the same degteelhe parameter set {8, k}.

Example 4.1 (Strongly regular graphs). A graph is 2-regular if and only if it is strongly
regular. Recall that a graph songly regular if it is regular of degreé with constants.
andu such that

1. any pair of adjacent vertices are mutually adjacent to exaatrtices, and

2. any pair of non-adjacent vertices are mutually adjacent to exaatrtices.

Strongly regular graphs arise from certain 2-designs and are also combinatorial
generalizations of graphs naturally associated with rank 3 permutation groups. The
parameter set of a 2-regular graph{is k, A, u}. The Petersen graph, for example, is
strongly regular with parameter gdt0, 3, 0, 1}.

Example4.2. Consider the grap® whose vertex set is the Cartesian prodidt x [N],
where two verticesa, b) and(a’, b’) are adjacent irG if a # a’ andb # b'. It can be
shown thatG is 3-regular. IfN = 3 thenG is the line graph oK 33, which happens to be
m-regular for allm, as is the case for the pentagon.

Example 4.3. Complete graphs and complete and multipartite graphsraregular for
all m. This is clear because, for any p&l; H’ of isomorphic induced subgraphs, there is
an automorphism o takingH ontoH’.

Theorem 4.4. If G and G’ are m-regular graphs, m > 2, with the same parameter set,
then G and G’ are m-equivalent.

The proof of Theorem 4.4requires the following two lemmas. Lét be an induced
subgraph ofG and J an induced subgraph dfi. The pairs(H, J) and(H’, J") will be
called isomorphic if there exists an isomorphism df onto H’ taking J onto J'. Let
I'(G, H, J) denote the set of vertices @~ H adjacent to each vertex id and non-
adjacent to each vertex 6f\J, and let.(G, H, J) = |I'(G, H, J)|.
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Lemma 4.5. Given an m-regular graph G, let H be an induced subgraph of G with
order (H) < mand J aninduced subgraph of H. Then A(G, H, J) depends only on the
isomorphismtype of (H, J).

Proof. To simplify notation, we make no distinction between a Seff vertices and the
subgraph ofs that these vertices induce. For a sul$3ef vertices ofH , leta(H, S) denote

the number of vertices il — Sadjacent to all vertices @&. The lemma then follows from
the Inclusion—Exclusion Principle:

MG H, )= Y (=D —aH, 9]
JCSCH

because.(S) depends only the isomorphism type &fa(H, S) depends only org, and
the possibilities foiS depend only on the isomorphism type(éf, J). O

Lemma 4.6. If G1 and G2 are m-regular with the same set of parameters then, for any
graph H of order < m, G; and G contain the same number of induced isomor phic copies
of H.

Proof. The proof is by induction on the ordet. If the order is 1, therH is a single
vertex. But both graphs are O-regular with parametef{isgtwheren is the number of
vertices. Next assume that the lemma is true for okderl < m and letH have ordek.
Letv be a vertex oH and letH’ be the graph obtained frok by deletingv. In fact, there
may be several vertices, sayof them, each of whose removal frokh results inH’ up
to isomorphism. GiverH’, let J be an induced subgraph bf such that, if a new vertex
v, notin H’, is joined to each vertex af, the resulting graph is isomorphic td. In fact,
there may be several such subgraphs,Bay, ..., Js. Letc(Gj, H’) denote the number
of induced copies oH’ in Gj, j = 1, 2. Then the number of induced copiestbfin G;

is

1 .
c(Gj, H) == ¢(Gj, HHA(G], H, J).
i=1

By the induction hypothesis(G1, H') = c(G2, H’), and byLemma 4.5.(G1, H, J) =
M(G2, H, J) for eachi. Thereforec(Gy, H) = ¢(Gp, H). O

Proof of Theorem 4.4. Assume thaG andG’ arem-regularm > 2, with the same set of
parameters. Label the vertices of each gréhl®, ..., n}. By the previous lemma, there
exists a bijection between the set of all induced subgrapl af orderm and the set of
all induced subgraphs @’ of orderm such that corresponding subgraphs are isomorphic.
This provides a bijectiorf : (")) — (i) (with the ordering on corresponding-sets
provided by the isomorphism).

