Available online at www.sciencedirect.com

SC|ENCE@D|HE0T® EuropeanJournal
of Combinatorics

ELSEVIER European Journal of Combinatorics 26 (2005) 325-338
www.elsever.com/locate/ejc

Projective-planar doulel coverings of graphs

Seiya Negami

Department of Mathematics, Faculty of Education and Human Sciences, Yokohama National University,
79-2 Tokiwadai, Hodogaya-Ku, Yokohama 240-8501, Japan

Received 19 August 2002; accepted 9 February 2004
Available online 7 June 2004

Abstract

We shall shar that a @nnected grapl@ is projective-planar if and only if it has a projective-
planar double covering and that any projective-planar double covering of a 2-connected nonplanar
graph is planar.
© 2004 Elsevier Ltd. All rights reserved.

0. Introduction

Our grephs are simple and finite. A gragghis called an (i-fold) covering of a graphG
with aprojection p: G — G ifthereis an (-to-one) surjectiorp : V(G) — V(G) which
sends the neighbors of each vertex: V (G) bijectively to those ofp(v). In paticular, G
is called aregular covering provided that there is a subgroéyin the autonorphism group
Aut(G) of G suchthat p(u) = p(v) if andonly if z(u) = v for somer € A. Itis easy to
see thaa 2fold (or double) covering is necessiy a regulr one.

A graph issaid to beprojective-planar if it can be embdded in the projective plane.
Negami B] has discussed the relation between planar double coverings and embeddings of
graphs in the projecte&/plane, ad established the following anacterization of projective-
planar graphs:

Theorem 1 (Negami B]). A connected graph is projective-planar if and only if it has a
planar double covering.

Furthemore, he has proved the following theorem, which extehbdsorem 1with
“regular” instead of “double”:
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Theorem 2 (Negami B]). A connected graph is projective-planar if and only if it has a
planar regular covering.

These theorems motivated him to propose the following conjecture. This is called “the
1-2-c0 conjecture” or “Negami’s planar cover conjecture”™

Conjecturel (Negami P], 1986). A connected graph is projective-planar if and only if
it hasa planar covering.

There have been many papers on studies around this conjecture, but the sufficiency is
still open.

A graphH is called aminor of a graphG if H can be obtained fror® by contracting
and deleting some edges. It is easy to see th&k ifas a planar covering, then so does
H. Thus, it siffices to show that every minor-minimal graph among those graphs that are
not projective-planar does not have a planar covering to solve the conjecture affirmatively.
Such minor-mininal graphs have been already identified i §nd [4]; they are 35 in
number and three of them are disconnected.

Let Gy be a graph with a vertexof degree 3 and lat;, v andvs be the three neighbors
of v. A Y-A transformation is to add thee new edges; v2, vovz andvzvg after deleting.
Let Gx be a graph obtained froiBy by aY-A transformation. It is easy to see that if
Gy has a planar covering, then so dégs. It has leen known that the 32 minor-minimal
connected graphs can be classified into 11 families, 0f3 thtransfomations.

Combining the results inZ} 3, 5, 7, 9, 10], we can show that every member in the
10 families not includingK1 222 does not have any planar covering and conclude the
following theorem at present:

Theorem 3 (Archdeacon, Hiows, Hlinény and Ngami). If K1 222 has no planar cov-
ering, then Conjecture Listrue.

By Theorem 1if a connected graph has a projectivedpar covering, then it has a planar
covering, which covers the latter doubly. Also a planar covering can be embedded in the
projective plane. These imply th&€bnjecture 1lis equivalent to thedllowing conjecture,
as observed by Hlery in [6]:

Conjecture2. A connected graph is projective-planar if and only if it has a projective-
planar covering.

Replacing two appearances of “projective-planar” with “Klein bottle” in the above, he has
posed another interesting conjecturedh However, it seems to be hardly possible to solve
such a onjecture.

So, we dhall discuss projective-planar double coverings of nonplanar graphs, turning to
Conjecture 2andprove the following theorem, using the notion of “composite coverings”
developed in11]:

Theorem 4. A connected graph is projective-planar if and only if it has a projective-
planar double covering.

