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Abstract

For a graphG, agraph recurrence sequence x0, x1, x2, . . . of vectors is defined by the recurrence

xt+1 = Axt , t = 0, 1, . . . ,

whereA is the adjacency matrix ofG andx0 is an initial vector. Each vector in this sequence can be
thought of as a vertex labeling ofG, the label at a given vertex at stept +1 obtained by summing the
values at the adjacent vertices at stept . Based on graphical sequences, three concepts are defined:
(1) for a graph to bedetermined by a set of vectors, (2) for two graphs to bem-equivalent, and (3)
for the vertices of the graph to beseparated by a set of vectors. Results concerning these notions are
given, relations to the graph isomorphism problem are discussed, and numerous open problems are
posed. c© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Throughout this paper[n] = {1, 2, . . . , n} and G is a simple connected graph with
vertex set[n]. If A is the adjacency matrix ofG andx0 is a vector inRn , define agraph
recurrence sequence

x0, x1, x2, . . .

by the recurrence

xt+1 = Axt , t = 0, 1, . . . . (1.1)

Each vector in this sequence can be thought of as a vertex labeling ofG. The label at a
vertexi is the value of thei th coordinatex(i) of x. The label at a given vertex at stept +1 is
obtained by summing the values at the adjacent vertices at stept . In Fig. 1the initial vector
is x0 = (1, 0, 0, 0), and the first few terms arex1 = (0, 1, 1, 0), x2 = (2, 1, 1, 2), x3 =
(2, 5, 5, 2). If the initial vector for an arbitrary graph isx0 = (1, 1, . . . , 1), then the first
termx1 gives the vertex degrees of the graph. The broad question is, given an initial vector
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Fig. 1. Graph recurrence sequence:(1, 0, 0, 0), (0, 1, 1, 0), (2, 1, 1, 2), (2, 5, 5, 2), . . ..

x0 (or a set of initial vectors), what information about the graph can be inferred from its
graph recurrence sequence.

Our initial motivation for investigating graph recurrences comes from the graph
isomorphism problem: given two graphs (in terms of their adjacency matrices for example),
to determine whether or not they are isomorphic. There are polynomial time algorithms for
graph isomorphism in the case of interval graphs[7], planar graphs[6], in fact graphs
of bounded genus[5], graphs of bounded degree[8], and graphs of bounded eigenvalue
multiplicity [2]. In general, however, this problem holds a special place in algorithmic
complexity theory because it remains open whether graph isomorphism is P or NP-
complete or neither. The intent of this paper is not to settle this question, but to introduce a
point of view and pose several questions. We show inSection 2that a graphical sequence
for a graph onn vertices is determined by the firstn + 1 terms. The computation of
these terms is algorithmically straightforward. Clearly isomorphic graphs produce the same
graphical sequences up to a permutation of the coordinates. The question is to what extent
the converse is true.

Three concepts are introduced inSections 2–4, respectively. The first is for a graph
G to be determined by a graph recurrence sequence (or graph recurrence sequences).
Precise definitions of the three concepts appear in the respective sections, but basically
for a graphG to be determined by a graph recurrence sequence means thatG is the
unique graph having that graph recurrence sequence. Thestandard vector ei is a vector
with 1 at coordinatei and all other coordinates 0. The graph recurrence sequence
whose initial vector isei will simply be referred to as the graph recurrence sequence
centered at vertex i . The graph recurrence sequence inFig. 1, for example, is centered
at vertex 1. If a graphG is determined by the graphical sequence centered at vertex
i , then we say thatG is determined by vertex i . For example, the graph inFig. 1
is determined by vertex 1; it is easy to show that it is the unique graph with the
sequence given in the caption ofFig. 1. Many graphs, for example complete graphs,
complete bipartite graphs, cycles, wheels and trees, are determined by a single vertex.
This is also the case if the vectors in the graph recurrence sequence spanRn. In these
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casesG can be distinguished from any other graph in polynomial time. Several open
questions concerning which graphs are determined by one, or a fixed number, of vertices
appear at the end ofSection 2. In fact, numerous open problems appear throughout the
paper.

The second concept is for two graphs to beequivalent. Basically this means that there is
a “fake isomorphism” between the two graphs, a bijection between the vertex sets such that
graphical sequences centered at corresponding vertices are identical (up to a permutation
of the vertices). Equivalence of graphs (and more generally a stronger notion calledm-
equivalence) can be tested in polynomial time as a function of the number of vertices. An
algorithm to do this, based on bipartite matching, is given inSection 3. Also in Section 3
an example is provided of a pair of non-isomorphic graphs that are 2-equivalent. Thus
2-equivalence is not a valid test for graph isomorphism.

We are unable, however, to provide an example of two non-isomorphic graphs that are
3-equivalent. In an attempt to provide such an example, the notion ofm-regular graphs, a
generalization of strongly regular graphs, is defined inSection 4. It is proved that a pair of
m-regular graphs with the same set of parameters arem-equivalent. So the existence of a
pair of non-isomorphic 3-regular graphs with the same set of parameters would also be an
example of a non-isomorphic, 3-equivalent pair of graphs. However, form = 3 and 4, a
non-isomorphic pair ofm-regular graphs with the same set of parameters is elusive, and
for m ≥ 5, no such pair can exist.

The third concept is for a graph to beseparated by a vertex i (or set I of vertices).
Basically this means that, for any pair of vertices, the values at the two vertices differ at
some term in the graph recurrence sequence centered at vertexi (or some vertexi ∈ I ). For
the collection of graphs that can be separated by a single (or fixed number) of vertices, the
graph isomorphism problem has a polynomial time solution. To what degree the vertices
of a graph can be separated by a set of vertices is discussed inSection 5.

