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Abstract. We construct a polynomial-time algorithm to approximate the branch-width of
certain symmetric submodular functions, and give two applications.

The first is to graph “clique-width”. Clique-width is a measure of the difficulty of decom-
posing a graph in a kind of tree-structure, and if a graph has clique-width at most k then the
corresponding decomposition of the graph is called a “k-expression”. We find (for fixed k) an
O(n9 log n)-time algorithm that, with input an n-vertex graph, outputs either a (23k+2 − 1)-
expression for the graph, or a true statement that the graph has clique-width at least k + 1.
(The best earlier algorithm algorithm, by Johansson [13], constructed a 2k log n-expression
for graphs of clique-width at most k.) It was already known that several graph problems, NP-
hard on general graphs, are solvable in polynomial time if the input graph comes equipped
with a k-expression (for fixed k). As a consequence of our algorithm, the same conclusion
follows under the weaker hypothesis that the input graph has clique-width at most k (thus,
we no longer need to be provided with an explicit k-expression).

Another application is to the area of matroid branch-width. For fixed k, we find an O(n4)-
time algorithm that, with input an n-element matroid in terms of its rank oracle, either
outputs a branch-decomposition of width at most 3k − 1 or a true statement that the ma-
troid has branch-width at least k + 1. The previous algorithm by Hliněný [11] was only for
representable matroids.

1. Introduction

Some algorithmic problems, NP-hard on general graphs, are known to be solvable in poly-
nomial time when the input graph admits a decomposition into trivial pieces by means of a
tree-structure of cutsets of bounded order. However, it makes a difference whether the input
graph is presented together with the corresponding tree-structure of cutsets or not. We have
in mind two kinds of decompositions, “tree-width” and “clique-width” decompositions. These
are similar graph invariants, and while the results of this paper concern clique-width, we begin
with tree-width for purposes of comparison.

Having bounded clique-width is more general than having bounded tree-width, in the fol-
lowing sense. Every graph G of tree-width at most k has clique-width at most O(2k) [4, 7],
and for such graphs (for k fixed) the clique-width of G can be determined in linear time [9].
No bound in the reverse direction holds, for there are graphs of arbitrary large tree-width
with clique-width at most k. (But, for fixed t, if G does not contain Kt,t as a subgraph, then
the tree-width is at most 3k(t− 1)− 1 [10].)

The algorithmic situation with tree-width is as follows:
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• Numerous problems have been shown to be solvable in polynomial time when the input
graph is presented together with a decomposition of bounded tree-width. Indeed, every
graph property expressible in monadic second order logic with quantifications over
vertices, vertex sets, edges, and edge sets (MSO2-logic) can be solved in polynomial
time (see [5]).

• For fixed k there is a polynomial time algorithm that either decides that an input
graph has tree-width at least k+1, or outputs a decomposition of tree-width at most 4k
(this is an easy modification of the algorithm to estimate graph branchwidth presented
in [20]).

• Consequently, by combining these algorithms, it follows that the same class of problems
mentioned above can be solved on inputs of bounded tree-width; the input does not
need to come equipped with the corresponding decomposition.

• In particular, one of these problems is the problem of deciding whether a graph has
tree-width at most k. Consequently, for fixed k there is a polynomial (indeed, linear)
time algorithm [1] to test whether an input graph has tree-width at most k, and if so
to output the corresponding decomposition.

For inputs of bounded clique-width, less progress has so far been made. (We will define
clique-width properly later.)

• Some problems have been shown to be solvable in polynomial time when the input
graph is presented together with a decomposition of bounded clique-width. This class
of problems is smaller than the corresponding set for tree-width, but still of interest.
For instance, deciding whether the graph is Hamiltonian [23], finding the chromatic
number [14], and various partition problems [8] are solvable in polynomial time; and so
is any problem that can be expressed in monadic second order logic with quantifications
over vertices and vertex sets (MSO1-logic; see [6, 5]).

• For fixed (general) k there was so far no known polynomial time algorithm that either
decides that an input graph has clique-width at least k+1, or outputs a decomposition
of clique-width bounded by any function of k. The best hitherto was an algorithm of
Johansson [13], that with input an n-vertex graph G, either decides that G has clique-
width at least k + 1 or outputs a decomposition of clique-width at most 2k log n. Our
main result fills this gap.

• Consequently, it follows that the same class of problems mentioned above can be solved
on inputs of bounded clique-width; the input does not need to come equipped with
the corresponding decomposition.

• However, the problem of deciding whether a graph has clique-width at most k is not
known to belong to this class. There is still no polynomial time algorithm to test
whether G has clique-width at most k, for fixed general k.

We shall prove the following.

Theorem 1.1. For fixed k, there is an algorithm that with input an n-vertex graph G, either
decides that G has clique-width at least k+1, or outputs a decomposition of G with clique-width
at most 23k+2 − 1. Its running time is O(n9 log n).
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The main tool for this algorithm is branch-width, which is closely related to tree-width,
and was introduced in [19]. We develop a general algorithm to approximate the branch-width
of certain symmetric submodular functions. Then we define the “rank-width” of a graph to
be the branch-width of a symmetric submodular function determined by a graph; and since
our algorithm applies to this submodular function, we can approximate the rank-width of a
graph in polynomial time. But we also prove that if clique-width is bounded, then rank-width
is bounded, and vice versa; and consequently we can approximate clique-width in polynomial
time.