This theorem might look like one that gives us evidence suppo@orgecture 2 Our
arguments in this paper will however suggest tBahjecture 2presents sontking vain
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Fig. 1. A double covering oK 3 3 with a self-loop.

1 4

Fig. 2. A double covering o€, with multiple edges.

ewen if it is true. The essential phenomenon on projective-planar double coverings is
that:

Theorem 5. Every projective-planar double covering of a 2-connected nonplanar graph
isplanar.

Note that none of the 2-connectedness and the nonplanarity of a graph can be omitted
from Theorem 5For exanple, consider the graph givenliig. 1 This is progctive-planar
but not planar, and covers doubk 3 with a self-loop attached at one vertex. To get its
projective-planar embedding, draw the pair of multiple edges so that they cross together
one edge on the inner hexagon and put a crosscap at the edge to clip the two crossings.
Subdividing the self-loop to make it simple, we obtain a nonplanar graph which is not
2-connected and which has a nonplanar projective-planar double covering.

On the otler hand,Fig. 2 presents a nonplanar graph which is projective-planar and
which covers doubly a 2-connected planar graph obtained from the &9glef length 4
by replacing three edges with multiple edges. Two vertices with the same label project to
one of the vertices lying along a cycle 1234. It is clear where we should put a crosscap to
embed this nonplanar graph in the projective plane.

In fact, graph-minor arguments work féheorem 4and it suffices to prove thét1 2 2 »
does not have any projective-planar double covering, although we prove the theorem in
Section 1 gpplying the result in 11]. On the other hand, graph-minor arguments do not
work wel for Theorem 5We reed to classify the projective-planar double coverings of
K3z 3 andKs, as inSection 2 those coverings should be planar. We shall give a proof of
the the@rem inSection 3 Section 4presents another proof @heorem 4as an application
of our arguments iBection 3
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Related toTheorem 5in this paper, the @hor and Suzukul?] have shown recently
that any projective-planar double covering of a 3-connected graph also is planar. However,
sieh a 3-connected graph is not assumed to be nonplanar.

1. Composite planar coverings

To prove Theorem 4 we dall introduce the notion of “composite coverings”, as
mentioned in the introduction.

In general, letp; : G — G’ andp, : G’ — G be two covering projections of graphs.
Then thecomposition of these two projection = pop1 : G — G defines another
covering projection fronG to G. Converse}, a mveringG of a graphG with projection
p: G — G is said to becomposite if its projection can be obtained as a composition
p = pop1 of two covering projectiong; : G — G’ andp, : G — G via another
suitabe graphG’. In patticular, if p1 and p, are ni-fold and n,-fold, respectively, for
natural numberay, np > 2, thenG is called an(ny, np)-composite covering.

The author has discussed such composite coverings in connectioiCaijbcture 1
and established the following theorem i

Theorem 6 (Negami fL1]). A connected graph G is projective-planar if and only if it has
an (n, 2)-composite planar connected covering for somen > 1.

Furthermore, he has proved that every planar connected regular covering of a nonplanar
connected graph &, 2)-composite for some > 1. Theorem 4s just an easyansequence
from the above theorem:

Proof of Theorem 4. The necessity is clear since any projective-planar graph has a planar
double covering, which is also projective-planar.

Suppose that a connected graBthas a projective-planar double coveripg: G’ —
G. ThenG’ has a planar connected double coverjg: G — G’ by Theorem 1 and
p2p1 : G — G is a(2, 2)-composite planar covering @&. By Theorem 6 G must be
projective-planar. Thus, the sufficiency follows]

Here, we shall introduce another formulation on planar coverings to show an easy
application ofTheorem 4 Let p; : Gi — Gj_1 be a double covering projection from
Gj to Gj_1. A seaies of double covering&s, — Gp_1 — --- — Gg is called
a planar tower of Gg (of heightn) if the top graphG, is planar. The composition
p = p1p2...Pn : Gn — Go of covering projections is a"2fold covering projection
from G, to Gg and is said to be obtained ligwer construction.

