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Abstract

A Fano colouring is a colouring of the edges of a cubic graph by points of the
Fano plane such that the colours of any three mutually adjacent edges form a line
of the Fano plane. It has recently been shown by Holroyd and Škoviera (J. Combin.
Theory Ser. B, to appear) that a cubic graph has a Fano colouring if and only if it is
bridgeless. In this paper we prove that six, and conjecture that four, lines of the Fano
plane are sufficient to colour any bridgeless cubic graph. We establish connections of
our conjecture to other conjectures concerning bridgeless cubic graphs, in particular
to the well-known conjecture of Fulkerson about the existence of a double covering
by 1-factors in every bridgeless cubic graph.

Keywords: cubic graph, edge-colouring, Fano plane, snark, Fulkerson Conjecture

1 Introduction

A Fano colouring is an edge-colouring of a cubic graph which uses points of the Fano
plane as colours subject to the condition that any three colours meeting at a vertex form
a line. With the classical concept of a Tait colouring Fano colourings share the property
that the colours of any two adjacent edges determine the colour of the third edge adjacent
to them. Moreover, a colouring which uses the same line at all vertices is nothing but
the usual 3-edge-colouring. This makes Fano colourings a natural generalization of Tait
colourings and a suitable tool for investigating cubic graphs that are not 3-edge-colourable
– that is, snarks.

It is convenient to consider Fano colourings within a broader context of edge-colourings
by Steiner triple systems. Recall that a Steiner triple system S = (X,B) of order n is a
collection B of three-element subsets (called triples or blocks) of a set X of n points such
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Figure 1: A Fano colouring of the Petersen graph

that each pair of points is together present in exactly one triple. Given a Steiner triple
system S, an S-colouring of a cubic graph G is a colouring of the edges of G by points of
S such that the three colours occurring at any vertex form a block of S. (We allow our
graphs to have multiple edges and sometimes even loops. However, edge-colourings make
sense only for loopless graphs.)

The study of edge-colourings by Steiner triple systems was initiated by Archdeacon
[1], and the first result in this direction is due to Fu [7] who described two classes of
bridgeless cubic graphs that admit a Fano colouring. Recently, Holroyd and Škoviera [10]
substantially improved Fu’s results by showing that every bridgeless cubic graph has an
S-colouring for every Steiner triple system S of order greater than 3.

This paper is devoted to an investigation of colourings which employ the smallest non-
trivial Steiner triple system, the Fano plane. As follows from [10], every bridgeless cubic
graph has a Fano colouring. Here we will deal with further properties of Fano colourings.
Our main concern is the following problem: How many lines of the Fano plane are needed

to colour a given cubic graph?

It transpires that the answer to this question does not actually involve the structure
of lines employed by a Fano colouring – it only depends on their number. In particular,
any Fano colouring of a non-3-edge-colourable graph requires at least four lines, and there
is only one admissible configuration of four lines which can occur. On the other hand, all
seven lines are never needed.

Theorem 1.1 Every bridgeless cubic graph has a Fano colouring which uses at most six

different lines.

These facts suggest that all snarks fall into one of three classes according to the
number of lines required by a Fano colouring. While the class of graphs that require four
lines is infinite (see Theorem 4.1 and Example 4.2), we have not been able to find any
representatives of the remaining two classes. Moreover, with the help of a computer we
have verified that up to 30 vertices no snarks of this sort exist. This justifies the following
conjecture.

Conjecture 1.2 Every bridgeless cubic graph has a Fano colouring which uses at most

four lines.

It was conjectured by Fulkerson [8] that in every bridgeless cubic graph there is a
collection of six perfect matchings such that each edge belongs to exactly two of them. We
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show that Fulkerson’s conjecture implies Conjecture 1.2, and that the latter conjecture
is equivalent to the statement that every bridgeless cubic graph contains three perfect
matchings with empty intersection, conjectured by Fan and Raspaud in [6]. Finally we
propose two weaker versions of Conjecture 1.2 involving configurations of five lines.