There is an extensive literature on the graph isomorphism problem. Although we are not
aware of other papers using graph recurrence sequences, there are some similarities with
known heuristics. For example, a common paradigm for heuristics is that of partitioning the
vertices and refining the partition. Certainly our third concept, separating the set of vertices
using graph recurrence sequences, can be put into that framework. Also it was recently
pointed out that our notion of equivalence is closely related to a clever vertex labeling
algorithm of Corneil and Gotlieb[4], although they do not use linear algebraic techniques.
It has long been known that strongly regular graphs are particularly troublesome with
respect to graph isomorphism; so it is not surprising to also findm-regular graphs in the
paper cited above and in a paper of Cameron[3].

There are several questions posed at the end of each ofSections 2–5. It is our hope that
the concepts introduced in this paper lead to interesting future work.

2. Determined graphs

HereafterG A will denote the graph whose adjacency matrix isA. The notation≈ is
used for graph isomorphism. GraphG B is said to have thesame X-sequences as graph
G A if, for some reordering of the vertices ofB, the graph recurrence sequence(1.1) for



18 A. Vince / European Journal of Combinatorics 24 (2003) 15–32

G B andG A are identical for all initial values inX . More precisely, there exists a single
permutation matrixP such that

At x = (P−1B P)t x

for all t ≥ 0 and for allx ∈ X . A set X ⊂ Rn is said todistinguish a graphG A from
a graphG B if G B does not have the sameX-sequences as graphG A. Note that this
is not a symmetric relation:X distinguishingG A from G B does not necessarily imply
that X distinguishesG B from G A. A set X ⊂ Rn is said todetermine a graphG A if X
distinguishesG A from any graph not isomorphic toG A.

A graph recurrence sequence is an infinite sequence.Lemma 2.1, however, implies that
just the firstn + 1 terms are sufficient when considering whether a graph is determined by
a set of vectors.

Lemma 2.1. Let A and B be n × n matrices and x ∈ Rn. If At x = Bt x for n ≥ t ≥ 0,
then At x = Bt x for all t ≥ 0.

Proof. The proof is by induction ont . SinceAt x = Bt x for n ≥ t ≥ 0, alsoAt x = Btx
for m ≥ t ≥ 0, wherem is the degree of the minimal polynomial forB. Now assume that
At x = Bt x for k ≥ t ≥ 0. After reducing by the minimal polynomial we haveBk = g(B)

where deg(g) < m. Now Ak+1x = AAkx = ABkx = Ag(B)x = Ag(A)x = Bg(B)x =
Bk+1x. The second to last inequality follows because deg[xg(x)] ≤ m. �

Remark 2.2. It is an immediate consequence ofLemma 2.1and the Cayley–Hamilton
theorem that ifA and B have the same characteristic polynomial and ifAt x = Bt x for
n > t ≥ 0, thenAt x = Btx for all t ≥ 0.

Theorem 2.3. Let G A be a graph and X ⊂ Rn. If {At x | x ∈ X, t = 0, 1, . . .} spans Rn,
then G A is determined by X.

Proof. Assume thatAt x = (P−1B P)t x for t ≥ 0 and for allx ∈ X . Then A(At x) =
At+1x = (P−1B P)t+1x = (P−1B P)(P−1Bt P)x = (P−1B P)At x. Since{At x | t ≥
0, x ∈ X} spansRn we haveAx = P−1B Px for all x ∈ Rn . ThereforeA = P−1B P and
G A ≈ G B . �

That the terms in the graph recurrence sequence spanRn is a sufficient, but not
a necessary, condition for a vector to determine a graph. Consider the graph in
Fig. 1. If x0 = (1, 1, 0, 0), then the first four terms in the recurrence are(1, 1, 0, 0),
(1, 1, 2, 1), (3, 4, 3, 3), (7, 9, 10, 7), which spanR4. Thereforex0 determines the graph.
Note, however, thatx0 = (1, 0, 0, 0) also determines this graph, but the terms in the graph
recurrence sequence do not spanR4.

Theorem 2.4. Any graph is determined by a single vector.

Proof. Let G A be a graph onn vertices; take the vertex set to be{0, 1, 2, . . . , n − 1}. Let
x0 = (1, 2, 4, . . . , 2n−1) andx1 = Ax0 = (a1, . . . , an). If ai = ∑

j∈J 2 j is the unique
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base 2 representation ofai , then vertexi must be adjacent to exactly the vertices inJ .
Thereforex0 determinesG. �

Remark 2.5 (Isomorphism testing).Theorem 2.4is unsatisfactory from an algorithmic
point of view. The theorem shows that a given graphG A is determined by the vector
x0 = (1, 2, 4, . . . , 2n−1). Suppose we would like to test whether another graph, sayG B , is
isomorphic toG A. This involves computing the graph recurrence sequencesBt (y0), t = 0,
1, . . . where, in the worst case,y0 ranges over all vectors obtained by permuting the
coordinates ofx0. Computing each sequence can be done efficiently, but there aren! such
permutations of the coordinates ofx0, an intractable situation. If, on the other hand,G A

is determined by a single standard vectore, then there are onlyn permutations of the
coordinates ofe to check. It is for this reason that, in the remainder of the paper, the initial
vectors are always taken to be standard vectors.

We say that a graphG is determined by a setU of vertices ifG is determined by the
corresponding set{ei | i ∈ U} of standard vectors.

Theorem 2.6. The complete graphs Kn, complete bipartite graphs Km,n, cycles Cn,
wheels Wn and trees are determined by a single vertex.

Proof. We prove the result for trees and leave the other more routine cases as exercises,
noting that the initial vector for the wheel should have coordinate 1 at a vertex other than
the hub.

Consider treeT rooted at vertex 1, and letx0 = (1, 0, . . . , 0). Thedepth of a vertex is
its distance from the root and is denotedd(i). It is easy to show by induction that, fort
odd,

xt (i) =



0 if d(i) is even ord(i) > t
1 if d(i) = t
>0 if d(i) is odd andd(i) < t

and, fort even,

xt (i) =



0 if d(i) is odd ord(i) > t
1 if d(i) = t
>0 if d(i) is even andd(i) < t .