We also apply this algorithm to matroids, and obtain an algorithm to approximate the
branch-width of matroids, which was known before only for representable matroids by Hliněný [11].
We prove:

Theorem 1.2. For fixed k there is an algorithm which, with input an n-element matroid M
in terms of its rank oracle, either decides that M has branch-width at least k +1, or outputs a
branch-decomposition for M of width at most 3k − 1. Its running time and number of oracle
calls is at most O(n4).

2. Branch-width

Let V be a finite set and f : 2V → Z be a function. If

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y )

for all X, Y ⊆ V , then f is said to be submodular. If f satisfies f(X) = f(V \ X) for all
X ⊆ V , then f is said to be symmetric.

A subcubic tree is a tree with at least two vertices such that every vertex is incident with at
most three edges. A leaf of a tree is a vertex incident with exactly one edge. We call (T, L)
a partial branch-decomposition of a symmetric submodular function f if T is a subcubic tree
and L : V → {v : v is a leaf of T} is a surjective function. (If |V | ≤ 1 then f admits no partial
branch-decomposition.) If in addition L is bijective, we call (T, L) a branch-decomposition of
f . If L(v) = t, then we say t is labeled by v and v is a label of t.

For an edge e of T , the connected components of T \ e induce a partition (X,Y ) of the set
of leaves of T . The width of an edge e of a partial branch-decomposition (T, L) is f(L−1(X)).
The width of (T, L) is the maximum width of all edges of T . The branch-width bw(f) of f is
the minimum width of a branch-decomposition of f . (If |V | ≤ 1, we define bw(f) = f(∅).)

For the application to matroids, we assume that the reader is familiar with the basic notions
of matroid theory (see [16]). Let us review matroid theory briefly for the purpose of this paper.

A matroid M = (E, r) is a pair formed by a finite set E of elements and a rank function
r : 2E → Z satisfying the following axioms:

i) 0 ≤ r(X) ≤ |X| for all X ⊆ E.
ii) If X ⊆ Y ⊆ E, then r(X) ≤ r(Y ).
iii) r is submodular.

We write E(M) = E. For Y ⊆ E(M), M\ Y is the matroid (E(M) \ Y, r′) where r′(X) =
r(X). For X ⊆ E(M), M/Y is the matroid (E(M) \ Y, r′) where r′(X) = r(X ∪ Y )− r(Y ).
If Y = {e}, we denote M \ e = M \ {e} and M/e = M/{e}. It is routine to prove that
M\ Y and M/Y are matroids.
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For X ⊆ E, λ(X) = r(X) + r(E(M) \ X) − r(M) + 1 is the connectivity function of
M. A branch-decomposition and the branch-width of a matroid M are defined as a branch-
decomposition and the branch-width of λ.

3. Clique-width

The notion of clique-width was first introduced by Courcelle and Olariu [7]. Let k be a
positive integer. We call (G, lab) a k-graph if G is a graph and lab is a mapping from its
vertex set to {1, 2, . . . , k}. (In this paper, all graphs are finite and have no loops or parallel
edges.) We call lab(v) the label of a vertex v.

We need the following definitions and operations on k-graphs.

(1) For i ∈ {1, . . . , k}, let ·i denote an isolated vertex labeled by i.
(2) For i, j ∈ {1, 2, . . . , k} with i 6= j, we define a unary operator ηi,j such that

ηi,j(G, lab) = (G′, lab)

where V (G′) = V (G), and E(G′) = E(G) ∪ {vw : v, w ∈ V, lab(v) = i, lab(w) = j}. This
adds edges between vertices of label i and vertices of label j.

(3) We let ρi→j be the unary operator such that

ρi→j(G, lab) = (G, lab′)

where

lab′(v) =

{
j if lab(v) = i,

lab(v) otherwise.

This mapping relabels every vertex labeled by i into j.
(4) Finally, ⊕ is a binary operation that makes the disjoint union. Note that G⊕G 6= G.

A well-formed expression t in these symbols is called a k-expression. The k-graph produced
by performing these operations in order therefore has vertex set the set of occurrences of
the constant symbols in t; and this k-graph (and any k-graph isomorphic to it) is called the
value val(t) of t. If a k-expression t has value (G, lab), we say that t is a k-expression of G.
The clique-width of a graph G, denoted by cwd(G), is the minimum k such that there is a
k-expression of G.

For instance, K4 (the complete graph with four vertices) can be constructed by

ρ2→1(η1,2(ρ2→1(η1,2(ρ2→1(η1,2(·1 ⊕ ·2))⊕ ·2))⊕ ·2)).

Therefore, K4 has a 2-expression, and cwd(K4) ≤ 2. It is easy to see that cwd(K4) > 1, and
therefore cwd(K4) = 2.