For a givenl € ([21]), let H be the corresponding subgraph®fSimilarly letH’ be the
subgraph ofG’ corresponding td (). Define a bijectior : V(G) — V(G’) as follows.
The mappingp restricted toH is an isomorphism frontd to H’. Note that

{I'(G, H, J) | J an induced subgraph &f} (4.2)
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forms a partition ofV (G~\H). For any induced subgraphof H, let J’ = ¢(J). Using
this partition and_emma 4.5the functionp can be extended to a bijection frov(G) to
V(G) such thaw : I'(G, H, J) — I'(G, H', J').

Denote the value of thegth coordinate of a vectorby x( ). Letvg be any vertex oH.
In G let

1 ifv=vwo
Xo(v) = {0 otherwise
and inG’ let
’ _ 1 ifv=¢(o)
Xo(v) = {0 otherwise.

We now consider the graph recurrence sequences. It suffices to shof(that = x; (v)
forall v € V(G) and allt. To prove this let"(v) and A(v) denote the set of neighbors and
non-neighbors of vertek, respectively. To simplify notation denatéG, H, J) simply by
A(H, J). Alsoe — e ande e denote the two possible graphs on two vertices. We show by
induction that the value of;, t = 0, 1, ... is constant ol (vg) and A(vg). Denote these
values byx;(I") andx;(A), respectively. Using the 2-regularity &, the induction is as
follows:

1 fv=vwg
Xo(v) =30 if vel(v)

0 ifve A(vo)
and
Ao, @)Xt (I") if v=nug
Xt4+1(v) = { Xt (vo) + A(e — o, 0 — @)Xt (I) + A(0 — @, @)Xt (A) if v € I'(vo)
Ao o,0 o)X (I')+A(e o, 0)X(A) if ve A(vg).

Exactly the same equations are truexXp) with vg replaced bypvg. SinceG andG’ are
2-regular with the same parameters, the corresponding the two sets of equations are
the same.

Note that!'(vg) N (GNH) and A(vp) N (G~\H) are unions of sets in the partition
Eq. (4.1) Also ¢(I'(vo) N H) = I'(¢(vo)) N H' andg(A(vg) N H) = A(p(vo)) N H'.
Therefore, by its definitionp takesI’(vg) onto I'(¢vg) and A(vg) onto A(¢vg). Hence
Xt (¢pv) =Xt(v) forallv e V(G) and allt. O

If there exists a pair of non-isomorphieregular graphs with the same set of parameters
then, according tdrheorem 4.4 this pair also shows thah-equivalence is invalid as
a polynomial test for graph isomorphism. That was our motivation in considening
regularity. The follow result, however, offers some hope.

Theorem 4.7. For m > 5 there does not exist a pair of non-isomorphic m-regular graphs
with the same parameters.
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Proof. The proof is essentially due to Cameron, Goethals and Seidel as descrB&d in
They show that a 5-regular graph is one of the following: a disjoint union of complete
graphs, a complete multipartite graph, a pentagon, or the line graghof O

Questions 4.8. The following question has implications for the answer to the first of
Questions 3.7.

1. Does there exist a pair of 3-regular graphs with the same set of parameters?

5. Separating vertices

A setY of vectors inR" is said toseparate coordinates, j € [n] if y(i) # y(j) for
somey € Y. If, in a graphGa, the set of termgAlx | t > 0,x e X} in the graph
recurrence sequences with initial valuesXdrseparates coordinatesnd j, then we say
that X separates verticesi and j. And if X = {g | i € |} is a set of standard vectors,
then we simply say that vertex subdetparatesi and j. If every pair of vertices oG is
separated by the skbf vertices, we say thdtseparates G. In Fig. 1, for example, vertex 1
separates vertices 2 and 4 but does not separate vertices 2 and 3.