Now let G be a graph with the same graph recurrence sequence asT . Assign alevel

l(i) = min{t | xt (i) �= 0}
to each vertexi of G. By the formula above for the graph recurrence sequence, it is clear
that fork ≥ 0 we have: (1) no two levelk vertices are adjacent and (2) each vertex at level
k + 1 is adjacent to a unique vertex at levelk. ThereforeG must be a tree rooted at vertex
1 andl(i) = d(i) for all i .

Assume that to depthk the graphsG andT are isomorphic. This is certainly true fork =
0, 1. ThenG andT will be isomorphic to depthk + 1 if the degrees of the vertices at depth
k are the same inG andT . Let i be a vertex at depthk. Thenxk+2(i) = deg(i)+xk+1(p(i))
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wherep(i) is the parent of vertexi . Therefore deg(i) = xk+2(i)−xk+1(p(i)) is determined
by just the graph recurrence sequence, the same values forG andT . �

Example 2.7 (A graph not determined bym particular vertices). To say that a graphG is
determined by a single vertex is not to say thatG is determined by any single vertex. It is
easy to give, for any positive integerm, an example of a graph and a particular setU of m
of its vertices such thatG is not determined byU . Let H andH ′ be two non-isomorphic
graphs with the same number of vertices and both regular of the same degree. LetG be
the graph obtained by joining each vertex of the complete graphKm to each vertex ofH .
Similarly, let G′ be the graph obtained by joining each vertex ofKm to each vertex ofH ′.
ThenG andG′ have the same graph recurrence sequences for each vertex inKm . Therefore
G is not determined by the set of vertices inKm .

Theorem 2.6lists some graphs that are determined by a single vertex. Examples are
given inSections 3and4 of graphs that are not determined by any vertex, or even any two
vertices.

Questions 2.8. Several open questions naturally arise.

1. Classify the graphs determined by a single standard vector.
2. Does there exist a natural numberm such that any connected graph is determined by

somem vertices?
3. If the answer to Question 2 is no, then are all graphs with maximum degreem

determined bym vertices?
4. If the eigenvalues of a graph are distinct, then is the graph determined by a single

vertex? Are graphs with maximum eigenvalue multiplicitym determined bym
vertices?

5. How many vertices suffice to determine any connected planar graph?

3. Equivalent graphs

Consider the action of a permutationg : [n] → [n] on a vectora = (a1, . . . , an) defined
by g(a) = (ag1, . . . , agn). Call two sequences of vectors

X = (x1, x2, . . . , xN )

Y = (y1, y2, . . . , yN )

equivalent, denotedX ≡ Y, if there exists a single permutationg such thatyi = g(xi ) for
all i . Given a graphG A onn vertices we will use the notation

Ai = {A0ei , A1ei , A2ei , . . . , Anei }
for the graph recurrence sequence centered at vertexi . A pairs of graphsG A and G B

on n vertices will be calledequivalent, denotedG A ≡ G B , if there exists a bijection
f : [n] → [n] such that

Ai ≡ B f (i)
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for all i ∈ [n]. This means that there is a “fake isomorphism”, a bijection between
the vertex sets of the two graphs such that the graph recurrence sequences centered at
corresponding vertices are the same. AlthoughAi is a finite sequence,Lemma 2.1insures
equivalence of the corresponding infinite graph recurrence sequences. ClearlyG A ≈ G B

implies thatG A ≡ G B .

Theorem 3.1. Equivalence of n vertex graphs can be tested in time polynomial in n.

The proof of the theorem uses the following algorithm.

Algorithm 1.

Input SequencesX = (x1, x2, . . . , xN ) andY = (y1, y2, . . . , yN ) of vectors inRn .

Output Whether or notX ≡ Y. Moreover, if it exists, a permutationg such thatg(xi ) = yi
for all i .

1. Denoting xi = (xi1, xi2, . . . , xin) and yi = (yi1, yi2, . . . , yin), let xi =
(x1i , x2i , . . . , xNi ) andyi = (y1i , y2i , . . . , yNi ).

2. Rearrange(x1, x2, . . . , xn) and(y1, y2, . . . , yn) in lexicographic order, withgx and
gy the permutations that realize the respective sortings. (The lexicographic order is
with respect to the usual order on the real numbers.)

3. Compare the sorted lists to determine whether they are identical. If they are, then
g = g−1

y ◦ g−1
x is the required permutation.

Since only sorting and comparing corresponding elements are involved,Algorithm 1 is
clearly polynomial. The algorithm that validatesTheorem 3.1is now as follows:

Algorithm 2.

Input GraphsG A andG B onn vertices.

Output Whether or notG A ≡ G B .

1. Let Mi = { j ∈ [n] | Ai ≡ B j }. The setMi is determined byn repetitions of
Algorithm 1.

2. A bijection f : [n] → [n] such thatAk ≡ B f (k) for everyk is given by a system
of distinct representatives ofM1, M2, . . . , Mn . This is equivalent to finding a perfect
matching in the bipartite graph, where one partite set is[n], the other partite set is
{M1, M2, . . . , Mn}, and vertexi is adjacent to vertexM j if i ∈ M j .

Since bipartite matching is a classic algorithm with complexityO(n2), Algorithm 2 is
polynomial.

Call two graphsG A and G B equispectral if the set (not multiset) of non-zero
eigenvalues ofG A coincides with the set of non-zero eigenvalues ofG B . According to the
following theorem, any pair of non-equispectral graphs are distinguished by equivalence.

Theorem 3.2. If G A ≡ G B, then G A and G B are equispectral.