Theorem 7. A connected graph is projective-planar if and only if it has a planar tower.

Proof. Let Gg be a nonplanar connected graph. We shall show only the sufficiency, using
induction on the height of a planar toweG, - Gp_1 — -+ — G1 — Gp. If n =1,
thenGq is projective-planar, byrheorem 11f n > 1, thenG, - Gp_1 — -+ —> G1

is a planar tower ofG; of heightn — 1 and henceG; is projective-planar, by the
induction hypothesis. Therefor€g is projective-planar byrheorem 4 This completes

the induction. O
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Since a planar covarg obtained by tower construction is not regular in general, this
theorem covers a part whichheorem 2does not. For examplé1 2 2 » does not have a
planar tower even if it might have a planar covering.

2. Double coverings of Kuratowski graphs

It is well-known as Kuratowski's theorem that any nonplanar graph contains a
subdivision of eitherKs 3 or Ks. Thus, the fact given aSheorem Sshould hold forKs 3
andKs at leastLemmas 1&nd11guarantee it and will play an essential role in our proof
of Theorem 5

Before showing them, we prepare the following lemma, which we shall often use later to
decide the projective-planarity of double coverings of graphs. This has been provgd in [
where the subgraphd; andH; discussed in the lemma are called “disjdirtubgraphs”.

Lemma 8. Let G be a connected graph such that:

(i) There exist two digoint subgraphs Hy and H> of G each of which is isomorphic to
either K4 or Ko3.
(i) Let Xj = V(Hj)(or let X; be the set of vertices of degree 2) if H; isisomorphic to
Ka(or Kz,3). Each vertexin X; isadjacentto avertexin G — V(H;) fori € {1, 2}.
(i) BothG — V(H1) and G — V (Hy) are connected.

Then G is not projective-planar.

Let G be a double covering of a graghwith projectionp : G — G in general. Then
there is an atomorphisnr : G — Gof period 2 such that(u) = v andt (v) = u for any
pair {u, v} of vertices inG with p(u) = p(v). This automorphisnr is called thecovering
transformation of a double covering.

It should be noticed that if we can find a subgraigh in a double coveringG so
that it satisfies three conditions lremma § thent(H1) can be chosen ad, and we
can conclude thab is not projective-planar. The following lemma is a restricted form of
Lemma 8but is useflito proveLemmas 1Gnd1l:

Lemma9. Let G be a connected graph and p : G — G adouble covering of G with
covering transformation r : G — G. Supposethat:

(i)’ There exists a subgraph H of G isomorphic to either K4 or K2.3.
(i)’ Let X =V (H) (or let X bethe set of vertices of degree 2) if H isisomorphicto K4
(or K2.3). Each vertexin X isadjacent to a vertexin G — V (H).
(i) If M = G — V(p(H)) isnot empty, then M is connected and each vertexin p(X) is
adjacent to a vertexin M.

Then G is not projective-planar.

Proof. Itis easy to see thdil projects top(H) isomorphically and that (H) N H = @.
PutH; = H andHz = t(H). Then (i)and (ii) in Lemma 8hold for G andG — V (Hy)
is isomophic to G — V(Hy) via 7. If M is empty, then the connected graph_; is a
spanning subgraph d& — V (H;) and hencés — V (H;) is connected for = 1, 2. Thus,
G is not projective-planar byemma 8
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Fig. 3. The unique planar double coveringkos 3.

Now suppose thatM is nonempty and connected. Théd — V(H;) consists of
Hs_i U p~1(M) and some edges. If it is not connected, then'(M) splits into two
componentsvi; and My so that theres no elge betweerM; andHs_j fori = 1,2. In
this case( is contracted to either the disjoint unié®s 3 U K3 3 or Ks U Ks. They ae not
projective-planar and hen€gis not, either. Onhe other hand, i — V (H;) is connected,
thenG is not projective-planar byemma 8 [

Lemma 10. K3 3 has exactly one projective-planar double covering givenin Fig. 3, up to
graph isomorphism, and it is planar.