Note that no single vertex separates the complete gkapm fact, the graph recurrence
sequenceig1,0,...,0), (0,1,...,1), (n—1,n—-2,...,n—2),...,sothatno pair
among the lash — 1 vertices is separated. On the other hartkorem 2.@uarantees that
a single vertex determinds;,. So it is possible that a vertex determines a graph but does
not separate it. The following question concerns the converse.

Question 5.1. If | separates a grafh, doesl determineG?

Theorem 5.2. Let G, denote the class of graphs G for which there is some set consisting
of at most m vertices that separates G. For the class G, the graph isomorphism problem
is polynomial.

Using the minimal polynomial of the adjacency matrix as in the prodfeshma 2.1
it can be shown that two vertices of a graph mvertices are separated by the graph
recurrence sequences with initial vectors in somexsétand only if the two vertices are
already separated by the firsterms of the graph recurrence sequences with initial vectors
in X. Therefore, for a fixedn, determining whether or not a graph is separated by a set of
m vertices is computationally polynomial. The test for isomorphism, and thus the proof of
Theorem 5.2is as follows. We use the notation &éction 3

Algorithm 4.
Input Two graphsG o andGg onn vertices in the clas§p.

Output Whether or noGa ~ Gg.
For eachm-subsetl C [n] determine whethel separate& . For each such that
separate§ a, perform the following steps:

1. UseAlgorithm 1to findM; = {J € () | A| = B3}
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2. Foreachl € M use Algorithm 1 to find the unique bijectign: V(Ga) — V(Gg)
such thatA| = B;.

3. Check each such bijectiog to determine whether it is indeed an isomorphism
betweenGa and Gg. If such ag exists thenGa ~ Gpg; otherwise it is not the
case thaGa ~ Gg.

Example 5.3 (Graphs not irGy, for anym). This example shows that the above algorithm
will not extend fromGn, to the collection of all graphs. Fix an arbitrary positive integer
m. The complete and complete bipartite graphs with sufficiently many vertices do not lie
in Gm. For a more convincing example consider the strongly regular graphs defined in
Section 4 For a vertex in a strongly regular grap® a on n vertices, letl"(i) and A(i)
denote the set of neighbors and non-neighbors of vért@spectively. It follows from the
definition of strongly regular thaf'e is constant on’(i) and constant om(i), for all

t > 0. This implies that at least lggn — 1 vertices are required to separ&g.

We next find an upper bound on how finely a $ett [n] can separate the vertices
of a graphGa. For a graphGa and subset of vertices, we will define three related
partitions, based on graph recurrence sequences, on the automorphism géapbn
the centralizer algebra of the automorphism group, respectively:

ma(l) mr(l) mc(D).

For a subset c [n] of vertices, consider the equivalence relatior j if i andj are
not separated by. Letra(l) denote the resulting partition o).

Let I' := I'(G) denote the automorphism group @fand I the stabilizer subgroup
of vertexi. For a subset C [n] let 7 (I) be the partition ofn] such that two elements
belong to the same block af- (1) if and only if they are in the same orbit of each subgroup
Ii,iel.

Representing the elements of the automorphism gio@s permutation matrices, the
centralizer algebra of the automorphism group is defined by

C:=C(") ={B e Matyxn(C) | BP = PBforall P € I'}.
Forasubset = {i1,...,im} let
C(ly={Bg |BeC(),iel}.

Consider the equivalence relation definediby j if i andj are not separated bg(l).
Let ¢ (1) denote the resulting partition @fi].

For the graphGa in Fig. 1 take | to consist of the single vertex 1. In this case
ar(l) = nc(l) = wa(l) = (1)(23)(4). In the next theorem < o means that partition
m is finer than partitiow, i.e., every block ofr is a block ofo .

Theorem 5.4. If Gisagraphonn verticesand | C [n], then
rr(l) =nmc() <ma(l).