Proof. AssumeG A and G B are not equispectral, and letλ �= 0 be an eigenvalue of
G A but not of G B . Let Eλ be the eigenspace ofG A corresponding toλ and lete be
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a standard vector with non-zero orthogonal projection onEλ. By way of contradiction,
assume thatG A ≡ G B . Then there is a permutation matrixP such thatAt e = (P−1B P)t e
for t ≥ 0. Let B ′ = P−1B P and denote byλi andµi the distinct eigenvalues ofA andB ′,
respectively, withλ = λ1. Then

∑
i xi = e = ∑

i x′
i , wherexi andx′

i are the projections
of e on the eigenspacesEλi andEµi , respectively. Hence∑

i

λt
i xi = At e = B ′t e =

∑
i

µt
i x

′
i , t = 0, 1, 2, . . . . (3.1)

It may be that someλi equal someµ j . In any case, terms with the same eigenvalues in
Eq. (3.1)may be collected to obtain

λt x1 +
s∑

i=2

ηt
i yi = 0 (3.2)

for some distinct non-zero real numbersηi and vectorsyi . Some coordinate ofx1, say
thekth coordinate, is non-zero. Considering only thekth coordinate inEq. (3.2)yields the
linear system




1 1 · · · 1
λ η2 · · · ηs

λ2 η2
2 · · · η2

s
...

...
. . .

...

λs−1 ηs−1
2 · · · ηs−1

s







a1
a2
a3
...

as




=




0
0
0
...

0




wherea1 �= 0. But this Vandermonde matrix is non-singular, which is a contradiction.�

Next extend the notion of equivalence as follows. Letm be a natural number and let
([n]

m

)
denote the collection ofm-element subsets of{1, 2, . . . , n}. For eachI = (i1, i2, . . . , im) ∈([n]

m

)
, with elements in a particular order, let

AI := A(i1,i2,...,im )

denote the concatenation of the graph recurrence sequencesAi1, Ai2, . . . , Aim . A pair of
graphsG A andG B will be calledm-equivalent, denoted

G A ≡m G B,

if there exists a bijectionf : ([n]
m

) → ([n]
m

)
such that

AI ≡ B f (I )

for some ordering of the elements ofI and f (I ). Intuitively, m-equivalence means that
there is a bijection betweenm-element subsets of vertices of the two graphs such that for
each corresponding pair ofm-element subsets (in some order), allm pairs of corresponding
graph recurrence sequences are identical (using a single permutation).

Note that 1-equivalence is the same as equivalence. The following extension of
Algorithm 2shows thatm-equivalence is also testable in polynomial time.
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Algorithm 3.

Input GraphsG A andG B .

Output Whether or notG A ≡m G B .

1. For eachI ∈ ([n]
m

)
, let MI = {J ∈ ([n]

m

) | AI ≡ BJ }. The setMI is determined by

m!([n]
m

)
repetitions ofAlgorithm 1, a polynomial inn sincem is a fixed constant. (The

m! comes from the possible necessity of testing each permutation of the elements
of J .)

2. A bijection f : ([n]
m

) → ([n]
m

)
such thatAI ≡ B f (I ) for every I is given by a

system of distinct representatives of{MI |I ∈ ([n]
m

)}. Exactly as inAlgorithm 2, this
is equivalent to finding a perfect matching in a bipartite graph.

Remark 3.3. A concept stronger thanm-equivalence would be obtained by requiringf
to be a bijection from[n] onto[n] rather than from

([n]
m

)
onto

([n]
m

)
. However, for this more

stringent definition, there is probably no polynomial time test form-equivalence.

Proposition 3.4. If G A ≡m G B, then G A ≡k G B for all k < m.

Proof. Assume thatG A ≡m G B, m > 1. To be precise, we are given a bijection
f : ([n]

m

) → ([n]
m

)
and a permutationαI : I → I for eachI ∈ ([n]

m

)
such thatAI ≡ BαI ( f (I )).

It is sufficient to show thatG A ≡m−1 G B . And for this it suffices to prove the existence
of a bijection f ′ : ( [n]

m−1

) → ( [n]
m−1

)
, where, for eachI ′ ∈ ( [n]

m−1

)
, there is anI ∈ ([n]

m

)
such

that I ′ ⊂ I andα′
I ′ is the restriction ofαI to I ′.

For a givenI ′ ∈ ( [n]
m−1

)
let

AI ′ =
{
αI (I ′) | I ′ ⊂ I ∈

([n]
m

)}

be the set of possible(m − 1)-element subsets to whichI ′ can potentially be mapped
by f ′. A map f ′ is equivalent to a system of distinct representatives of the collection
of sets{AI ′ | I ′ ∈ ( [n]

m−1

)}.By way of contradiction, assume that no such system of
distinct representatives exists. By P. Hall’s theorem on distinct representatives there exists
anS ⊂ ( [n]

m−1

)
such that|T | < |S|, where

T =
⋃

{AI ′ | I ′ ∈ S}.
Now

|S|(n − m + 1) =
∣∣∣∣
{
(I ′, I ) | I ′ ∈ S, I ′ ⊂ I ∈

([n]
m

)}∣∣∣∣
=

∣∣∣∣
{
(αI (I ′), f (I )) | I ′ ∈ S, I ′ ⊂ I ∈

([n]
m

)}∣∣∣∣
<

∣∣∣∣
{

I ′, I ) | I ′ ∈ T, I ′ ⊂ I ∈
([n]

m

)}∣∣∣∣ = |T |(n − m + 1).

This implies that|T | > |S|, a contradiction. �
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Fig. 2. Construction of non-isomorphic, 2-equivalent graphs.

Example 3.5 (Non-isomorphic, 2-equivalent graphs). The construction of such a pair of
graphs is as follows. LetH1 and H2 be two non-isomorphic graphs onn vertices with
the same degree sequence. Such pairs are well known to exist, for example a pair of
non-isomorphic regular graphs of the same degree. Consider two copies of the complete
graphKn. In the first copy, label the edges of a subgraph isomorphic toH1 by (a) and the
remaining edges (b). Replace each edge{u, v} labeled (a) by the graph inFig. 2(a) and
each edge{u, v} labeled (b) by the graph inFig. 2(b). Call the resulting graphG1. For the
second copy ofKn do the same thing with respect toH2. Call the resulting graphG2.