2 Colourings and configurations

We start with a definition of the Fano plane. Here is one of the possibilities: The Fano

plane is an incidence structure F = (P,L) consisting of a set P of seven points, say
P = {1, 2, . . . , 7}, and a collection of seven lines L = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6},
{2, 5, 7}, {3, 4, 7}}. A point p and a line l such that p ∈ l are said to be incident.

(1,0,0)

(1,1,1)

(1,0,1)

(0,0,1) (0,1,1)
(0,1,0)

(1,1,0)

Figure 2: The Fano plane

If we label each point i ∈ P by its binary code (i1, i2, i3) ∈ Z2 × Z2 × Z2, we obtain
the usual representation of F as the projective plane PG(2, 2) of order 7. Hence, the
following three axioms are satisfied in F :

(P1) There is exactly one line through any pair of distinct points.

(P2) Any two lines intersect in exactly one point.

(P3) There are at least four points in general position.

In this model of the Fano plane, three points i, j, and k form a line precisely when
i+ j + k = 0 in Z2 × Z2 × Z2.

The representation of F as PG(2, 2) also shows that the Fano plane is highly symmet-
rical. Automorphisms of F are permutations of P which take lines to lines; they are often
called collineations. Since the cyclic permutation (1372456) is a collineation, the Fano
plane is point-transitive. In fact, the collineation group of F is 2-transitive on P (see [2],
Chapter 2) which means that any two ordered pairs of points can be mapped onto each
other by a collineation. In particular, the Fano plane is line-transitive. In addition to
this, the Fano plane is self-dual (cf. [2], Chapter 3). Roughly speaking, this means that
the role of points and lines in F can be interchanged and the incidence relation between
points and lines can be reversed to obtain an isomorphic projective plane. More precisely,
the dual structure F ∗ = (P ∗, L∗), where P ∗ = L and L∗ consists of all bundles of lines
through a point, is isomorphic to F . Due to this isomorphism, any two ordered pairs of
lines can be mapped to each other by a collineation of F . So the collineation group of F
is 2-transitive on L, too.

Symmetries of the Fano plane have a strong impact on the properties of Fano colourings
(F -colourings, for short). In this context, again, the representation of F as PG(2, 2) is
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very useful, because it offers an important alternative approach to Fano colourings based
on the concept of a nowhere-zero flow. For any graph G let D(G) denote the set which is
obtained by replacing each edge of G with a pair of oppositely directed darts . Each dart
z, including those on loops, has its inverse dart z−1 6= z which is incident with the same
vertices but has opposite direction. For an arbitrary vertex v, we let D(v) be the set of
all darts emanating from v. Clearly, these sets partition the whole dart-set.

Let A by an Abelian group with additive notation. Define an A-flow on G to be a
function ξ : D(G) → A satisfying the following two conditions:

(F1) ξ(z−1) = −ξ(z), for each dart z ∈ D(G),

(F2)
∑

z∈D(v)

ξ(z) = 0, for each vertex v ∈ V (G).

A flow ξ is said to be nowhere-zero if ξ(z) 6= 0 for each dart z ∈ D(G).
Observe that if every element of A is self-inverse, then ξ(z) = ξ(z−1) for each dart z,

and we may simply view an A-flow on G as a function defined on the edges of G rather
than on darts. Note that in this case the group A will be isomorphic to a direct product
of copies of Z2.

Since the lines of F correspond to triples of points whose sum is 0, it follows im-
mediately from the definition that an F -colouring of a graph G is just a nowhere-zero
Z2×Z2×Z2-flow on G. An important consequence of this approach is that a cubic graph
which has a bridge cannot be F -coloured because an arbitrary flow takes value 0 on any
bridge. Conversely, every bridgeless cubic graph G admits a nowhere-zero Z2 × Z2 × Z2-
flow (see [5], Chapter 6, or [12]), and hence G can be F -coloured. Thus a cubic graph is
Fano-colourable if and only if it is bridgeless (see Theorem 1.1 of [10]).