Proof. Let G be a projective-planar double coveringtof 3 with covering transformation
r : G - G. Since Kz3 U Ka 3 is not projective- pIanarG also is connected and is
bipartite. We may assume that its vertices are colored by black and whitdy Liet any
black vertex ofG and letw1, wa, ws be the three neighbors bf in G, which are white.
Then{b1, w1, w2, w3} induces a subgraph isomorphid€g s, sayT1, andz (T1) is disjoint
from Ty.

Choose any other black vertéy ¢ {b1, T(b1)}. If by is adjacent to all ofv1, wa, ws,
then {by, b2, w1, w2, w3} induces a subgraph isomorphic K 3. This works asH in
Lemma 9 andhenceG would not be projective-planar, a contradiction. Thus, we may
assume thal, is adjacent tav; andws, butnot tows, up b synmetry. Therb, is adjacent
to 7 (w3) sincep(bz) must be adjacent tp(w3z) = p(r(w3)) in K3 3.

Let bz be the third black vertex adjacent @, which isdifferent frombs, by, (b1)
andz (by). If bz is adjacent tavy, then{b, b, bz, w1, wz} induces a subgraph isomorphic
to K23, whichcan be used all in Lemma 9 Thus,bgs is not adjacent tavs. If bz is not
adjacent taws, thent (bz) must be adjacent to both, andws. Rephcingws, wp andbs
with wa, w1 andz (b3) in order in this case, we may assume tixais adjacent tavs.

Now we can determine the adjacency over all vertices uniquely. There are two
cyclesbywot (b3) T (w1) 7 (b2)wz andwibyt (w3) T (b1) T (w2)bs, and each pair of vertices in
corresponding positions in these segees are joined with an edge. Thiijs isonorphic
to a hexagonal prism given ifrig. 3and is planar. O

Lemma 11. Ks has exactly two projective-planar double coverings given in Fig. 4, up to
graph isomor phism, and they are planar.

Proof. Let G be a L projective-planar double coveringk§ with covering transformation
7 : G — G. ThenG is connected. Choose a vertexin G and three of the four neighbors
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Fig. 4. The two planar double coverings K§.

of vo, sayvs, vz andvs. Let H be the subgraph induced lyo, v1, vo, v3} in G. Letvg be
one of two vertices not iIhJi§3{Ui, 7(vi)}. If H is isomophic to K4, then itcan be used

asH in Lemma 9 contrary toG being projective-planar. So we may assume thaind
vz are not adjacent and thaf is adjacent to at least two verticeslih, replacingvs with
7(v4) if we need.

First suppose thativp, vovz € E(H). If vg is adjacent to at least three verticesHn
then they arévs, vo, v3} or{v1, v2, v3}; otherwise, we would find a subgraph isomorphic to
Kg asH in Lemma 9 In either case{vo, v1, v2, v3, v4} induces a subgraplv isomorphic
to a wheel with a rimwjwow3zws of length 4. ThenG consists of two wheelsV and
(W) with four edgeswit(w3), w2t (wa), wat(wi) andwat (wz) and is planar. This is
isomorphic to the right graph ifig. 4

If vq is adjacent to exactly two vertices, then they éwe, v1}, {v1, v2}, {v2, v3} Or
{vs, vo}; otherwise, we would find a subgraph isomorphicke 3 which can be used as
H in Lemma 9 In each caseG is isomophic to the square o1, which consists of a
cyclecpc: ... cg of length 10 and 10 edges of forgc 2 with saipts taken modulo 10.
Since it carbe embedded on the sphere so that two cygjes. . . cg andcics . . . ¢ bound
pentagonal faces; is planar. This is isomghic to the left graph irfFig. 4

Secondly suppose that exactly onewab, andvovz belongs toE(H), sayvivs. If vg
is adjacent to at least two of vertices lying on the triangjej vy, then {vg, v1, v2, v4}
induces eithelK4 or K4 minus one edge and the previous arguments work for this case
with suitable replacement cdibels. Thus, the neighborhoodwafin H is either{vs, vg} or
{vs, v1}, up to synmetry. In either case,(v4) is adjacent to two vertices aguvivz and we
find asubgraph isomorphic t&4 minus one edge, again.