Some other examples: cographs, which are graphs with no induced path of length 3, are
exactly the graphs of clique-width at most 2; the complete graph Kn (n > 1) has clique-width
2; and trees have clique-width at most 3 [7].

For some classes of graphs, it is known that clique-width is bounded and algorithms to
construct a k-expression have been found. For example, cographs [3], graphs of clique-width
at most 3 [2], and P4-sparse graphs (every five vertices have at most one induced subgraph
isomorphic to a path of length 3) [6] have such algorithms.
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4. Interpolation of a submodular function

In this section, we define an “interpolation” of a certain submodular function. Later we
will use it to prove the main theorem.

For a finite set V , we define (with a slight abuse of terminology) 3V to be {(X, Y ) : X, Y ⊆
V, X ∩ Y = ∅}.

Definition 4.1. Let f : 2V → Z be a submodular function such that f(∅) ≤ f(X) for all
X ⊆ V . We call f ∗ : 3V → Z an interpolation of f if

i) f ∗(X, V \X) = f(X) for all X ⊆ V ,
ii) (uniform) if C ∩D = ∅, A ⊆ C, and B ⊆ D, then f ∗(A, B) ≤ f ∗(C, D),
iii) (submodular) f ∗(A, B) + f ∗(C, D) ≥ f ∗(A ∩ C, B ∪ D) + f ∗(A ∪ C, B ∩ D) for all

(A, B), (C, D) ∈ 3V .
iv) f ∗(∅, ∅) = f(∅).

Assuming that ∅ is a minimizer of f is not a serious restriction, because first of all it is true
for all symmetric submodular functions, and secondly if we let

g(X) =

{
f(X) if X 6= ∅
minZ f(Z) otherwise,

then g is also submodular.

Proposition 4.1. Let f : 2V → Z be a submodular function such that f(∅) ≤ f(X) for all
X ⊆ V , and let f ∗ : 3V → Z be an interpolation of f . Then:

(1) for all (X, Y ) ∈ 3V →, f ∗(X, Y ) ≤ minX⊆Z⊆V \Y f(Z).
(2) f ∗(∅, Y ) = f(∅) for all Y ⊆ V .
(3) If f({v})− f(∅) ≤ 1 for every v ∈ V , then for every fixed B ⊆ V , f ∗(X,B)− f(∅) is the

rank function of a matroid on V \B.

Proof.

(1) If X ⊆ Z ⊆ V \ Y , then f ∗(X, Y ) ≤ f ∗(Z, V \ Z) = f(Z).
(2) f(∅) = f ∗(∅, ∅) ≤ f ∗(∅, Y ) ≤ f ∗(∅, V ) = f(∅).
(3) Let r(X) = f ∗(X, B)− f(∅). It is trivial that r is submodular and nondecreasing. More-

over,

0 ≤ r(X) = f ∗(X, B)− f(∅) ≤ f(X)− f(∅) ≤ |X|,
and therefore r is the rank function of a matroid on V \B. �

We define fmin(X, Y ) = min f(Z), the minimum being taken over all Z satisfying X ⊆ Z ⊆
V \ Y .

Proposition 4.2. Let f : 2V → Z be a submodular function such that f(∅) ≤ f(X) for all
X ⊆ V . Then fmin is an interpolation of f .

Proof. The first, second, and last conditions are trivial. Let us prove submodularity. Let X,
Y be subsets of V such that A ⊆ X ⊆ V \ B, C ⊆ Y ⊆ V \ D, fmin(A, B) = f(X), and
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fmin(C, D) = f(Y ). Then

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y )

≥ fmin(A ∩ C, B ∪D) + fmin(A ∪ C, B ∩D).

Thus, fmin is an interpolation. �

In general fmin is not the only interpolation of a function f , and sometimes it is better for
us to work with other interpolations that can be evaluated more quickly.

We remark that if f ∗ : 3V → Z is a uniform submodular function satisfying f ∗(∅, ∅) =
f ∗(∅, V ), then there is a submodular function f : 2V → Z such that f(∅) ≤ f(X) for all
X ⊆ V and f ∗ is an interpolation of f .

5. Branch-Width and Well-Linkedness

Definition 5.1. Let V be a finite set and let f : 2V → Z be a symmetric submodular function
satisfying f(∅) = 0. We say that W ⊆ V is well-linked with respect to f if for every partition
(X, Y ) of W and every Z with X ⊆ Z ⊆ V \ Y , we have

f(Z) ≥ min(|X|, |Y |).
This notion is analogous to the notion of well-linkedness [17] related to tree-width of graphs.

Theorem 5.1. Let V be a finite set with |V | ≥ 2, and let f : 2V → Z be a symmetric
submodular function such that f(∅) = 0. If with respect to f there is a well-linked set of size
k, then bw(f) ≥ k/3.

Proof. Let W be a well-linked set of size k, and suppose that (T, L) is a branch decomposition
of f . We will show that (T, L) has width at least k/3. We may assume that T does not have a
vertex of degree 2, by suppressing any such vertices. For each edge e = uv of T , let Auv be the
set of elements of V that are mapped by L into the connected component of T \ e containing
u, and let Buv = V \ Auv.