Theorem 3.6. The graphs G1 and G2 described above are 2-equivalent but are not
isomorphic.

Proof. Although the graphsG1 andG2 have the same order, it is clear that they are not
isomorphic. Consider either of the two graphs inFig. 2. Partition the vertices as follows:
(u)(v)(1 2)(3 4 5 6)(7). Notice that, for any initial vector that is constant on each block of
this partition, each term in the graph recurrence sequence is also constant on each block
and, in fact, has the same value whether it is the graph ofFig. 2(a) or2(b).

A subgraph ofG1 or G2 of the type inFig. 2(a) will be referred to as a subgraph of
type (a); similarly a subgraph of the type inFig. 2(b) will be referred to as a subgraph of
type (b). Letw be any vertex ofG1. Consider any bijection of the vertices ofKn onto the
vertices ofKn and extend to a bijectionφ between the vertices ofG1 andG2 that preserves
labels{u, v, 1, 2, 3, 4, 5, 6, 7}. Moreover, ifw is not a vertex labeledu or v in Fig. 2, then
φ should be chosen so that ifw lies in a subgraph of type (a) (type (b)), thenφ(w) also lies
in a subgraph of type (a) (type (b)). Consider the initial vertex labeling ofG1 with value
1 at vertexw and value 0 at all vertices, and the initial vertex labeling ofG2 with value 1
at vertexφ(w) and value 0 at all vertices. Then, by the comments in the paragraph above,
it is easy to prove by induction that the corresponding graph recurrence sequences forG1
andG2 are identical.
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To emphasize the role of the adjacency matrices, denote the two graphs byG A andG B

instead ofG1 andG2. To show thatG A ≡2 G B construct a bijectionf : ([N]
2

) → ([N]
2

)
such thatAI ≡ B f (I ) as follows. There are two cases.

Case 1. Consider a pair(w, z) of vertices inG A, both in the same subgraph of type (a).
This pair corresponds underf to a pair(w′, z′) of vertices from any subgraph of type
(a) in G B . The verticesw,w′ should have the same labels from{u, v, 1, 2, 3, 4, 5, 6, 7};
similarly for the verticesz, z′. It is possible to define such a bijection becauseG A andG B

have the same number of subgraphs of type (a). This is because the graphsH1 andH2 have
the same degree sequence and hence the same number of edges. The bijectionf is defined
analogously for a pair of vertices inG A, both in a subgraph of the type (b), because the
complements ofH1 andH2 have the same number of edges. Clearly there is a bijectionφ

from the set of vertices ofG A onto the set of vertices ofG B as described in the second
paragraph of this proof so that(φ(w), φ(z)) = (w′, z′) = f (w, z). ThenAI ≡ B f (I ) for
all such pairsI = (w, z).

Case 2. BecauseH1 and H2 have the same degree sequence, the two copies ofKn have
the same number of pairs of incident edges both labeled (a), and hence the same number
of non-incident pairs of edges both labeled (a). LetF1 and F2 be the subgraphs of the
two copies ofKn induced by the edges labeled (b). ThenF1 and F2 also have the same
degree sequence; hence the two copies ofKn have the same number of pairs of incident
edges both labeled (b) and the same number of pairs of non-incident edges both labeled
(b). ThatH1 andH2 have the same degree sequence also implies that the number of pairs
of incident edges, one labeled (a) the other (b), is the same in both copies ofKn , which,
in turn, implies the same for non-incident edges. Now consider pairs of vertices inG A

that are contained in distinct subgraphs of type (a) (respectively type (b)) that come from
incident edges (respectively non-incident edges) inKn. Then, by the comments above,
these pairs of vertices can be bijectively matched with pairs of vertices inG B that are
contained in distinct subgraphs of type (a) (respectively type (b)) that come from incident
edges (respectively non-incident edges) inKn . This bijection f should be such that, for
corresponding pairs(w, z) and (w′, z′), the verticesw,w′ have the same labels from
{u, v, 1, 2, 3, 4, 5, 6, 7}; similarly for z, z′. Again there is clearly a bijectionφ from the
set of vertices ofG A onto the set of vertices ofG B as described in the second paragraph of
this proof so that(φ(w), φ(z)) = (w′, z′) = f (w, z). ThenAI ≡ B f (I ) for all such pairs
I = (w, z). �

The graphs in the example are 2-connected, but not 3-connected. A 3-connected
example can be obtained by joining inG1 (and alsoG2) each vertex labeled 7 to each
vertex of the originalKn .

Questions 3.7. The first question below is probably difficult since an affirmative answer
would imply a polynomial time algorithm for the graph isomorphism problem.

1. Does there exist a fixed integerm such thatG1 ≡m G2 impliesG1 ≈ G2.
2. What is the leastm such thatG1 ≡m G2 implies G1 ≈ G2 for connected planar

graphs?
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4. M-regular graphs

From the point of view of the graph isomorphism problem, strongly regular graphs
have proved particularly troublesome. Several known algorithms that are fast for arbitrarily
selected graphs fail badly for non-isomorphic pairs of strongly regular graphs with the
same parameters. In fact, there are random graph algorithms that run in polynomial time
for almost all graphs and fail for strongly regular graphs[1].

