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Abstract

We shall show that a connected graphG is projective-planar if and only if it has a projective-
planar double covering and that any projective-planar double covering of a 2-connected nonplanar
graph is planar.
© 2004 Elsevier Ltd. All rights reserved.

0. Introduction

Our graphs are simple and finite. A graph̃G is called an (n-fold) covering of a graphG
with aprojection p : G̃ → G if there is an (n-to-one) surjectionp : V (G̃) → V (G) which
sends the neighbors of each vertexv ∈ V (G̃) bijectively to those ofp(v). In particular, G̃
is called aregular covering provided that there is a subgroupA in the automorphism group
Aut(G̃) of G̃ suchthat p(u) = p(v) if and only if τ (u) = v for someτ ∈ A. It is easy to
see that a 2-fold (or double) covering is necessarily a regular one.

A graph issaid to beprojective-planar if it can be embedded in the projective plane.
Negami [8] has discussed the relation between planar double coverings and embeddings of
graphs in the projective plane, and established the following characterization of projective-
planar graphs:

Theorem 1 (Negami [8]). A connected graph is projective-planar if and only if it has a
planar double covering.

Furthermore, he has proved the following theorem, which extendsTheorem 1with
“regular” instead of “double”:
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Theorem 2 (Negami [9]). A connected graph is projective-planar if and only if it has a
planar regular covering.

These theorems motivated him to propose the following conjecture. This is called “the
1-2-∞ conjecture” or “Negami’s planar cover conjecture”:

Conjecture 1 (Negami [9], 1986). A connected graph is projective-planar if and only if
it has a planar covering.

There have been many papers on studies around this conjecture, but the sufficiency is
still open.

A graphH is called aminor of a graphG if H can be obtained fromG by contracting
and deleting some edges. It is easy to see that ifG has a planar covering, then so does
H . Thus, it suffices to show that every minor-minimal graph among those graphs that are
not projective-planar does not have a planar covering to solve the conjecture affirmatively.
Such minor-minimal graphs have been already identified in [1] and [4]; they are 35 in
number and three of them are disconnected.

Let GY be a graph with a vertexv of degree 3 and letv1, v2 andv3 be the three neighbors
of v. A Y -∆ transformation is to add three new edgesv1v2, v2v3 andv3v1 after deletingv.
Let G∆ be a graph obtained fromGY by a Y -∆ transformation. It is easy to see that if
GY has a planar covering, then so doesG∆. It has been known that the 32 minor-minimal
connected graphs can be classified into 11 families, up toY -∆ transformations.

Combining the results in [2, 3, 5, 7, 9, 10], we can show that every member in the
10 families not includingK1,2,2,2 does not have any planar covering and conclude the
following theorem at present:

Theorem 3 (Archdeacon, Fellows, Hliněný and Negami). If K1,2,2,2 has no planar cov-
ering, then Conjecture 1 is true.

By Theorem 1, if a connected graph has a projective-planar covering, then it has a planar
covering, which covers the latter doubly. Also a planar covering can be embedded in the
projective plane. These imply thatConjecture 1is equivalent to the following conjecture,
as observed by Hlinˇený in [6]:

Conjecture 2. A connected graph is projective-planar if and only if it has a projective-
planar covering.

Replacing two appearances of “projective-planar” with “Klein bottle” in the above, he has
posed another interesting conjecture in [6]. However, it seems to be hardly possible to solve
such a conjecture.

So, we shall discuss projective-planar double coverings of nonplanar graphs, turning to
Conjecture 2, andprove the following theorem, using the notion of “composite coverings”
developed in [11]:

Theorem 4. A connected graph is projective-planar if and only if it has a projective-
planar double covering.

This theorem might look like one that gives us evidence supportingConjecture 2. Our
arguments in this paper will however suggest thatConjecture 2presents something vain
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Fig. 1. A double covering ofK3,3 with a self-loop.

Fig. 2. A double covering ofC4 with multiple edges.

even if it is true. The essential phenomenon on projective-planar double coverings is
that:

Theorem 5. Every projective-planar double covering of a 2-connected nonplanar graph
is planar.

Note that none of the 2-connectedness and the nonplanarity of a graph can be omitted
from Theorem 5. For example, consider the graph given inFig. 1. This is projective-planar
but not planar, and covers doublyK3,3 with a self-loop attached at one vertex. To get its
projective-planar embedding, draw the pair of multiple edges so that they cross together
one edge on the inner hexagon and put a crosscap at the edge to clip the two crossings.
Subdividing the self-loop to make it simple, we obtain a nonplanar graph which is not
2-connected and which has a nonplanar projective-planar double covering.