Finally suppose that there is no edgéu, vz, v3}. If va is adjacent to only two vertices
in H, then we find a triangle containing4 or t(v4) and this case can be reduced to the
previous. Thus, we may assume thatis adjacent to all ob1, v2 andvs, andnot to vp;
for, if v4 is adjacent tay, then we find a triangle, again. In this casiyp, v1, v2, v3, va}
induces a subgraph isomorphicKe 3, which can be used all in Lemma 9 Therdore,
this is not the case. [

We shall use the planar embeddings of double covering&Kgg and of Ks given in
Figs. 3and4 in the poof of Theorem 5 They should be embedded on the sphere rather
than in the plane. Note that the covering transformatianG — G extends to an auto-
homeomorphism over the sphere for each of them.
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3. Nonplanarity of double coverings

Let G be a graph anK a aubgraph inG. A subgraphB induced by a component of
G-V (K) andthe edges joining it tid is called aridgefor K in G. A subgraph consisting
of a single edge ¢ E(K) with both ends inK also is regarded as a bridge fidr but it
is said to besingular. It is clear thatG decomposes int& and the bridges foK and that
they are mutually edge-disjoint. A vertex of a bridge is called a verteattaEhment if it
liesinK.

In the following proof,K will be a subdivision of eithdfs 3 or Ks. Wecall a path inK
asideif it corresponds to an edge g 3 or Ks. That is, a side oK is a path inK which
joins two vertices of degremot 2 and whose inner vertices all have degree 2. We shall
often usd_emma 8to conclude that graphs in question are not projective-planar. Although
we neednot only the lemma but also graph-minor arguments logically in some cases, we
shall write just “byLemma 8 to simplify our description below.

Proof of Theorem 5. Let G be a 2-connected nonplanar graph gnd G — G any
projective-planar double covering @ with covering transformation : G — G.
We shall prove the theorem by induction on the number of vertice&oHowever, if

G is 3-connected, we can provke therem independently of the number of vertices.
Furthemore, the following argument implies th& must be 3-connected in the initial
case of induction.

Thus, suppose thab is not 3-connected. The® decomposes into two connected
subgraphsG’ and F so thatV (G’) N V(F) forms a 2-cut{x, y} of G. We mayassume
that F cannot be decomposed by any 2-cu€fThen éherz(F)NF =@ ort(F) = F.
However, the latter does not happen since it implies fita)} = p(y) and it becomes a cut
vertex of G, contrary toG being 2-connected. Thu§ decomposes into three subgraphs
G”, Fandt(F) sothatr (G") = G”, Fnt(F) =dandV(G") NV (F) = {x, y}.

Corresponding to this decompositidd,also decomposes into two connected subgraphs
p(G”) and p(F) with a 2-cut{p(x), p(y)} and bothGg = p(G”) + p(x)p(y) and
p(F) + p(X)p(y) are 2-connected; the latter is isomorphic Fo+ xy. It is easy to
find a subgraphH in G homeomorphic to eithetF + xy) U (z(F) + t(X)z(y)) or
F U t(F) + {xz(y), yr(X)} and to see that iF + xy were not planar, therH would
not be projective-planar, which is contrary@being projective-planar. Thug, + xy and
7(F) 4+ t(x)t(y) must be planar and henéecan be embedded on the plane so thahd
y are incident to the outer region.

On the otler handGo = G” + {xy, T(X)7(y)} is a projective-planar double covering of
Gp andGg must be nonplanar; otherwigg,would be planar. By the induction hypothesis,
we can conlude thatGy is planar and can consict a planar embedding & from any
planar embedding o by pasting two copies of the above-mentioned planar embedding
of F along the two edgesy andz (x)z(y). Therdore, G is planar.