This section concerns a generalization of strongly regular graphs and indicates why
such graphs are problematic. For a given induced subgraphH of a graphG, let λ(H ) be
the number of vertices ofG H adjacent to all vertices ofH . For a non-negative integer
m call a graphG m-regular if λ(H ) depends only on the isomorphic type ofH for all
induced subgraphsH with order(H ) ≤ m. Call the set of values{λ(H ) | order(H ) ≤ m}
theparameter set of G. Vacuously, all graphs are 0-regular with parameter set{n}, the order
of the graph. A graph is 1-regular if and only if it is regular in the ordinary sense, i.e., each
vertex has the same degreek. The parameter set is{n, k}.
Example 4.1 (Strongly regular graphs). A graph is 2-regular if and only if it is strongly
regular. Recall that a graph isstrongly regular if it is regular of degreek with constantsλ
andµ such that

1. any pair of adjacent vertices are mutually adjacent to exactlyλ vertices, and

2. any pair of non-adjacent vertices are mutually adjacent to exactlyµ vertices.

Strongly regular graphs arise from certain 2-designs and are also combinatorial
generalizations of graphs naturally associated with rank 3 permutation groups. The
parameter set of a 2-regular graph is{n, k, λ, µ}. The Petersen graph, for example, is
strongly regular with parameter set{10, 3, 0, 1}.
Example 4.2. Consider the graphG whose vertex set is the Cartesian product[N] × [N],
where two vertices(a, b) and(a′, b′) are adjacent inG if a �= a′ andb �= b′. It can be
shown thatG is 3-regular. IfN = 3 thenG is the line graph ofK33, which happens to be
m-regular for allm, as is the case for the pentagon.

Example 4.3. Complete graphs and complete and multipartite graphs arem-regular for
all m. This is clear because, for any pairH, H ′ of isomorphic induced subgraphs, there is
an automorphism ofG taking H onto H ′.

Theorem 4.4. If G and G′ are m-regular graphs, m ≥ 2, with the same parameter set,
then G and G ′ are m-equivalent.

The proof ofTheorem 4.4requires the following two lemmas. LetH be an induced
subgraph ofG and J an induced subgraph ofH . The pairs(H, J ) and(H ′, J ′) will be
called isomorphic if there exists an isomorphism ofH onto H ′ taking J onto J ′. Let
Γ (G, H, J ) denote the set of vertices ofG H adjacent to each vertex inJ and non-
adjacent to each vertex ofH J , and letλ(G, H, J ) = |Γ (G, H, J )|.
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Lemma 4.5. Given an m-regular graph G, let H be an induced subgraph of G with
order(H ) ≤ m and J an induced subgraph of H . Then λ(G, H, J ) depends only on the
isomorphism type of (H, J ).

Proof. To simplify notation, we make no distinction between a setS of vertices and the
subgraph ofG that these vertices induce. For a subsetS of vertices ofH , letα(H, S) denote
the number of vertices inH − S adjacent to all vertices ofS. The lemma then follows from
the Inclusion–Exclusion Principle:

λ(G, H, J ) =
∑

J⊆S⊆H

(−1)|S|−|J | [λ(S) − α(H, S)]

becauseλ(S) depends only the isomorphism type ofS, α(H, S) depends only onS, and
the possibilities forS depend only on the isomorphism type of(H, J ). �

Lemma 4.6. If G1 and G2 are m-regular with the same set of parameters then, for any
graph H of order ≤ m, G1 and G2 contain the same number of induced isomorphic copies
of H .

Proof. The proof is by induction on the orderH . If the order is 1, thenH is a single
vertex. But both graphs are 0-regular with parameter set{n}, wheren is the number of
vertices. Next assume that the lemma is true for orderk − 1 < m and letH have orderk.
Let v be a vertex ofH and letH ′ be the graph obtained fromH by deletingv. In fact, there
may be several vertices, sayr of them, each of whose removal fromH results inH ′ up
to isomorphism. GivenH ′, let J be an induced subgraph ofH ′ such that, if a new vertex
v, not in H ′, is joined to each vertex ofJ , the resulting graph is isomorphic toH . In fact,
there may be several such subgraphs, sayJ1, J2, . . . , Js . Let c(G j , H ′) denote the number
of induced copies ofH ′ in G j , j = 1, 2. Then the number of induced copies ofH in G j

is

c(G j , H ) = 1

r

s∑
i=1

c(G j , H ′)λ(G j , H, Ji ).

By the induction hypothesisc(G1, H ′) = c(G2, H ′), and byLemma 4.5λ(G1, H, Ji ) =
λ(G2, H, Ji ) for eachi . Thereforec(G1, H ) = c(G2, H ). �

Proof of Theorem 4.4. Assume thatG andG′ arem-regular,m ≥ 2, with the same set of
parameters. Label the vertices of each graph{1, 2, . . . , n}. By the previous lemma, there
exists a bijection between the set of all induced subgraphs ofG of orderm and the set of
all induced subgraphs ofG′ of orderm such that corresponding subgraphs are isomorphic.
This provides a bijectionf : ([n]

m

) → ([n]
m

)
(with the ordering on correspondingm-sets

provided by the isomorphism).
For a givenI ∈ ([n]

m

)
, let H be the corresponding subgraph ofG. Similarly let H ′ be the

subgraph ofG′ corresponding tof (I ). Define a bijectionφ : V (G) → V (G′) as follows.
The mappingφ restricted toH is an isomorphism fromH to H ′. Note that

{Γ (G, H, J ) | J an induced subgraph ofH } (4.1)
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forms a partition ofV (G H ). For any induced subgraphJ of H , let J ′ = φ(J ). Using
this partition andLemma 4.5, the functionφ can be extended to a bijection fromV (G) to
V (G′) such thatφ : Γ (G, H, J ) → Γ (G′, H ′, J ′).

Denote the value of thej th coordinate of a vectorx by x( j). Let v0 be any vertex ofH .
In G let

x0(v) =
{

1 if v = v0
0 otherwise

and inG′ let

x′
0(v) =

{
1 if v = φ(v0)

0 otherwise.