On the other hand, the original geometric approach to Fano colourings suggests the
question about the structure of configurations of points and lines in the Fano plane that
can occur in a colouring of a cubic graph. Here a configuration is simply a set of lines
(that is, three-element blocks) together with all incident points. If C is an arbitrary con-
figuration, not necessarily contained in the Fano plane, then a C-colouring is a colouring
by points of C such that the colours at any vertex form a block of C.

Sometimes it is useful to transform a C-colouring into a D-colouring for a suitable
configuration D. This is done simply by mapping the points of C to points of D in such
a way that each triple of C becomes a triple of D. Examples of such transformations can
be found further in this section and in Section 5.

The following proposition describes the structure of all configurations in the Fano plane
according to the number of lines. Two of them have to be specifically mentioned: C15 =
{{a, b, c}, {a, d, e}, {a, f, g}, {c, e, g}}, a configuration of four lines covering seven points,
and C16 = {{a, b, c}, {a, d, e}, {b, d, f}, {c, e, f}}, a configuration of four lines covering six
points which is also known as the Pasch configuration.

Proposition 2.1 For m = 1, 2, 5, 6 there is only one m-line configuration in the Fano

plane, up to collineation. For m = 3, 4 there are exactly two non-isomorphic m-line

configurations in the Fano plane: C15 and C16, if m = 4, and their complements, if

m = 3.

Proof. For m = 1 and m = 2 the result follows from the above-mentioned fact that the
collineation group acts 2-transitively on the set of lines. Since the configurations of five
or six lines are complements of these, the result follows for m = 5 and m = 6 as well.

As regards the second statement, Grannell et al. [9] show that there exist only three
non-isomorphic configurations of four lines covering at most seven points, but only two
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of them, C15 and C16, occur in the Fano plane. This proves the result for m = 4. Again,
for m = 3 the result follows by passing to the complements. 2

Let us consider a Fano colouring of a bridgeless cubic graph with minimum number of
lines. If the graph is 3-edge-colourable, then the colouring uses only one line. We therefore
concentrate on bridgeless cubic graphs that have no 3-edge-colouring. For simplicity, and
in accordance with [4], [13] and [15], we call these graphs snarks.

For snarks we have the following result.

Proposition 2.2 Let G be a snark which is C-colourable for some configuration C in the

Fano plane. Then C covers all seven points and has at least four lines.

Proof. Suppose that C misses a point of F . Since F is point-transitive, we may assume
that the point (1, 1, 1) is not contained in C. By mapping (0, 0, 1) and (1, 1, 0) to 1,
(0, 1, 0) and (1, 0, 1) to 2, and (1, 0, 0) and (0, 1, 1) to 3, we obtain a 3-edge-colouring of
G, contradicting the assumption that G is a snark.

The smallest number of lines that cover all seven points of the Fano plane is clearly 3.
By Proposition 2.1, there is only one such configuration, up to collineation, namely the
bundle of three lines through a point. We show that this configuration cannot occur in
a colouring of a snark. Without loss of generality, consider the set of lines containing
the point (1, 1, 1), that is C = {{(0, 0, 1), (1, 1, 0), (1, 1, 1)}, {(0, 1, 0), (1, 0, 1), (1, 1, 1)},
{(0, 1, 1), (1, 0, 0), (1, 1, 1)}}. Suppose that G admits a C-colouring. Then, by mapping
(0, 0, 1), (0, 1, 0), and (1, 0, 0) to 1, (0, 1, 1), (1, 0, 1), and (1, 1, 0) to 2, and (1, 1, 1) to 3,
we obtain a 3-edge-colouring of G, which is a contradiction again. Thus the least number
of lines of the Fano plane which can colour a snark is 4, as claimed. 2

The previous two propositions have the following important consequence.

Corollary 2.3 For each m ≤ 7 there exists, up to collineation, at most one configuration

of m lines in the Fano plane which can occur in a colouring of a snark.

Thus the problem of colouring a cubic graph by the minimum number of lines of the
Fano plane does not, in fact, involve the structure formed by these lines.