Now we shalldiscuss the case th& is 3-connectedBy Kuratowsk's theorem, G
contains a subdivisioK of either K3 3 or Ks. First, we &all prove the theorem, assuming
the former case. LeK be the pll-back p~1(K) of K in G. By Lemma1Q K is a
subdivision of the unique planar double covering&§ 3 given inFig. 3.
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BRP

Fig. 5. Nonprojective-planar graphs I.

g

Fig. 6. Nonprojective-planar graphs II.

If G is isomophic to K, thenG must be planar byemma 10 Otherwise there is at
leastone bridge forK in G. Let B be one of the bridges fd in G. First, suppose that
p~1(B) is connected. TheB contains a cycl€ disjoint from its vertices of attachment.
SinceG is 2-connectedB has at least two vertices of attachment, gandy, and there
are two disjoint path® andQ’ joining x andy to C in B.

Sincex andy are distinct, we can contract some edgeso$o that they are placed
at two distinct vertices of degree 3 0. Thus,K U p~1(C U Q U Q') is contracted to a
union of the planar double covering K& 3 andC4 with four paths joining them under the
symmetry derived by the covering transfortina. We can list p those possible structures
as given inFig. 5, focusing the positions of ends of these paths. Thus, one of the three
graphs becomes a minor KfU p~1(B).

The subgraph indicated by thick lines in each graph workklas) Hy in Lemma 8
as well as in Figsé to 10. Thus, they are not projective-planar aGdalso would not be
projective-planar, a corddiction. Thereforep~1(B) must consist of two components.

Let B be a component 0p~1(B). ThenB is a bridge forK in G and projects taB
isomorphically. Thus, there are no two verticeandy in B with p(x) = p(y). Take a path
Q in B joining two distinct vertices of attachments, sagndy. LetH = K U QU 7(Q).

It is easy to see that i) cannot be embedded in a face of the planar embedding, of
thenH is isomophic or contractible to one of the first and second graphs givétgne.
However,H is not projective-planar byemma 8and G would not be projective-planar,
either. Therefore, any two verticesand y of attachment of a bridg® lie along the
boundary of a face of the planar embeddindof
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W P

Fig. 7. Nonprojective-planar graphs lIl.

Fig. 8. Nonprojective-planar graphs IV.

W A

Fig. 9. Nonprojective-planar graphs V.

Fig. 10. Nonprojective-planar graphs VI.

Let x1, x2 andxs be three @tinct vertices of attachment of a briddefor K. Then
p(x1), p(x2) and p(x3) are all distinct and any paik;, X;} lie along the boundary of a
face of the planar embedding i6f sayAij. If Aij # Ak for {i, j, k} = {1, 2, 3}, then hey
must meet along a side & sinceK is a subdivision of a 3-regular graph. Lef be an
edge on the side. Theey, e, e3} forms a cutset oK. It is easy to see that such a cutset
cuts off a vertex of degree 3 froi and thatH is contractible to the third graph Fig. 6.
However, it isnot projective-planar bizemma 8 Thus, Aj2 = Az3 = Ajz. This implies
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that all vertices of attachment & are contained in the boundary of a face of the planar
embedding oK andB N t(B) =

EmbedG on the projective plane and consider an embeddir§ of the sphere which
is a subdivision of the unique planar embedding K§ 3 given in Fig. 3. To clear our
arguments here, let : K — $? denote the embedding ¢ on the spheres?. Then
K can be obtained as the union of four pairs of disjoint cy¢@sz(Cj)} (i = 1,2,3,4)
suchthat f (Cj) and f (7(C;)) bound two disjoint faces of (K) on the sphere; they are
hexagonal for one pair and are quadrilateral for the others. We shall try to extend this
embeddingf to that ofG.

A simple dosed curve on a surface is said todssential if it does not bound any 2-cell
region and it is well-known that any two essential simple closed curves on the projective
plane are not disjoint. This implies that at least on€péndz (Cj) bounds a 2-cell region
on the projective plane. Such a 2-cell region must be a fadé of contain the whole of
K since each of; andz(C;) does not separalé Thus, we may assume th@t bounds
afaceA of K in the projective plane far= 1, 2, 3, 4.