We may assume that W 6= ∅; choose w ∈ W . Since W is well-linked with respect to f ,
f({w}) ≥ 1, and therefore the width of (T, L) is at least 1. Consequently we may assume that
assume k > 3.

Suppose first that min(|Auv ∩ W |, |Buv ∩ W |) < k/3 for every edge uv of T . Direct every
edge uv from u to v if |Auv ∩W | < k/3 and |Buv ∩W | ≥ k/3. By the assumption, each edge
is given a unique direction. Since the number of vertices is more than the number of edges in
T , there is a vertex t ∈ V (T ) such that every edge incident with t has head t.

If t is a leaf of T , let s be the neighbour of t. Since ts has head t, it follows that |Bst∩W | ≥
k/3. But |Bst| = 1 < k/3, a contradiction.

So, t has three neighbours x, y, z in T such that |Axt ∩W | < k/3, |Ayt ∩W | < k/3, and
|Azt ∩W | < k/3. But |W | = |Axt ∩W |+ |Ayt ∩W |+ |Azt ∩W | < k = |W |, a contradiction.

We deduce that there exists uv ∈ E(T ) such that |Auv ∩W | ≥ k/3 and |Buv ∩W | ≥ k/3.
Hence f(Auv) ≥ min(|Auv ∩W |, |Buv ∩W |) ≥ k/3, and the width of (T, L) is at least k/3. �

Theorem 5.2. Let V be a finite set, let f : 2V → Z be a symmetric submodular function such
that f({v}) ≤ 1 for all v ∈ V and f(∅) = 0, and let k ≥ 0 be an integer. If with respect to f ,
there is no well-linked set of size k, then bw(f) ≤ k.
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Proof. We may assume that bw(f) > 0, and so |V | ≥ 2. We may assume that k > 0. For two
partial branch-decompositions (T, L) and (T ′, L′) of f , we say that (T, L) extends (T ′, L′) if
T ′ is obtained by contracting some edges of T and for every v ∈ V , L′(v) is the vertex of T ′

that corresponds to L(v) under the contraction.
We will prove that, if there is no well-linked set of size k with respect to f , then for

every partial branch-decomposition (Ts, Ls) of f with width at most k, there is a branch-
decomposition of f of width at most k extending (Ts, Ls). Since k ≥ 1 and f trivially admits
a partial branch-decomposition of width 1 (using the two-vertex tree with vertices u, v, and
mapping all vertices of V except one to u, and the last to v), this implies the statement of
the theorem.

Pick a partial branch-decomposition (T, L) of f extending (Ts, Ls) such that the width of
(T, L) is at most k and the number of leaves of T is maximum.

We claim that (T, L) is a branch-decomposition of f , that is, L is a bijection. Suppose
therefore that there is a leaf t of T such that B = L−1({t}) has more than one element.

(1) f(B) = k.

Suppose that f(B) < k. Let v ∈ B. Construct a subcubic tree T ′ by adding two ver-
tices t1 and t2 and edges t1t, t2t to T . Let L′(v) = t1 and L′(w) = t2 for all w ∈ B \ {v} and
L′(x) = L(x) for all x ∈ V \ B. Then (T ′, L′) is a partial branch-decomposition extending
(T, L). Moreover f({v}) ≤ 1 ≤ k and f(B \ {v}) ≤ f(B) + f({v}) ≤ k, and so the width of
(T ′, L′) is at most k. But the number of leaves of T ′ is greater than that of T , a contradic-
tion. �

Let f ∗ be an interpolation of f . By Proposition 4.1, f ∗(X, B) is the rank function of a
matroid on V \B. Let X be a base of this matroid. Then |X| = f ∗(V \B, B) = f(B) = k.

Since X is not well-linked, there exists Z ⊆ V such that

f(Z) < min(|Z ∩X|, |(V \ Z) ∩X|).

Since f(Z \ B) = f ∗(Z \ B, B ∪ (V \ Z)) ≥ f ∗(Z ∩X, B) = |Z ∩X| > f(Z), it follows that
Z ∩B 6= ∅. Similarly B \ Z = (V \ Z) ∩B 6= ∅.

Construct a subcubic tree T ′ by adding two vertices t1 and t2 and edges t1t, t2t to T . Let
L′(x) = t1 if x ∈ B ∩ Z, L′(x) = t2 if x ∈ B \ Z and L′(x) = L(x) otherwise.

By submodularity,

|(V \ Z) ∩X|+ f(B) > f(Z) + f(B) ≥ f(Z ∪B) + f(Z ∩B)

= f((V \ Z) \B) + f(Z ∩B)

≥ f ∗((V \ Z) ∩X, B) + f(Z ∩B)

= |(V \ Z) ∩X|+ f(Z ∩B),

and so f(Z ∩ B) < f(B) ≤ k and similarly f(B \ Z) < f(B) ≤ k. Therefore (T ′, L′) is a
partial branch-decomposition extending (T, L) of width at most k. But the number of leaves
of T ′ is greater than that of T , a contradiction. �
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Corollary 5.3. For all k ≥ 0, there is a polynomial-time algorithm that, with input a set V
with |V | ≥ 2 and a symmetric submodular function f : 2V → Z with f({v}) ≤ 1 for all v ∈ V
and f(∅) = 0, outputs either a well-linked set of size k or a branch-decomposition of width at
most k.