Remark 2.4 The third configuration of three-element blocks on at most seven points
mentioned in the proof of Proposition 2.1 is C14 = {{a, b, f}, {a, c, e}, {b, c, d}, {e, f, g}}.
This configuration plays an important role in general Steiner colourings, as shown in [10].
However, C14 itself does not colour any snark. Indeed, any C14-colouring of a cubic graph
can easily be transformed into a 3-edge-colouring via the mapping a, d, g 7→ 1, b, e 7→ 2,
and c, f 7→ 3. Thus a cubic graph is C14-colourable if and only if it is 3-edge-colourable,
and this occurs precisely when it is C16-colourable. To see the latter equivalence, one
simply embeds C16, the Pasch configuration, into the Fano plane and uses the argument
of the proof of Proposition 2.2. The problem of which graphs are C15-colourable will be
discussed separately in Section 4.
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3 Six-line colourings

The aim of this section is to show that any bridgeless cubic graph can be coloured by at
most six lines of the Fano plane. Up to collineation, the Fano plane contains only one
configuration of six lines (Proposition 2.1), so we can restrict ourselves to colourings by
the configuration K consisting of all lines different from {(0, 1, 0), (1, 0, 0), (1, 1, 0)}.

Our proof uses the following improvement of the famous Petersen’s one-factor theorem.

Theorem 3.1 (Plesńık [14]) Let G be an (r − 1)-edge-connected r-valent graph (r > 0)
of even order, and let A be an arbitrary set of r − 1 edges. Then G− A has a 1-factor.

The crucial step in the proof of Theorem 1.1 is the following lemma which solves
the problem for cyclically 4-edge-connected graphs. Recall that a graph is said to be
cyclically k-edge-connected if no edge-cut involving fewer than k edges leaves two or more
components containing circuits. It is easy to see that for k ≤ 3 a cubic graph is cyclicaly
k-edge-connected precisely when it is k-(edge)-connected.

Lemma 3.2 Let G be a cyclically 4-edge-connected cubic graph, and let v be a vertex

of G. Then G admits a K-colouring such that the edges incident with v receive the colours

(0, 0, 1), (0, 1, 0), and (0, 1, 1) in any chosen order.

Proof. It is sufficient to prove that G has a K-colouring under which the edges e1, e2

and e3 incident with v will receive the colours (0, 0, 1), (0, 1, 0), and (0, 1, 1) in the given
order. By Theorem 3.1, there is a 1-factor F1 in G which contains the edge e2. Let
us contract each circuit of the complementary 2-factor F2 to a vertex. Note that the
resulting graph G′ may contain multiple edges and loops even when G was simple. Since
G is cyclically 4-edge-connected, G′ is 4-edge-connected and so, by a theorem of Jaeger
(see [12], Theorem 4.7 or [5] Proposition 6.4.4), G′ has a nowhere-zero Z2 × Z2-flow φ.
Clearly, φ can be chosen in such a way that φ(e′2) = (0, 1) where e′2 is the edge of G′

corresponding to e2 in G.
Let λ be the mapping which embeds Z2×Z2 into Z2×Z2×Z2 by sending an arbitrary

element (g, h) of Z2 ×Z2 to (g, h, 0). Then λφ is a nowhere-zero Z2 ×Z2 ×Z2-flow on G′.
Expand the vertices of G′ back to the original circuits of G, so that the edges of G′ become
edges of G, with the flow values determined by λφ. Now let C = x0x1 . . . xq−1 be any
circuit of F2, and let yi be the edge of F1 adjacent to xi and xi+1, for i ∈ Zq. If C has
chords, each of them will have two labels. Moreover, in the circuit of F2 which contains
the vertex v we choose the labelling so that e1 = x0 and e3 = xq−1.

For r = 0, 1, . . . , q − 1 we now define

λφ(xr) = (0, 0, 1) +
r−1∑

i=0

λφ(yi).