We now consider the graph recurrence sequences. It suffices to show thatx′
t (φv) = xt (v)

for all v ∈ V (G) and allt . To prove this letΓ (v) and∆(v) denote the set of neighbors and
non-neighbors of vertexv, respectively. To simplify notation denoteλ(G, H, J ) simply by
λ(H, J ). Also •−• and• • denote the two possible graphs on two vertices. We show by
induction that the value ofxt , t = 0, 1, . . . is constant onΓ (v0) and∆(v0). Denote these
values byxt (Γ ) andxt (∆), respectively. Using the 2-regularity ofG, the induction is as
follows:

x0(v) =



1 if v = v0
0 if v ∈ Γ (v0)

0 if v ∈ ∆(v0)

and

xt+1(v) =



λ(•, •)xt (Γ ) if v = v0
xt (v0) + λ(• − •, • − •)xt (Γ ) + λ(• − •, •)xt (∆) if v ∈ Γ (v0)

λ(• •, • •)xt (Γ ) + λ(• •, •)xt (∆) if v ∈ ∆(v0).

Exactly the same equations are true forx′
t (v) with v0 replaced byφv0. SinceG andG′ are

2-regular with the same parameters, the correspondingλ’s in the two sets of equations are
the same.

Note thatΓ (v0) ∩ (G H ) and ∆(v0) ∩ (G H ) are unions of sets in the partition
Eq. (4.1). Also φ(Γ (v0) ∩ H ) = Γ (φ(v0)) ∩ H ′ andφ(∆(v0) ∩ H ) = ∆(φ(v0)) ∩ H ′.
Therefore, by its definition,φ takesΓ (v0) ontoΓ (φv0) and∆(v0) onto∆(φv0). Hence
x′

t (φv) = xt (v) for all v ∈ V (G) and allt. �

If there exists a pair of non-isomorphicm-regular graphs with the same set of parameters
then, according toTheorem 4.4, this pair also shows thatm-equivalence is invalid as
a polynomial test for graph isomorphism. That was our motivation in consideringm-
regularity. The follow result, however, offers some hope.

Theorem 4.7. For m ≥ 5 there does not exist a pair of non-isomorphic m-regular graphs
with the same parameters.
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Proof. The proof is essentially due to Cameron, Goethals and Seidel as described in[3].
They show that a 5-regular graph is one of the following: a disjoint union of complete
graphs, a complete multipartite graph, a pentagon, or the line graph ofK3,3. �

Questions 4.8. The following question has implications for the answer to the first of
Questions 3.7.

1. Does there exist a pair of 3-regular graphs with the same set of parameters?

5. Separating vertices

A set Y of vectors inRn is said toseparate coordinatesi, j ∈ [n] if y(i) �= y( j) for
somey ∈ Y . If, in a graphG A, the set of terms{At x | t ≥ 0, x ∈ X} in the graph
recurrence sequences with initial values inX separates coordinatesi and j , then we say
that X separates vertices i and j . And if X = {ei | i ∈ I } is a set of standard vectors,
then we simply say that vertex subsetI separates i and j . If every pair of vertices ofG is
separated by the setI of vertices, we say thatI separates G. In Fig. 1, for example, vertex 1
separates vertices 2 and 4 but does not separate vertices 2 and 3.

Note that no single vertex separates the complete graphKn . In fact, the graph recurrence
sequence is:(1, 0, . . . , 0), (0, 1, . . . , 1), (n −1, n −2, . . . , n −2), . . . , so that no pair
among the lastn − 1 vertices is separated. On the other hand,Theorem 2.6guarantees that
a single vertex determinesKn . So it is possible that a vertex determines a graph but does
not separate it. The following question concerns the converse.

Question 5.1. If I separates a graphG, doesI determineG?

Theorem 5.2. Let Gm denote the class of graphs G for which there is some set consisting
of at most m vertices that separates G. For the class Gm the graph isomorphism problem
is polynomial.

Using the minimal polynomial of the adjacency matrix as in the proof ofLemma 2.1,
it can be shown that two vertices of a graph onn vertices are separated by the graph
recurrence sequences with initial vectors in some setX if and only if the two vertices are
already separated by the firstn terms of the graph recurrence sequences with initial vectors
in X . Therefore, for a fixedm, determining whether or not a graph is separated by a set of
m vertices is computationally polynomial. The test for isomorphism, and thus the proof of
Theorem 5.2, is as follows. We use the notation ofSection 3.

Algorithm 4.

Input Two graphsG A andG B onn vertices in the classGm .

Output Whether or notG A ≈ G B .
For eachm-subsetI ⊂ [n] determine whetherI separatesG A. For each suchI that

separatesG A, perform the following steps:

1. UseAlgorithm 1 to find MI = {J ∈ ([n]
m

) | AI ≡ BJ }.
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2. For eachJ ∈ MI use Algorithm 1 to find the unique bijectiong : V (G A) → V (G B)

such thatAI ≡ BJ .
3. Check each such bijectiong to determine whether it is indeed an isomorphism

betweenG A and G B . If such ag exists thenG A ≈ G B ; otherwise it is not the
case thatG A ≈ G B .

Example 5.3 (Graphs not inGm for anym). This example shows that the above algorithm
will not extend fromGm to the collection of all graphs. Fix an arbitrary positive integer
m. The complete and complete bipartite graphs with sufficiently many vertices do not lie
in Gm . For a more convincing example consider the strongly regular graphs defined in
Section 4. For a vertexi in a strongly regular graphG A on n vertices, letΓ (i) and∆(i)
denote the set of neighbors and non-neighbors of vertexi , respectively. It follows from the
definition of strongly regular thatAt ei is constant onΓ (i) and constant on∆(i), for all
t ≥ 0. This implies that at least log2 n − 1 vertices are required to separateG A.