The proof of Theorem 5.2 shows an algorithm that either finds a well-linked set of size k, or
constructs a branch-decomposition of f of width at most k. By combining with Theorem 5.1,
we get an algorithm that either concludes that bw(f) > k or finds a branch-decomposition of
width at most 3k + 1.

Let us analyze the running time of the algorithm of Theorem 5.2. To do so, we must be
more precise about how the input function f and f ∗ are accessed. We consider two different
situations, as follows:

• In the first case, we assume that only f is given as input, and in the sense that we can
compute f(X) for a set X; and we need to compute values of f ∗ from this input.

• In the second case, we assume that an interpolation f ∗ of f is given as input (in
the same sense, that for any pair (X, Y ) we can compute f ∗(X, Y )), and we need to
compute f from f ∗.

For the first analysis, let γ be the time to compute f(X) for any set X. In this case
we shall use f ∗ = fmin. To calculate fmin, we use the submodular function minimization
algorithm [12], whose running time is O(n5γ log M) where M is the maximum value of f and
n = |V |. Thus, we can calculate fmin in O(n5γ log n) time. Finding a base X can be done by
calculating f ∗ at most O(n) times, and therefore takes time O(n6γ log n). To check whether
X is well-linked, we try all partitions of X; 2k−1 tries (a constant). And finding the set Z for
a given partition of X can be done in time O(n5γ log n) by submodular function minimization
algorithms. Since the process is cycled through at most O(n) times (because if (T, L) is a
partial branch-decomposition then |V (T )| ≤ 2n − 2), it follows that in this case the time
complexity is O(n7γ log n).

For the second analysis, let δ be the time to compute f ∗(X) for any set X. Finding a base
X can be done in time O(nδ). Finding Z to show that X is not well-linked can be done in
time O(n5δ log n). Thus, the time complexity in this case is O(n6δ log n).

In summary, then, we have shown the following two statements.

Corollary 5.4. For given k, there is an algorithm as follows. It takes as input a finite set V
with |V | ≥ 2 and a symmetric submodular function f : 2V → Z, such that f({v}) ≤ 1 for all
v ∈ V and f(∅) = 0. It either concludes that bw(f) > k or outputs a branch-decomposition
of f of width at most 3k + 1; and its running time (excluding evaluating f) and number of
evaluations of f are both O(|V |7 log |V |).

Corollary 5.5. For given k, there is an algorithm as follows. It takes as input a finite set
V with |V | ≥ 2 and a function f ∗ which is an interpolation of some symmetric submodular
function f : 2V → Z, such that f({v}) ≤ 1 for all v ∈ V and f(∅) = 0. It either concludes that
bw(f) > k or outputs a branch-decomposition of f of width at most 3k + 1; and its running
time is O(|V |6δ log |V |), where δ is the time for each evaluation of f ∗.
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6. Application to Clique-width

Definition 6.1. Let G be a graph and let A, B ⊆ V (G) be disjoint. Let MB
A (G) be the matrix

(mij : i ∈ A, j ∈ B) over the 2-element field GF(2), where mij = 1 if i, j are adjacent in G, and
mij = 0 otherwise. We define cutrk∗G(A, B) = rk(MB

A (G)) where rk is the matrix rank function;
and we define the cut-rank function cutrkG of G by cutrkG(X) = cutrk∗G(X,V (G) \ X) for
X ⊆ V (G). We will show that cutrkG is symmetric submodular and cutrk∗G is an interpolation
of cutrkG.

Proposition 6.1. Let M = (mij : i ∈ C, j ∈ R) be a matrix over a field F . For X ⊆ R and
Y ⊆ C, let M [X, Y ] denote the submatrix (mij; i ∈ X, j ∈ Y ). Then for all X1, X2 ⊆ R and
Y1, Y2 ⊆ C, we have

rk(M [X1, Y1]) + rk(M [X2, Y2]) ≥ rk(M [X1 ∪X2, Y1 ∩ Y2]) + rk(M [X1 ∩X2, Y1 ∪ Y2]).

Proof. See [15, Proposition 2.1.9], [22, Lemma 2.3.11], or [21]. �

Corollary 6.2. Let G be a graph. If (X1, Y1), (X2, Y2) ∈ 3V (G) then

cutrk∗G(X1, Y1) + cutrk∗G(X2, Y2) ≥ cutrk∗G(X1 ∩X2, Y1 ∪ Y2) + cutrk∗G(X1 ∪X2, Y1 ∩ Y2).

Moreover, if X1, X2 ⊆ V (G), then

cutrkG(X1) + cutrkG(X2) ≥ cutrkG(X1 ∩X2) + cutrkG(X1 ∪X2).

Proof. Let M be the V (G) × V (G) adjacency matrix of G over GF(2). The first statement
follows from Proposition 6.1 applied to M . The second follows from the first by setting
Yi = V (G) \Xi (i = 1, 2). �

A rank-decomposition of G is a branch-decomposition of cutrkG, and the rank-width rwd(G)
of G is the branch-width of cutrkG.