On the other hand,Fig. 2 presents a nonplanar graph which is projective-planar and
which covers doubly a 2-connected planar graph obtained from the cycleC4 of length 4
by replacing three edges with multiple edges. Two vertices with the same label project to
one of the vertices lying along a cycle 1234. It is clear where we should put a crosscap to
embed this nonplanar graph in the projective plane.

In fact, graph-minor arguments work forTheorem 4and it suffices to prove thatK1,2,2,2
does not have any projective-planar double covering, although we prove the theorem in
Section 1, applying the result in [11]. On the other hand, graph-minor arguments do not
work well for Theorem 5. We need to classify the projective-planar double coverings of
K3,3 and K5, as inSection 2; those coverings should be planar. We shall give a proof of
the theorem inSection 3. Section 4presents another proof ofTheorem 4as an application
of our arguments inSection 3.
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Related toTheorem 5in this paper, the author and Suzuku [12] have shown recently
that any projective-planar double covering of a 3-connected graph also is planar. However,
such a 3-connected graph is not assumed to be nonplanar.

1. Composite planar coverings

To prove Theorem 4, we shall introduce the notion of “composite coverings”, as
mentioned in the introduction.

In general, letp1 : G̃ → G′ and p2 : G′ → G be two covering projections of graphs.
Then thecomposition of these two projectionsp = p2p1 : G̃ → G defines another
covering projection fromG̃ to G. Conversely, a coveringG̃ of a graphG with projection
p : G̃ → G is said to becomposite if its projection can be obtained as a composition
p = p2 p1 of two covering projectionsp1 : G̃ → G′ and p2 : G′ → G via another
suitable graphG′. In particular, if p1 and p2 are n1-fold and n2-fold, respectively, for
natural numbersn1, n2 ≥ 2, thenG̃ is called an(n1, n2)-composite covering.

The author has discussed such composite coverings in connection withConjecture 1
and established the following theorem in [11]:

Theorem 6 (Negami [11]). A connected graph G is projective-planar if and only if it has
an (n, 2)-composite planar connected covering for some n ≥ 1.

Furthermore, he has proved that every planar connected regular covering of a nonplanar
connected graph is(n, 2)-composite for somen ≥ 1.Theorem 4is just an easy consequence
from the above theorem:

Proof of Theorem 4. The necessity is clear since any projective-planar graph has a planar
double covering, which is also projective-planar.

Suppose that a connected graphG has a projective-planar double coveringp2 : G′ →
G. ThenG′ has a planar connected double coveringp1 : G̃ → G′ by Theorem 1, and
p2 p1 : G̃ → G is a (2, 2)-composite planar covering ofG. By Theorem 6, G must be
projective-planar. Thus, the sufficiency follows.�

Here, we shall introduce another formulation on planar coverings to show an easy
application ofTheorem 4. Let pi : Gi → Gi−1 be a double covering projection from
Gi to Gi−1. A series of double coveringsGn → Gn−1 → · · · → G0 is called
a planar tower of G0 (of height n) if the top graphGn is planar. The composition
p = p1 p2 . . . pn : Gn → G0 of covering projections is a 2n-fold covering projection
from Gn to G0 and is said to be obtained bytower construction.

Theorem 7. A connected graph is projective-planar if and only if it has a planar tower.

Proof. Let G0 be a nonplanar connected graph. We shall show only the sufficiency, using
induction on the heightn of a planar towerGn → Gn−1 → · · · → G1 → G0. If n = 1,
thenG0 is projective-planar, byTheorem 1. If n > 1, thenGn → Gn−1 → · · · → G1
is a planar tower ofG1 of height n − 1 and henceG1 is projective-planar, by the
induction hypothesis. Therefore,G0 is projective-planar byTheorem 4. This completes
the induction. �
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Since a planar covering obtained by tower construction is not regular in general, this
theorem covers a part whichTheorem 2does not. For example,K1,2,2,2 does not have a
planar tower even if it might have a planar covering.

2. Double coverings of Kuratowski graphs

It is well-known as Kuratowski’s theorem that any nonplanar graph contains a
subdivision of eitherK3,3 or K5. Thus, the fact given asTheorem 5should hold forK3,3
andK5 at least.Lemmas 10and11guarantee it and will play an essential role in our proof
of Theorem 5.