Since
∑
λφ(yi) = 0, this definition is unambiguous, and the Kirchhoff law (condition

(F2)) is satisfied at each vertex of G. It follows that λφ is a Fano colouring of G with
φ(e1) = (0, 0, 1), φ(e2) = (0, 1, 0), and φ(e3) = (0, 1, 1). Observe that any line of F
which occurs in λφ contains two points whose third coordinate is 1. Hence the line
{(0, 1, 0), (1, 0, 0), (1, 1, 0)} is never used, and the colouring employs at most six lines. 2

Proof of Theorem 1.1 We show that every bridgeless cubic graph G admits a K-
colouring. We proceed by induction on the number of vertices of G. For the basis of
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induction we observe that by Lemma 3.2 the result holds for all cyclically 4-edge-connected
graphs.

Now let G contain a cycle-separating edge-cut of size 2 or 3. Among such cuts there
must be one with the property that at least one of the resulting components, say Q, has
no cycle-separating edge-cut of size smaller than 4. Take both the cut and the component
Q to be of minimum size. Denote the cut by S, and let R be the other component of
G− S. Let G1 = G/R and G2 = G/Q be the graphs formed from G by contracting R or
Q, respectively, to a single vertex. Let r and q be the respective vertices resulting from
the contraction.

Assume that |S| = 3. Since the order of G2 is smaller than that of G, the induction
hypothesis implies that G2 has a K-colouring. Observe that the configuration K is line-
transitive because F is 2-transitive. Thus our K-colouring can be chosen in such a way
that the colours at q form the line {(0, 0, 1), (0, 1, 0), (0, 1, 1)}. By Lemma 3.2, G1 can be
K-coloured in such a way that at the vertex r the colours (0, 0, 1), (0, 1, 0), and (0, 1, 1)
appear in any prescribed order. We choose the ordering so that the colours at r exactly
match the colours at q. The resulting colourings of G1 and G2 can now be combined into
a K-colouring of the whole G.

If |S| = 2, we suppress the 2-valent vertices q and r to obtain cubic graphs G1 and
G2, and use similar arguments as above to establish a K-colouring of G. The details are
left to the reader. 2

4 Four-line colourings

Proposition 2.2 shows that a Fano colouring of a snark gives rise to a configuration of at
least four lines covering all seven points of the Fano plane. It is therefore natural to exam-
ine Fano colourings which use exactly four lines. By Corollary 2.3, there is only one such
configuration in the Fano plane, up to collineation, so we can restrict ourselves to colour-
ings by the configuration L = {{(0, 0, 1), (1, 1, 0), (1, 1, 1)}, {(0, 1, 0), (1, 0, 1), (1, 1, 1)},
{(1, 0, 0), (0, 1, 1), (1, 1, 1)}, {(0, 1, 1), (1, 0, 1), (1, 1, 0)}}. Clearly, L is isomorphic to C15.

Theorem 1.1 and Corollary 2.3 suggest that all snarks can be divided into three classes
according to whether they require four, five or six lines in a Fano colouring, respectively.
Our next result implies that that the first of these classes is infinite.

Theorem 4.1 Let G be a bridgeless cubic graph which has a 2-factor F whose odd cir-

cuits can be arranged into pairs {C1, D1}, {C2, D2}, . . . , {Cn, Dn} such that for each pair

{Ci, Di} there exist two distinct edges ei and fi in G − F incident with both Ci and Di.

Then G has a Fano colouring by at most four lines.

Proof. We shall construct a Fano colouring φ of G such that the colours meeting at each
vertex form a line of L. Let F1 = G−F be the 1-factor of G complementary to F . First,
we set φ(ei) = (0, 0, 1) and φ(fi) = (0, 1, 0) for each i = 1, 2, . . . , n, and assign (0, 1, 1)
to the remaining edges of F1. Now we colour the 2-factor. On each even circuit we will
alternate the colours (1, 0, 1) and (1, 1, 0); there are two possibilities for each even circuit
and both of them are feasible. It remains to colour the edges of odd circuits of F . Let
T be an odd circuit and assume that it is incident with the edges er and fr. These two
edges divide T into two paths, one even and the other odd. On the odd path we will
alternate the colours (1, 1, 1) and (1, 0, 0) beginning with (1, 1, 1). On the even path we
colour the edge adjacent to er by (1, 1, 0), and then alternate (1, 0, 1) and (1, 1, 0). It is a
routine matter to check that the resulting colouring φ of G is indeed an L-colouring. 2
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Example 4.2 Let us look at Fano colourings of the Isaacs snarks Ik, also known as the
flower snarks [11]. For k ≥ 3 odd, let Ik be the graph which has {vi, wi, ui, zi; i ∈ Zk} as
its vertex-set, and {viwi, viui, vizi, wiui+1, uiwi+1, zizi+1; i ∈ Zk} as its edge-set. It is well
known that these graphs are not 3-edge-colourable. The whole vertex set of an Isaacs snark
Ik can be covered by two disjoint odd circuits C = w0v0u0w1v1u1 . . . wk−1vk−1uk−1w0 and
D = z0z1 . . . zk1