The following proposition shows a relation between clique-width and rank-width.

Proposition 6.3. For any graph G, rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1.

Proof. We may assume that |V (G)| ≥ 2, because if |V (G)| ≤ 1, then rwd(G) = 0 and
cwd(G) ≤ 1.

A rooted binary tree is a subcubic tree with a specified vertex, called the root, such that
every non-root vertex has one, two or three incident edges and the root has at most two
incident edges. A vertex u of a rooted binary tree is called a descendant of a vertex v if v
belongs to the path from the root to u; and u is called a child of v if u, v are adjacent in T
and u is a descendant of v.

First we show that rwd(G) ≤ cwd(G). Let k = cwd(G). Let t be a k-expression with value
(G, lab) for some choice of lab. We recall that a k-expression is a well-formed expression with
four types of symbols; the constants, two unary operators, and the binary operator forming
disjoint union. The parentheses of the expression form a tree structure. Thus there is a
rooted binary tree T , each vertex v of which corresponds to a k-expression say N(v); and
letting V0, V1, V2 denote the sets of vertices in T with zero, one and two children respectively,
we have for each vertex v ∈ V (T ):
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• if v ∈ V0 then N(v) is a 1-term expression consisting just of a constant term
• if v ∈ V1 with child u, then N(v) is obtained from N(u) by applying one of the two

unary operators
• if v ∈ V2 with children u1, u2, then N(v) is obtained from N(u1), N(u2) by applying ⊕
• if v is the root then N(v) = (G, lab).

In particular, each vertex v ∈ V0 gives rise to a unique vertex of G; let us call this L(v).
Then L is a bijection between V (G) and the set of leaves of T . Consequently (T, L) is a
branch-decomposition of cutrkG. Let us study its width. Let u, v ∈ V (T ), where u is a child
of v, and let T1, T2 be the components of T \ e, where e is the edge uv and u ∈ V (T1). Let
Xi = {L(t) : t ∈ V0 ∩ V (Ti)} for i = 1, 2. Thus (X1, X2) is a partition of V (G), and we
need to investigate cutrkG(X1). Let N(u) = (G1, lab1). Thus V (G1) = X1. If x, y ∈ X1, and
lab1(x) = lab1(y), then x, y are adjacent in G to the same members of X2, from the properties
of the iterative construction of (G, lab); and since the function lab1 has at most k different
values, it follows that X1 can be partitioned into k subsets so that the members of each subset
have the same neighbours in X2. Consequently cutrkG(X1) ≤ k. Since this applies for every
edge of T , we deduce that (T, L) is a branch-decomposition of cutrkG with width at most k.
Hence rwd(G) ≤ k = cwd(G).

Now we show the second statement of the theorem, that cwd(G) ≤ 2rwd(G)+1 − 1. Let
k = rwd(G) and (T, L) be a rank-decomposition of G of width k. By subdividing one edge of
T , and suppressing all other vertices of T with degree 2, we may assume that T is a rooted
binary tree; its root has degree 2, and all other vertices have degree 1 or 3.

For v ∈ V (T ), let Dv = {x ∈ V (G) : L(x) is a descendant of v in T}, and let Gv denote
the subgraph of G induced on Dv. We claim that for every v ∈ V (T ), there is a map labv and
a (2k+1 − 1)-expression tv with value (Gv, labv), such that

(i) if labv(x) = 1 then x ∈ Dv is nonadjacent to every vertex of G \Dv,
(ii) if x, y ∈ Dv and there exists z ∈ V (G) \ Dv such that x is adjacent to z but y is not,

then labv(x) 6= labv(y),
(iii) for each x ∈ Dv, labv(x) ∈ {1, 2, . . . , 2k}.
We prove this by induction on the number of vertices of T that are descendants of v. If v is
a leaf, let tv = ·1. Then tv satisfies the above conditions. Thus we may assume that v has
exactly two children v1, v2.

By the inductive hypothesis, there are (2k+1 − 1)-expressions t1, t2 with values (Gvi
, labvi

)
for i = 1, 2, satisfying the statements above. Let F be the set of pairs (i, j) with i, j ∈
{1, 2, . . . , 2k}, such that there is an edge xy of G, with x ∈ Dv1 , labv1(x) = i, y ∈ Dv2 and
labv2(y) = j. It follows from the second condition above that if (i, j) ∈ F then every vertex
x ∈ Dv1 with labv1(x) = i is adjacent in G to every vertex y ∈ Dv2 with labv2(y) = j. Let

t∗ =

(
◦

(i,j)∈F
ηi,j+2k−1

) (
tv1 ⊕

(
2k

◦
i=2

ρi→i+2k−1

)
(tv2)

)
.

Then t∗ is a (2k+1 − 1)-expression with value (Gv, lab∗) say, and it satisfies the first two
displayed conditions above. However, it need not yet satisfy the third. Let us choose a
(2k+1 − 1)-expression tv with value (Gv, labv) say, satisfying the first two conditions above,
and satisfying the following:
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• {labv(x) : x ∈ Dv} is minimal
• subject to this condition, max(labv(x) : x ∈ Dv) (= r say) is as small as possible.