Before showing them, we prepare the following lemma, which we shall often use later to
decide the projective-planarity of double coverings of graphs. This has been proved in [4],
where the subgraphsH1 andH2 discussed in the lemma are called “disjointk-subgraphs”.

Lemma 8. Let G be a connected graph such that:

(i) There exist two disjoint subgraphs H1 and H2 of G each of which is isomorphic to
either K4 or K2,3.

(ii) Let Xi = V (Hi)(or let Xi be the set of vertices of degree 2) if Hi is isomorphic to
K4(or K2,3). Each vertex in Xi is adjacent to a vertex in G − V (Hi) for i ∈ {1, 2}.

(iii) Both G − V (H1) and G − V (H2) are connected.

Then G is not projective-planar.

Let G̃ be a double covering of a graphG with projectionp : G̃ → G in general. Then
there is an automorphismτ : G̃ → G̃ of period 2 such thatτ (u) = v andτ (v) = u for any
pair {u, v} of vertices inG̃ with p(u) = p(v). This automorphismτ is called thecovering
transformation of a double covering.

It should be noticed that if we can find a subgraphH1 in a double coveringG̃ so
that it satisfies three conditions inLemma 8, thenτ (H1) can be chosen asH2 and we
can conclude that̃G is not projective-planar. The following lemma is a restricted form of
Lemma 8but is useful to proveLemmas 10and11:

Lemma 9. Let G be a connected graph and p : G̃ → G a double covering of G with
covering transformation τ : G̃ → G̃. Suppose that:

(i)′ There exists a subgraph H of G̃ isomorphic to either K4 or K2,3.
(ii)′ Let X = V (H ) (or let X be the set of vertices of degree 2) if H is isomorphic to K4

(or K2,3). Each vertex in X is adjacent to a vertex in G̃ − V (H ).
(iii )′ If M = G − V (p(H )) is not empty, then M is connected and each vertex in p(X) is

adjacent to a vertex in M.

Then G̃ is not projective-planar.

Proof. It is easy to see thatH projects top(H ) isomorphically and thatτ (H ) ∩ H = ∅.
Put H1 = H andH2 = τ (H ). Then (i)and (ii) in Lemma 8hold for G̃ andG̃ − V (H1)

is isomorphic to G̃ − V (H2) via τ . If M is empty, then the connected graphH3−i is a
spanning subgraph of̃G − V (Hi) and henceG̃ − V (Hi) is connected fori = 1, 2. Thus,

G̃ is not projective-planar byLemma 8.
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Fig. 3. The unique planar double covering ofK3,3.

Now suppose thatM is nonempty and connected. TheñG − V (Hi) consists of
H3−i ∪ p−1(M) and some edges. If it is not connected, thenp−1(M) splits into two
componentsM1 and M2 so that there is no edge betweenMi and H3−i for i = 1, 2. In
this case,G̃ is contracted to either the disjoint unionK3,3 ∪ K3,3 or K5 ∪ K5. They are not
projective-planar and hencẽG is not, either. On the other hand, if̃G − V (Hi) is connected,
thenG̃ is not projective-planar byLemma 8. �

Lemma 10. K3,3 has exactly one projective-planar double covering given in Fig. 3, up to
graph isomorphism, and it is planar.

Proof. Let G̃ be a projective-planar double covering ofK3,3 with covering transformation
τ : G̃ → G̃. Since K3,3 ∪ K3,3 is not projective-planar,̃G also is connected and is
bipartite. We may assume that its vertices are colored by black and white. Letb1 be any
black vertex ofG̃ and letw1, w2, w3 be the three neighbors ofb1 in G̃, which are white.
Then{b1, w1, w2, w3} induces a subgraph isomorphic toK1,3, sayT1, andτ (T1) is disjoint
from T1.

Choose any other black vertexb2 /∈ {b1, τ (b1)}. If b2 is adjacent to all ofw1, w2, w3,
then {b1, b2, w1, w2, w3} induces a subgraph isomorphic toK2,3. This works asH in
Lemma 9, andhenceG̃ would not be projective-planar, a contradiction. Thus, we may
assume thatb2 is adjacent tow1 andw2, butnot tow3, up to symmetry. Thenb2 is adjacent
to τ (w3) sincep(b2) must be adjacent top(w3) = p(τ (w3)) in K3,3.