Furthermore, we shall assume théthas been chosen to minimize the number of
bridges. This assumption excludes those bridges that attach to only one dideasf
follows. Let B be such a bridge and I& be the &le of K which contains all vertices
of attachment o8.

First suppose tha lies in a face o/ homeomorphic to a 2-cell. Then we can find a
pathQ alongB and a segmern®’ of Swith the same engx, y} so thatQ U Q' bounds
a 2-cell region containing3. Rephce the sideS with (S— Q') U Q in K. SinceG is
3-connected, there is a pafh joining Q' to the ouside of Q' and B will be unified
with anoher bridge containing®, which decreases the number of bridges. To preserve
the symmetry ofK with respect to the covering transformation: G — G, carry out
the same deformation far(B) andz(S) with 7(Q) andt(Q’). Then weobtain another
subdivision of the planar double covering K& 3 with fewer lridges tharK , contrary to
the assumption oK .

Now suppose thaB lies in a faceA of K which isnot homeomorphic to a 2-cell. Then
the faceA is homeomorphic to a Mbius band. Le€ be its boundary cycle. Replacing the
face A with a 2-cell yields an embedding & on the sphere such thét bounds a face
there. This implies tha€ = 7(C;) for somei € {1, 2, 3,4}, sayi = 1, and that each of
C1 to C4 andt(C») to 7(C4) bounds a 2-cell face df on the projective plane. Then the
union of those seven faces is homeomorphic to a 2-celt&8d = C; is contained in the
interior of the 2-cell, missing its boundafy. Under such a situatior,(B) lies in one of
the 2-cell faces oK on the projective plane. Thus, we conclude the same contradiction as
in the preveus case, exchangirigjandz (B).

Now, we have already known that aktices of attachment of any bridgefor K in G
are contained in one @ to C4 or one ofz(Cz) to 7(C4). Thus, the bridges foK in G
can be classified into eight groups, accordingvhich cycles they attach to. (We say that
a bridge B attachesto a cycleC if C contains all verties of attachment d8. A cycle C
to which B attaches is unique since its vertices of attachment do not lie on one sie of
under our assumption df.)

If there is a bridgeB which attaches t€;, but whichdoes not liein the faceA;, then
we can find a simple closed curéeon the prgective plane so that passes througB
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and runs acros8; and meetX in only two pointsx andy. SinceK is 3-alge-connected
if we neglect vertices of degree 2,has to be ssential. Sincé is disjoint from z(C;),
7(Cj) must bound a facé\ and the faceA! contains all bridges which attach tqC;);
otherwise, we could find another essential simple closed diirea the prgective plane
with £ N ¢’ = ¢ so thatt’ passes through(B) and Al. In thiscase, we replacg; and A
with 7(Cj) and A}, respectively. After such replacement, a bridgattaches tC; if and
only if A; containsB.

Now copy all the bidges lying inA; to both faces bounded bf/(Ci) and by f (z(Ci))
fori = 1,2, 3, 4. Then we obtain an embedding@fon the sphere and hen€sis planar.
This completes the proof for graphs containing a subdivisiok04.

Now we aippose thaK is a aubdivision of Ks. We mayassume thatG contains no
subdivision ofK3 3. Then all vertices of attachment of each bridyfor K are contained in
a side ofK; otherwise K U B would contain a subdivision df3 3. Now K is a aibdivision
of one of the graphs given frig. 4.

Let B be any bridge foK in G. If p~1(B) is connected, onef the graphs irFigs. 7
and8 will be a minor of K U p~1(B) by the same argument as in the previous case with
K3.3. Sincethey are not projective-planar themma 8 G would not be projective-planar,
a contradiction. Thereforep=1(B) consists of two components.