(We call these the “first and second optimizations”.) For i = 1, . . . , r let Xi = {x ∈ Dv :
labv(x) = i}. The definition of r implies that Xr 6= ∅. If there exists i with 2 ≤ i < r such
that Xi = ∅, then applying the function ρr→i to tv produces a k-expression contradicting the
second optimization. Thus, X2, . . . , Xr are all nonempty. For 1 ≤ i ≤ r let Yi be the set of
vertices of V (G) \Dv with a neighbour in Xi. From the first condition above, Y1 = ∅. From
the second condition above, every vertex in Xi is adjacent to every member of Yi for all i with
1 ≤ i ≤ r. If there exist i, j with 1 ≤ i < j ≤ r such that Yi = Yj, then applying ρj→i to tv
produces a k-expression contradicting the first optimization. Thus Y1, . . . , Yr are all distinct.

Let M be the matrix (mij : i ∈ Dv, j ∈ V (G) \Dv), where mij = 1 if i, j are adjacent and 0
otherwise. Then M has r − 1 distinct nonzero rows. Since (T, L) has width k, it follows that
M has rank at most k, and therefore M has at most 2k − 1 distinct nonzero rows (this is an
easy fact about any matrix over GF(2)). We deduce that r ≤ 2k, and therefore tv satisfies the
third condition above.

This completes the proof that the k-expressions tv exist as described above. In particular,
if v is the root of T then Gv = G, and so tv is a 2k+1 − 1-expression of G. We deduce that
cwd(G) ≤ 2k+1 − 1. �

The above proof gives an algorithm that converts a rank-decomposition of order k into a
(2k+1 − 1)-expression. Let n = |V (G)|, and let (T, L) be the input rank-decomposition. At
each non-leaf vertex v of T , we first construct F , in O((2k)2) = O(1) time. Then merging
sets with the same neighbours outside Dv will take time O

(
22kn

)
= O(n). The number of

non-leaf vertices v of T is O(n). Therefore, the time complexity is O(n2). Note that we may
assume that checking the adjacency of two vertices can be done in constant time, because we
preprocess the input to construct an adjacency matrix in time O(n2).

Corollary 6.4. For given k, there is an algorithm that, with input an n-vertex graph G,
either concludes that rwd(G) > k or outputs a rank-decomposition of width at most 3k + 1.
Its running time is O(n9 log n).

Proof. cutrk∗G can be calculated in time O(n3), so the claim follows from Corollary 5.5. �

Corollary 6.5. For given k, there is an algorithm that, with input a graph G, either concludes
that cwd(G) > k or outputs a (23k+2 − 1)-expression of G. Its running time is O(n9 log n).

Proof. This is immediate from Corollary 6.4 and Proposition 6.3. �

7. Application to matroid branch-width

The connectivity function of a matroid is a special kind of symmetric submodular function,
and we have been able to modify our general algorithm so that it runs much more quickly for
functions of this type. There are two separate modifications. First, there is an interpolation
of the connectivity function λ of a matroid that can be evaluated faster than λmin. Second,
we can apply the matroid intersection algorithm instead of the general submodular function
minimization algorithms.

The following proposition is due to Jim Geelen (private communication).



12 SANG-IL OUM AND PAUL SEYMOUR

Proposition 7.1. Let M be a matroid with rank function r, with connectivity function

λ(X) = r(X) + r(E(M) \X)− r(M) + 1.

Let B be a base of M. Then

λB(X, Y ) = r(X ∪ (B \ Y )) + r(Y ∪ (B \X))− |B \X| − |B \ Y |+ 1

is an interpolation of λ.

Proof. We verify the three conditions of the definition of an interpolation.

1) If Y = E(M) \X, then

λB(X, Y ) = r(X) + r(Y )− r(B ∩X)− r(B ∩ Y ) + 1 = r(X) + r(Y )− r(M) + 1 = λ(X).

2) Let X1 ⊆ X2 and Y1 ⊆ Y2. Then

r(X2 ∪ (B \ Y2)) ≥ r(X1 ∪ (B \ Y2)) ≥ r(X1 ∪ (B \ Y1))− (|B \ Y1| − |B \ Y2|).

Therefore,

r(X2 ∪ (B \ Y2))− |B \ Y2| ≥ r(X1 ∪ (B \ Y1))− |B \ Y1|.
Similarly,

r(Y2 ∪ (B \X2))− |B \X2| ≥ r(Y1 ∪ (B \X1))− |B \X1|.
By adding both inequalities, we deduce that λB(X2, Y2) ≥ λB(X1, Y1).

3) Let X1 ∩ Y1 = ∅ and X2 ∩ Y2 = ∅. It is easy to show that

(P ∩R) ∪ (Q ∩ S) ⊆ (P ∪Q) ∩ (R ∪ S)

for any choice of sets P , Q, R, S. Since r is submodular and increasing,

r(X1 ∪ (B \ Y1)) + r(X2 ∪ (B \ Y2))

≥ r((X1 ∪ (B \ Y1)) ∪ (X2 ∪ (B \ Y2))) + r((X1 ∪ (B \ Y1)) ∩ (X2 ∪ (B \ Y2)))

≥ r((X1 ∪X2) ∪ (B \ (Y1 ∩ Y2))) + r((X1 ∩X2) ∪ (B \ (Y1 ∪ Y2))).