z0. Since C and D are connected by the edges v0z0 and v1z1 (for example),
Theorem 4.1 yields that Ik has a Fano colouring which uses only four lines. 2

Snarks which need more than four lines in every Fano colouring appear to be very
difficult to find. In fact, we do not know any single example of a cubic graph which would
require exactly five or exactly six lines. With the help of a computer we have checked all
31646 cyclically 4-edge-connected snarks of girth at least 5 on at most 30 vertices compiled
by Brinkmann [3]. We have found that for each snark G from this catalogue, and for each
vertex v of G, there exists an L-colouring of G such that the edges incident with v can be
coloured by the points of any line of L in any order. This fact, together with a suitable
treatment of short circuits (similar to one used in the proof of Theorem 4.8) enables us
to extend L-colourings of these snarks to all (bridgeless) snarks of order 30 or less, and to
conclude that all bridgeless cubic graphs of order not exceeding 30 are L-colourable. This
leads us to propose the following conjecture:

Conjecture 4.3 (Four-Line Conjecture) Every bridgeless cubic graph has a Fano colour-

ing which uses at most four lines.

Figure 1 shows an L-colouring of the Petersen graph. If G is a cubic graph which has
a homomorphism into the Petersen graph such that any three mutually adjacent edges of
G are mapped to three mutually adjacent edges of the Petersen graph, then G is clearly
L-colourable, too. However, the Petersen Colouring Conjecture of Jaeger [12] claims
that such a homomorphism exists for any bridgeless cubic graph. Thus the Four-Line
Conjecture is implied by the Petersen Colouring Conjecture.

In the next two theorems we explore the relationship of Conjecture 4.3 to other con-
jectures concerning bridgeless cubic graphs. We start with the well-known conjecture of
Fulkerson [8], sometimes attributed also to Berge.

Conjecture 4.4 (Berge-Fulkerson) In every bridgeless cubic graph, there exists a family

of six 1-factors such that each edge appears in exactly two of them.

Theorem 4.5 The Berge-Fulkerson conjecture implies the Four-Line Conjecture.

Proof. Let G be a bridgeless cubic graph that fulfils the Berge-Fulkerson conjecture.
Then there are six 1-factors M1,M2, . . . ,M6 in G which together cover each edge twice.
We will show that G has an L-colouring φ which derives from the chosen family of 1-
factors. In order to define φ, we assign a value φ(e) in Z2 × Z2 × Z2 to each edge of G
depending on which of the fifteen possible combinations of 1-factors it belongs to. The
assignment is given in the following table.

e ∈ φ(e)
M1 ∪M2 (0, 0, 1)
M1 ∪M3 (0, 1, 0)
M1 ∪M4 (0, 1, 1)
M1 ∪M5 (0, 1, 1)
M1 ∪M6 (0, 1, 1)

e ∈ φ(e)
M2 ∪M3 (1, 0, 0)
M2 ∪M4 (1, 0, 1)
M2 ∪M5 (1, 0, 1)
M2 ∪M6 (1, 0, 1)
M3 ∪M4 (1, 1, 0)

e ∈ φ(e)
M3 ∪M5 (1, 1, 0)
M3 ∪M6 (1, 1, 0)
M4 ∪M5 (1, 1, 1)
M4 ∪M6 (1, 1, 1)
M5 ∪M6 (1, 1, 1)
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It is straightforward to verify that for any possible distribution of 1-factors at a vertex,
the three assigned values of φ form a line of L. 2

In 1994, Fan and Raspaud stated the following interesting conjecture ([6], Conjec-
ture 4.2.).