Let b3 be the third black vertex adjacent tow1, which isdifferent fromb1, b2, τ (b1)

andτ (b2). If b3 is adjacent tow2, then{b1, b2, b3, w1, w2} induces a subgraph isomorphic
to K2,3, which can be used asH in Lemma 9. Thus,b3 is not adjacent tow2. If b3 is not
adjacent tow3, thenτ (b3) must be adjacent to bothw2 andw3. Replacingw1, w2 andb3
with w2, w1 andτ (b3) in order in this case, we may assume thatb3 is adjacent tow3.

Now we can determine the adjacency over all vertices uniquely. There are two
cyclesb1w2τ (b3)τ (w1)τ (b2)w3 andw1b2τ (w3)τ (b1)τ (w2)b3, and each pair of vertices in
corresponding positions in these sequences are joined with an edge. Thus,G̃ is isomorphic
to a hexagonal prism given inFig. 3and is planar. �

Lemma 11. K5 has exactly two projective-planar double coverings given in Fig. 4, up to
graph isomorphism, and they are planar.

Proof. Let G̃ be a projective-planar double covering ofK5 with covering transformation
τ : G̃ → G̃. ThenG̃ is connected. Choose a vertexv0 in G̃ and three of the four neighbors
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Fig. 4. The two planar double coverings ofK5.

of v0, sayv1, v2 andv3. Let H be the subgraph induced by{v0, v1, v2, v3} in G̃. Let v4 be
one of two vertices not in

⋃
i≤3{vi , τ (vi )}. If H is isomorphic to K4, then itcan be used

as H in Lemma 9, contrary toG̃ being projective-planar. So we may assume thatv1 and
v3 are not adjacent and thatv4 is adjacent to at least two vertices inH , replacingv4 with
τ (v4) if we need.

First suppose thatv1v2, v2v3 ∈ E(H ). If v4 is adjacent to at least three vertices inH ,
then they are{v1, v0, v3} or {v1, v2, v3}; otherwise, we would find a subgraph isomorphic to
K4 asH in Lemma 9. In either case,{v0, v1, v2, v3, v4} induces a subgraphW isomorphic
to a wheel with a rimw1w2w3w4 of length 4. ThenG̃ consists of two wheelsW and
τ (W ) with four edgesw1τ (w3), w2τ (w4), w3τ (w1) andw4τ (w2) and is planar. This is
isomorphic to the right graph inFig. 4.

If v4 is adjacent to exactly two vertices, then they are{v0, v1}, {v1, v2}, {v2, v3} or
{v3, v0}; otherwise, we would find a subgraph isomorphic toK2,3 which can be used as
H in Lemma 9. In each case,̃G is isomorphic to the square ofC10, which consists of a
cyclec0c1 . . . c9 of length 10 and 10 edges of formci ci+2 with scripts taken modulo 10.
Since it canbe embedded on the sphere so that two cyclesc0c2 . . . c8 andc1c3 . . . c9 bound
pentagonal faces,̃G is planar. This is isomorphic to the left graph inFig. 4.

Secondly suppose that exactly one ofv1v2 andv2v3 belongs toE(H ), sayv1v2. If v4
is adjacent to at least two of vertices lying on the trianglev0v1v2, then {v0, v1, v2, v4}
induces eitherK4 or K4 minus one edge and the previous arguments work for this case
with suitable replacement of labels. Thus, the neighborhood ofv4 in H is either{v3, v0} or
{v3, v1}, up to symmetry. In either case,τ (v4) is adjacent to two vertices onv0v1v2 and we
find asubgraph isomorphic toK4 minus one edge, again.

Finally suppose that there is no edge in{v1, v2, v3}. If v4 is adjacent to only two vertices
in H , then we find a triangle containingv4 or τ (v4) and this case can be reduced to the
previous. Thus, we may assume thatv4 is adjacent to all ofv1, v2 andv3, andnot to v0;
for, if v4 is adjacent tov0, then we find a triangle, again. In this case,{v0, v1, v2, v3, v4}
induces a subgraph isomorphic toK2,3, which can be used asH in Lemma 9. Therefore,
this is not the case.�

We shall use the planar embeddings of double coverings ofK3,3 and of K5 given in
Figs. 3and4 in the proof of Theorem 5. They should be embedded on the sphere rather
than in the plane. Note that the covering transformationτ : G̃ → G̃ extends to an auto-
homeomorphism over the sphere for each of them.
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3. Nonplanarity of double coverings

Let G be a graph andK a subgraph inG. A subgraphB induced by a component of
G−V (K ) and the edges joining it toK is called abridge for K in G. A subgraph consisting
of a single edgee /∈ E(K ) with both ends in K also is regarded as a bridge forK but it
is said to besingular. It is clear thatG decomposes intoK and the bridges forK and that
they are mutually edge-disjoint. A vertex of a bridge is called a vertex ofattachment if it
lies in K .