Similarly

r(Y1∪(B\X1))+r(Y2∪(B\X2)) ≥ r((Y1∪Y2)∪(B\(X1∩X2)))+r((Y1∩Y2)∪(B\(X1∪X2))).

But also

|B \X1|+ |B \X2| = |B \ (X1 ∩X2)|+ |B \ (X1 ∪X2)|.
Adding, we deduce that

λB(X1, Y1) + λB(X2, Y2) ≥ λB(X1 ∩X2, Y1 ∪ Y2) + λ(X1 ∪X2, Y1 ∩ Y2). �
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Now, we discuss a method to avoid the general submodular function minimization algo-
rithm. To apply Corollary 5.5 to matroid branch-width, we needed a submodular function
minimization algorithm that, given a matroid M and two disjoint subsets X and Y , will
output Z ⊆ E(M) such that X ⊆ Z ⊆ E(M) \ Y and λ(Z) is minimum. We claim that
that this can be done by the matroid intersection algorithm. Let M1 = M/X \ Y and
M2 = M\ X/Y , with rank functions r1, r2 respectively. Then by the matroid intersection
algorithm, we can find U ⊆ E(M) \X \ Y minimizing r1(U) + r2(E(M) \X \ Y \ U). Using
the fact r1(U) = r(U ∪ X) − r(X), r2(U) = r(U ∪ Y ) − r(Y ), we construct a set Z with
X ⊆ Z ⊆ E(M) \Y that minimizes λ(Z). And this can be done in O(n3) time (if M is input
in terms of its rank oracle), where n = |E(M)|.

We deduce:

Corollary 7.2. For given k, there is an algorithm that, with input an n-element matroid M,
given by its rank oracle, either concludes that bw(M) > k or outputs a branch-decomposition
of M of width at most 3k − 1. Its running time and number of oracle calls is at most O(n4).

Proof. Pick a base B ofM arbitrarily. We use λB as an interpolation of λ. For a given partition
(A, B), finding a base X can be done in time O(n). Finding Z to prove that X is not well-
linked can be done in O(23k−2n3). Therefore, the time complexity is O(n + n(n + 23k−2n3)) =
O(8kn4). �

8. Discussion

Let f : 2V → Z be a symmetric submodular function and let c be a constant. If there is
a matroid M having f + c as its connectivity function, then we obtain a faster branch-width
approximation algorithm by using the method presented in the previous section. Therefore,
in view of the application to approximating rankwidth, it is an interesting question whether,
for every graph G, there exists a matroid having cutrkG +1 as its connectivity function. It is
false in general and we present a graph with no such matroid.

s
s
s

s
s
s

s1

2 3

4

56

7

Figure 1.

Let G = (V, E) be a graph with V = {1, 2, 3, 4, 5, 6, 7} and E = {12, 23, 34, 45, 56, 16, 17, 47}
(Figure 1). Suppose there is a matroid M with rank function r such that

cutrkG(X) = r(X) + r(V \X)− r(M)

for all X ⊆ V . Since the connectivity function of a matroid does not change by taking
dual matroids, we may assume that r(M) ≥ 4. Since r(X) ≤ |X| and r(V \ X) ≤ r(M),
cutrkG(X) = |X| implies that r(V \X) = r(M) and X is independent in M.



14 SANG-IL OUM AND PAUL SEYMOUR

Since cutrkG({1, 3, 4}) = 3, it follows that r(M) = r({2, 5, 6, 7}) ≤ 4. Therefore r(M) = 4,
{2, 5, 6, 7} is independent and so is {5, 6, 7}. Since cutrkG({5, 6, 7}) = 2, r({1, 2, 3, 4}) = 3.
Similarly, since cutrkG({1, 2, 7}) = 3, it follows that {3, 4, 5, 6} is independent, and so is
{4, 5, 6}. But cutrkG({4, 5, 6}) = 2, and therefore r({1, 2, 3, 7}) = 3.

Since cutrkG({4, 5, 7}) = 3, {1, 2, 3, 6} is independent. Hence r({1, 2, 3}) = 3. Since
cutrkG({3, 5, 6}) = 3, {1, 2, 4, 7} is a base. Hence r({1, 2, 3, 4, 7}) = 4. By submodularity,
we obtain

3 + 3 = r({1, 2, 3, 4}) + r({1, 2, 3, 7}) ≥ r({1, 2, 3, 4, 7}) + r({1, 2, 3}) = 4 + 3,

a contradiction, and therefore there is no matroid having cutrkG +1 as a connectivity function.

Acknowledgment. We would like to thank Jim Geelen for suggesting the branch-width of
symmetric submodular functions and Proposition 7.1, and Frank Gurski for discussions which
led to a slight improvement of Proposition 6.3.
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