Conjecture 4.6 (Fan-Raspaud) Every bridgeless cubic graph contains three perfect match-

ings with empty intersection.

Theorem 4.7 The Fan-Raspaud Conjecture and the Four-Line Conjecture are equivalent.

Proof. (⇒) Assume that a bridgeless cubic graph G contains three perfect matchings
M1, M2, and M3 with M1 ∩M2 ∩M3 = ∅. We show that G can be L-coloured. Define a
mapping φ : E(G) → Z2 ×Z2 ×Z2 by setting φ(e) = (φ1(e), φ2(e), φ3(e)) where φi(e) = 1
if and only if e 6∈ Mi, i = 1, 2, 3. Since each coordinate mapping φi is the characteristic
function of a 2-factor, φi is a Z2-flow. In turn, φ is a Z2 ×Z2 ×Z2-flow. Define the weight

of an edge of G to be the number coordinates in φ(e) equal to 1. Then for each vertex v,
the sum of weights of the edges incident with v is 6. There are three possible distributions
of weights at a vertex, namely 2 + 2 + 2, 3 + 2 + 1, and 3 + 3 + 0. The last possibility
is excluded because the edge with weight 0 would belong to M1 ∩M2 ∩M3. Thus φ is a
nowhere-zero flow, that is, a Fano colouring. Moreover, both remaining distributions of
weights represent a line of F which belongs to L, so φ is indeed an L-colouring.

(⇐) Now assume that G has an L-colouring φ. Let φ = (φ1, φ2, φ3), and for i = 1, 2, 3
define Ci to be the set of all edges e for which φi(e) = 1. Each φi is a Z2-flow because φ
is an nowhere-zero Z2 × Z2 × Z2-flow. Thus each Ci is a cycle, that is, a set of disjoint
circuits. We show that Ci is, in fact, a 2-factor. Since φ only uses lines of L, at each
vertex of G the distribution of weights of edges (defined as above) is either 3 + 2 + 1 or
2+2+2. Note that the weight of an edge equals the number of Ci’s containing that edge.
In both types of distributions it is then easy to see that any vertex in question is covered
by each of C1, C2 and C3, implying that Ci is a 2-factor. Define Mi to be the 1-factor
complementary to Ci, and suppose that there is an edge e = uv in M1 ∩M2 ∩M3. The
sum of weights at u (and also at v) is 6 but the distribution is 3+3+0 because the weight
of e is 0. However, this contradicts the fact that φ is a nowhere-zero flow. 2

The following theorem examines the properties of the smallest potential counterexam-
ple to our Four-Line Conjecture.

Theorem 4.8 The smallest counterexample to the Four-Line Conjecture, if it exists,

must be snark of girth at least 5.

Proof. Let G be a bridgeless cubic graph of minimum order which is not L-colourable.
Clearly, G must be a snark. We show that G has no short cycles.

Suppose that G has a 2-circuit D formed by a pair of parallel edges f and g. Contract
D to a vertex v incident with edges e1 and e2 which were originally adjacent to both f
and g, and then suppress v thereby creating a new edge e. The resulting cubic graph
G′ has an L-colouring φ′. This colouring extends to an L-colouring φ of G by setting
φ(e1) = φ(e2) = φ′(e), φ(f) = a, and φ(g) = b where {φ(e), a, b} is any line of L
containing φ(e). Thus G has girth at least 3.

IfG contains a triangle, say T , we proceed in the standard way. FormG′ by contracting
T into a vertex v. Again, G′ has an L-colouring φ′. We extend φ′ to an L-colouring φ
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of G. If g is and edge of T adjacent to edges e and f which in G′ are incident with the
vertex v, then we set φ(g) = φ(e) + φ(f). By doing this for each edge of T we obtain an
L-colouring of G. Thus the girth of G is at least 4.