In the following proof,K will be a subdivision of eitherK3,3 or K5. Wecall a path inK
a side if it corresponds to an edge ofK3,3 or K5. That is, a side ofK is a path inK which
joins two vertices of degreenot 2 and whose inner vertices all have degree 2. We shall
often useLemma 8to conclude that graphs in question are not projective-planar. Although
we neednot only the lemma but also graph-minor arguments logically in some cases, we
shall write just “byLemma 8” to simplify our description below.

Proof of Theorem 5. Let G be a 2-connected nonplanar graph andp : G̃ → G any
projective-planar double covering ofG with covering transformationτ : G̃ → G̃.
We shall prove the theorem by induction on the number of vertices ofG. However, if
G̃ is 3-connected, we can provethe theorem independently of the number of vertices.
Furthermore, the following argument implies that̃G must be 3-connected in the initial
case of induction.

Thus, suppose that̃G is not 3-connected. TheñG decomposes into two connected
subgraphsG′ and F so thatV (G′) ∩ V (F) forms a 2-cut{x, y} of G̃. We mayassume
that F cannot be decomposed by any 2-cut ofG̃. Then eitherτ (F) ∩ F = ∅ or τ (F) = F .
However, the latter does not happen since it implies thatp(x) = p(y) and it becomes a cut
vertex ofG, contrary toG being 2-connected. Thus,G decomposes into three subgraphs
G′′, F andτ (F) so thatτ (G′′) = G′′, F ∩ τ (F) = ∅ andV (G′′) ∩ V (F) = {x, y}.

Corresponding to this decomposition,G also decomposes into two connected subgraphs
p(G′′) and p(F) with a 2-cut {p(x), p(y)} and bothG0 = p(G′′) + p(x)p(y) and
p(F) + p(x)p(y) are 2-connected; the latter is isomorphic toF + xy. It is easy to
find a subgraphH in G̃ homeomorphic to either(F + xy) ∪ (τ (F) + τ (x)τ (y)) or
F ∪ τ (F) + {xτ (y), yτ (x)} and to see that ifF + xy were not planar, thenH would
not be projective-planar, which is contrary toG being projective-planar. Thus,F + xy and
τ (F) + τ (x)τ (y) must be planar and henceF can be embedded on the plane so thatx and
y are incident to the outer region.

On the other hand,G̃0 = G′′ + {xy, τ (x)τ (y)} is a projective-planar double covering of
G0 andG0 must be nonplanar; otherwise,G would be planar. By the induction hypothesis,
we can conclude thatG̃0 is planar and can construct a planar embedding of̃G from any
planar embedding of̃G0 by pasting two copies of the above-mentioned planar embedding
of F along the two edgesxy andτ (x)τ (y). Therefore,G̃ is planar.

Now we shalldiscuss the case that̃G is 3-connected. By Kuratowski’s theorem, G
contains a subdivisionK of either K3,3 or K5. First, we shall prove the theorem, assuming
the former case. LetK̃ be the pull-back p−1(K ) of K in G̃. By Lemma 10, K̃ is a
subdivision of the unique planar double covering ofK3,3 given inFig. 3.
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Fig. 5. Nonprojective-planar graphs I.

Fig. 6. Nonprojective-planar graphs II.

If G is isomorphic to K , thenG̃ must be planar byLemma 10. Otherwise, there is at
leastone bridge forK in G. Let B be one of the bridges forK in G. First, suppose that
p−1(B) is connected. ThenB contains a cycleC disjoint from its vertices of attachment.
SinceG is 2-connected,B has at least two vertices of attachment, sayx andy, and there
are two disjoint pathsQ andQ′ joining x andy to C in B.

Sincex and y are distinct, we can contract some edges ofK so that they are placed
at two distinct vertices of degree 3 inK . Thus,K̃ ∪ p−1(C ∪ Q ∪ Q′) is contracted to a
union of the planar double covering ofK3,3 andC4 with four paths joining them under the
symmetry derived by the covering transformation. We can list up those possible structures
as given inFig. 5, focusing the positions of ends of these paths. Thus, one of the three
graphs becomes a minor ofK̃ ∪ p−1(B).