Proof. The < is due to the fact that the adjacency matrix of a graph, and all of its powers,
are members of the centralizer algebra of the automorphism group.
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Concerning the equality, it is first shown thaf (1) < mc(l). Assume thatj and
k are in the same block ot (). Then for eachi € | there is an automorphism
g := g € [i(G) such thatg(j) = k. By abuse of language also Igtdenote the
corresponding permutation matrix. Now B € C(I') ande := g, then(Be)(j) =
[(@~'Byel()) = g7 (BY)(®1(j) = [(BY)(©)I(K) = [B(ge)l(k) = (Be)(k). Hencej
andk are in the same block afc (1).

To show thatrc (1) < (1), assume that andk are in distinct blocks ofr - (1). We
will show thatj andk are in distinct blocks ofrc (1). Sincej andk are in distinct blocks
of mp (1), then for each € | there is no automorphism @& that fixesi and takeg to k.

Consider the action of the groupG) on [n] x [n] defined byg(s, t) = (gs, gt). Let
O be any orbit under this action and define a maBix = (bst) bybst = 1if (s5,t) € O
andbst = O otherwise. It is straightforward to check tHag is in the centralizeC(I").
(In fact the set of such matrices forms a basis for the centralizer.) Consider th©aobit
the pair(j, i) under this action. Becausk, i ) is notinO, Bog distinguisheg andk. O

According toTheorem 5.4he graph recurrence sequence cannot separate points any
finer than the automorphism group or centralizer algebra. The inequality in the theorem
is, in general, strict. As an example, letdenote a partition of the sén] into blocks
V1, Vo,..., Vs. Let D = (djj) be ans x s matrix. Call G a graph of type (=, D) if &
is a partition of the vertex set into blockg, Vo, ..., Vs and each vertex of block; is
joined to exactlyd;j vertices of blockVj. Any regular graph of degres; for example, is
a graph of typgr, D) wherexr = (1, 2, ..., n) is the partition with just one block and
D = (d). At the other extreme, ift = (1)(2)...(n) is the trivial partition into blocks
all of cardinality 1, then any graph is of tyger, A) where A is the adjacency matrix.

In general, there can be many graphs of a given type, many with trivial symmetry group.
Consider such an asymmetric graBhwere V1 consists of a single vertex, say vertex 1.
Then clearly the stabilizer of 1 separates the verticeS afhereas the graph recurrence
sequence centered at vertex 1 does not.

Questions 5.5. If 7 (1) = (1)(2) - - - (n), then we say thak separates the vertices of G

with respect to the automorphism group. Call the smallest cardinality of such a separating
setl theseparation index of G with respect to its automor phismgroup, denoted sep(G).
Similarly if za(l) = (1)(2) - -- (n) we say thal separates the vertices of G with respect

to graph recurrence sequences. Call the smallest cardinality of such a separating set the
separation index of G with respect to its graph recurrence sequences, denoted sep(G).

For a collectiory of graphs let

sepr(9) = min{sep-(G) | G € G}
sepn(G) = min{sep(G) | G € G}.

1. Let Gy, denote the collection of graphs of degree at mosin such that bothG
and its complement are connected. Find ;s&p) and sep(Gm). Because any
automorphism ofG induces an automorphism of its complement, the condition
that G and its complement be connected is necessary. If&&p exists, then
Algorithm 4 is a polynomial procedure using graph recurrence sequences to solve
the graph isomorphism problem for graphs of bounded degree.
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2. LetP denote the collection of connected planar gra@hsuch that bothG and its
complement are connected. Is it true that,g6p) = 3? Note that sep(P) # 2
because the graph of the 3-cube cannot be separated by any two vertices. Also note
that 3 does not suffice for the families of planar graghs K,, andK, v K;,, whose
complements are not connected. Herelenotes the disjoint union, each vertex of
one graph adjacent to each vertex of the othef9]we prove that sep(P) = 3 for
any 3-connected planar graph.
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