Finally assume that G contains a circuit Q = defg of length 4. Let us remove from G
two opposite edges of Q, say e and g. Suppress the 2-valent vertices incident with d and
f to create new edges d′ and f ′, respectively, thereby obtaining a cubic graph G′. This
smaller graph has an L-colouring φ′. We now extend φ′ to an L-colouring φ of G. Let
d1dd2 and f1ff2 be the paths in G obtained by reinserting the original end-vertices of d
and f into d′ and f ′, respectively. Define φ(d) = φ′(d′) + (1, 1, 1), φ(d1) = φ(d2) = φ′(d′),
φ(f) = φ′(f ′) + (1, 1, 1), φ(f1) = φ(f2) = φ′(f ′), and φ(e) = φ(g) = (1, 1, 1). Since the
point (1, 1, 1) lies on each line of L, it is easy to see that the resulting mapping φ is indeed
an L-colouring. Thus the girth of G is at least 5. 2

It is generally accepted that a “non-trivial” snark is cyclically 4-edge-connected and
has girth at least 5. It would therefore be desirable to establish a lower bound on the
cyclic connectivity of a smallest counterexample to the Four-Line Conjecture. A natural
approach to this problem is through finding a suitable sufficient condition. For example,
to prove that the smallest counterexample to the Four-Line Conjecture is (cyclically)
3-edge-connected it is enough to show that the following statement:

If a graph G is L-colourable, then for each edge e it admits L-colourings φ and ψ such

that φ(e) and ψ(e) have different weights.

However, we have been unable to prove it.

5 Concluding remarks

The comparison of Conjecture 1.2 to Theorem 1.1 suggests an obvious problem: to im-
prove the bound upper bound of six lines in Theorem 1.1 by (at least) one, that is, to
show – if true – that every bridgeless cubic graph can be coloured by at most five lines
of the Fano plane. As we know from Section 2, there is, up to collineation, only one
configuration to consider. Nevertheless, one can think of another possible relaxation of
the Four-Line Conjecture. In Remark 2.4 combined with Corollary 2.3 we have shown
that the configuration C15 is the only possible configuration of four lines that can occur
in a Steiner colouring of a snark. However, C15 is contained in every non-trivial Steiner
triple system (see [9]). Thus there is no reason to exclude from consideration colourings
by other possible five-block extensions of C15 that can occur in a Steiner triple system.

A straightforward but slightly tedious analysis shows that, up to isomorphism, there
are only two such configurations. For all other configurations C there exists a block-
preserving mapping of C into one of these two configurations which transforms a C-
colouring into a colouring by one of them. The first configuration is M1 = {{a, b, c},
{a, d, e}, {a, f, g}, {c, e, g}, {c, d, f}} which extends the representation of C15 given in Sec-
tion 2 with the block {b, c, f}. It occurs in the Fano plane as L ∪ {(0, 0, 1), (0, 1, 0),
(0, 1, 1)}, for example. The second configuration, M2 = {{a, b, c}, {a, d, e}, {a, f, g},
{c, e, g}, {b, c, f}}, extends C15 with the block {b, c, f}. Since M2 contains a pair of par-
allel lines, it cannot be found in the Fano plane. It is embedded in the affine plane AG(2, 3)
of order 9 as {{(0, 0), (0, 1), (0, 2)}, {(2, 0), (2, 1), (2, 2)}, {(0, 0), (1, 1), (2, 2)}, {(0, 1), (1, 1),
(2, 1)}, {(0, 2), (1, 1), (2, 0)}}, for example. Recall that AG(2, 3) is a Steiner triple system
whose points are the elements of Z3 × Z3, and a triple {x, y, z} of points forms a block if
and only if x+ y + z = 0.
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As a result of these considerations, there are two weaker versions of the Four-Line
Conjecture involving a configuration of five lines:

Conjecture 5.1 Every bridgeless cubic graph has an M1-colouring.

Conjecture 5.2 Every bridgeless cubic graph has an M2-colouring.

Acknowledgement. The authors are indebted to M. J. Grannell and T. S. Griggs for
advice concerning four-line configurations in Steiner triple systems.
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