We next find an upper bound on how finely a setI ⊂ [n] can separate the vertices
of a graphG A. For a graphG A and subsetI of vertices, we will define three related
partitions, based on graph recurrence sequences, on the automorphism group ofG and on
the centralizer algebra of the automorphism group, respectively:

πA(I ) πΓ (I ) πC(I ).

For a subsetI ⊂ [n] of vertices, consider the equivalence relationi ∼ j if i and j are
not separated byI . Let πA(I ) denote the resulting partition of[n].

Let Γ := Γ (G) denote the automorphism group ofG andΓi the stabilizer subgroup
of vertexi . For a subsetI ⊂ [n] let πΓ (I ) be the partition of[n] such that two elements
belong to the same block ofπΓ (I ) if and only if they are in the same orbit of each subgroup
Γi , i ∈ I .

Representing the elements of the automorphism groupΓ as permutation matrices, the
centralizer algebra of the automorphism group is defined by

C := C(Γ ) = {B ∈ Matn×n(C) | B P = P B for all P ∈ Γ }.
For a subsetI = {i1, . . . , im} let

C(I ) = {Bei | B ∈ C(Γ ), i ∈ I }.
Consider the equivalence relation defined byi ∼ j if i and j are not separated byC(I ).
Let πC(I ) denote the resulting partition of[n].

For the graphG A in Fig. 1 take I to consist of the single vertex 1. In this case
πΓ (I ) = πC (I ) = πA(I ) = (1)(23)(4). In the next theoremπ ≤ σ means that partition
π is finer than partitionσ , i.e., every block ofπ is a block ofσ .

Theorem 5.4. If G is a graph on n vertices and I ⊆ [n], then

πΓ (I ) = πC(I ) ≤ πA(I ).

Proof. The≤ is due to the fact that the adjacency matrix of a graph, and all of its powers,
are members of the centralizer algebra of the automorphism group.
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Concerning the equality, it is first shown thatπΓ (I ) ≤ πC(I ). Assume thatj and
k are in the same block ofπΓ (I ). Then for eachi ∈ I there is an automorphism
g := gi ∈ Γi (G) such thatg( j) = k. By abuse of language also letg denote the
corresponding permutation matrix. Now ifB ∈ C(Γ ) and e := ei , then (Be)( j) =
[(g−1Bg)e]( j) = g−1[(Bg)(e)]( j) = [(Bg)(e)](k) = [B(ge)](k) = (Be)(k). Hence j
andk are in the same block ofπC(I ).

To show thatπC(I ) ≤ πΓ (I ), assume thatj andk are in distinct blocks ofπΓ (I ). We
will show that j andk are in distinct blocks ofπC(I ). Since j andk are in distinct blocks
of πΓ (I ), then for eachi ∈ I there is no automorphism ofG that fixesi and takesj to k.

Consider the action of the groupΓ (G) on [n] × [n] defined byg(s, t) = (gs, gt). Let
O be any orbit under this action and define a matrixBO = (bs,t) by bs,t = 1 if (s, t) ∈ O
andbs,t = 0 otherwise. It is straightforward to check thatBO is in the centralizerC(Γ ).
(In fact the set of such matrices forms a basis for the centralizer.) Consider the orbitO of
the pair( j, i) under this action. Because(k, i) is not inO, BOei distinguishesj andk. �

According toTheorem 5.4the graph recurrence sequence cannot separate points any
finer than the automorphism group or centralizer algebra. The inequality in the theorem
is, in general, strict. As an example, letπ denote a partition of the set[n] into blocks
V1, V2, . . . , Vs . Let D = (di j ) be ans × s matrix. Call G a graph of type (π, D) if π

is a partition of the vertex set into blocksV1, V2, . . . , Vs and each vertex of blockVi is
joined to exactlydi j vertices of blockVj . Any regular graph of degreed, for example, is
a graph of type(π, D) whereπ = (1, 2, . . . , n) is the partition with just one block and
D = (d). At the other extreme, ifπ = (1)(2) . . . (n) is the trivial partition into blocks
all of cardinality 1, then any graph is of type(π, A) where A is the adjacency matrix.
In general, there can be many graphs of a given type, many with trivial symmetry group.
Consider such an asymmetric graphG wereV1 consists of a single vertex, say vertex 1.
Then clearly the stabilizer of 1 separates the vertices ofG whereas the graph recurrence
sequence centered at vertex 1 does not.

Questions 5.5. If πΓ (I ) = (1)(2) · · · (n), then we say thatI separates the vertices of G
with respect to the automorphism group. Call the smallest cardinality of such a separating
set I theseparation index of G with respect to its automorphism group, denoted sepΓ (G).
Similarly if πA(I ) = (1)(2) · · · (n) we say thatI separates the vertices of G with respect
to graph recurrence sequences. Call the smallest cardinality of such a separating set the
separation index of G with respect to its graph recurrence sequences, denoted sepA(G).
For a collectionG of graphs let

sepΓ (G) = min{sepΓ (G) | G ∈ G}
sepA(G) = min{sepA(G) | G ∈ G}.

1. Let Gm denote the collection of graphsG of degree at mostm such that bothG
and its complement are connected. Find sepΓ (Gm) and sepA(Gm). Because any
automorphism ofG induces an automorphism of its complement, the condition
that G and its complement be connected is necessary. If sepA(Gm) exists, then
Algorithm 4 is a polynomial procedure using graph recurrence sequences to solve
the graph isomorphism problem for graphs of bounded degree.
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2. LetP denote the collection of connected planar graphsG such that bothG and its
complement are connected. Is it true that sepA(P) = 3? Note that sepA(P) �= 2
because the graph of the 3-cube cannot be separated by any two vertices. Also note
that 3 does not suffice for the families of planar graphsK1∨ Kn andK2 ∨ Kn, whose
complements are not connected. Here∨ denotes the disjoint union, each vertex of
one graph adjacent to each vertex of the other. In[9] we prove that sepΓ (P) = 3 for
any 3-connected planar graph.
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