Let B be a component op~1(B) and letQ be a path inB joining two vertices of
attachment, sax andy. Suppose thatQ cannot be embedded in a face of the planar
embedding oK. ThenK U QU 7(Q) is contractible to one of the graphs showrFigs. 9
and 10. Since each of them is not projective-planar bymma 8 G also would not be
projective-planar, either. Therefore, alirtices of attachment of each bridge figrin G
are contained in the boundary cycle of a face of the planar embeddiig By the same
argument as in the previous case with 3, we can construct a planar embedding®f
This completes the proof.C]

4. Decomposing into blocks

Finally, we shall recognize what happens if a graph is not 2-connected. As is well-
known, such a grapts decomposes intblocks Go, G1, ..., Gk so thatany two of them
meet in at most one vertex, calledcat vertex. Each blockG; is either 2-connected or
isomorphic toK». The system of those blocks forms a tree-like structure.

Consider a double covering : G — G of G. Thenp~1(G;) is a double covering
of Gj. If p‘l(Gi) is disconnected, then it consists of two components isomorphis; to
itself. Thus, ifp‘l(Gi) is dismnnected for all block&; butone, sayGg, thenTheorem 4
follows immediately fromTheorems Jand5 since the block decomposition & induces
that of G. The double covenng)‘l(Go) of Go. is one of the blocks 06 and so is each
component ofp~X(Gj) fori = 1,...,k. If G is projective-planarthen allblocks of
G are planar byTheorem 5 Thus, each of51, ..., Gk is planar whileGq is projective-
planar byTheorem 1lt is clear thatG = Go U G1 U - - - U Gk also is projective-planar in
this case.

However, the above gument does not hold in general. For examlig, 1 suggests
how to construct a projective-planar double cover@gf a connected grapd with two
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blocksGg andG1 such that bothGy andG1 cannot be lifted isomorphically 6. So we
need more delicate arguments for provirtgeorem 4as a corollary offheorems Jand>.

Lemma 12. Let G be a connected nonplanar graph and G a planar double covering of
G with covering transformation  : G — G. Then a pair {v, 7(v)} does not lie on the
boundary of a face for each vertex v € V (G).

Proof. We can observe easily that the lemma holds, adding bridges to the planar double
coverings ofK3 3 andKs given inFigs. 3and4. O

Theorem 4dmplies the following theorem of cose. However, the fowing proof will
work for another proof offheorem 4not using the arguments Bection 1

Theorem 13. If a connected nonplanar graph G has a projective-planar double covering,
then exactly one of the blocks of G is nonplanar and projective-planar and the others are
planar.

Proof. Let G be a projective-planar double covering of a connected nonplanar gaph
with projectionp : G — G and letGg, G1, ..., Gk be the ocks of G. SinceG is
not planar, at least one of them, sy, is not planar. PuGg = p~1(Gp). ThenGg

is projective-planar and coveiSy doubly. SinceGy is 2-connectedGg is planar by
Theorem 5Choose arbitrarily one dB1, . . ., Gk, sayGj, and letQ be a path inG joining
two cut verticesg andx, with possbly vg = X, such hatvg € V(Gp), X € V(Gj) and
QN (GoUGi) = {vo. X}. Putp~*(vo) = {0, 7(70)}.

EmbedG in the projective plane. IGg is not 2-cell embedded in the projective plane
as a subembedding &, thenonly one face oGy is a crosscap and we can construct a
planar embedding ofg so that the boundary cycle of eachde in the projective-planar
embedding bounds a face in the plane.lB3mma 12 g andt(vp) lie on two different
boundary cycles separately. This implies tipat'(G; U Q) consists of two components
isomorphic toG; U Q and that they are embedded separately in two distinct faces of the
projective-planar embedding @,. Since at least one of the two faces is a 2-cell, this
induces a planar embedding®f U Q and hencés; is planar.

Now suppose tha6Gg is 2-cell emkedded in the projective plane.pf 1(G;UQ) consists
of two components, then we can construct a planar embeddiBg 0fQ as well as in the
previous case an@; is planar. Otherwisep~1(Gj U Q) is embelded in a 2-cell so that
o andt(fg) are placed on its boundary together. Sipge (G; U Q) is a panar double
covering ofG; U Q, Gj U Q must be planar bemma 12and hencés; is planar.

In all cases, we have concluded tiigtis planar. herefore Gg is a unique nonplanar
block of G. O
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