The subgraph indicated by thick lines in each graph works asH1 ∪ H2 in Lemma 8,
as well as in Figs.6 to 10. Thus, they are not projective-planar andG̃ also would not be
projective-planar, a contradiction. Therefore,p−1(B) must consist of two components.

Let B̃ be a component ofp−1(B). Then B̃ is a bridge for K̃ in G̃ and projects toB
isomorphically. Thus, there are no two verticesx andy in B̃ with p(x) = p(y). Take a path
Q in B̃ joining two distinct vertices of attachments, sayx andy. Let H = K̃ ∪ Q ∪ τ (Q).
It is easy to see that ifQ cannot be embedded in a face of the planar embedding ofK̃ ,
thenH is isomorphic or contractible to one of the first and second graphs given inFig. 6.
However,H is not projective-planar byLemma 8andG̃ would not be projective-planar,
either. Therefore, any two verticesx and y of attachment of a bridgẽB lie along the
boundary of a face of the planar embedding ofK̃ .
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Fig. 7. Nonprojective-planar graphs III.

Fig. 8. Nonprojective-planar graphs IV.

Fig. 9. Nonprojective-planar graphs V.

Fig. 10. Nonprojective-planar graphs VI.

Let x1, x2 and x3 be three distinct vertices of attachment of a bridgẽB for K̃ . Then
p(x1), p(x2) and p(x3) are all distinct and any pair{xi , x j } lie along the boundary of a
face of the planar embedding ofK̃ , sayAij . If Aij 
= Aik for {i, j, k} = {1, 2, 3}, then they
must meet along a side of̃K sinceK̃ is a subdivision of a 3-regular graph. Letei be an
edge on the side. Then{e1, e2, e3} forms a cutset ofK̃ . It is easy to see that such a cutset
cuts off a vertex of degree 3 from̃K and thatH is contractible to the third graph inFig. 6.
However, it isnot projective-planar byLemma 8. Thus,A12 = A23 = A13. This implies
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that all vertices of attachment of̃B are contained in the boundary of a face of the planar
embedding ofK̃ and B̃ ∩ τ (B̃) = ∅.

EmbedG̃ on the projective plane and consider an embedding ofK̃ on the sphere which
is a subdivision of the unique planar embedding ofK3,3 given in Fig. 3. To clear our
arguments here, letf : K̃ → S2 denote the embedding of̃K on the sphereS2. Then
K̃ can be obtained as the union of four pairs of disjoint cycles{Ci , τ (Ci )} (i = 1, 2, 3, 4)

suchthat f (Ci ) and f (τ (Ci )) bound two disjoint faces off (K̃ ) on the sphere; they are
hexagonal for one pair and are quadrilateral for the others. We shall try to extend this
embeddingf to that ofG̃.

A simple closed curve on a surface is said to beessential if it does not bound any 2-cell
region and it is well-known that any two essential simple closed curves on the projective
plane are not disjoint. This implies that at least one ofCi andτ (Ci ) bounds a 2-cell region
on the projective plane. Such a 2-cell region must be a face ofK̃ or contain the whole of
K̃ since each ofCi andτ (Ci ) does not separatẽK . Thus, we may assume thatCi bounds
a faceAi of K̃ in the projective plane fori = 1, 2, 3, 4.

Furthermore, we shall assume thatK̃ has been chosen to minimize the number of
bridges. This assumption excludes those bridges that attach to only one side ofK̃ , as
follows. Let B̃ be such a bridge and letS be the side of K̃ which contains all vertices
of attachment of̃B.

First suppose that̃B lies in a face ofK̃ homeomorphic to a 2-cell. Then we can find a
path Q along B̃ and a segmentQ′ of S with the same end{x, y} so thatQ ∪ Q′ bounds
a 2-cell region containingB̃. Replace the sideS with (S − Q′) ∪ Q in K̃ . SinceG̃ is
3-connected, there is a pathP joining Q′ to the outside of Q′ and B̃ will be unified
with another bridge containingP, which decreases the number of bridges. To preserve
the symmetry ofK̃ with respect to the covering transformationτ : G̃ → G̃, carry out
the same deformation forτ (B̃) andτ (S) with τ (Q) andτ (Q′). Then weobtain another
subdivision of the planar double covering ofK3,3 with fewer bridges thanK̃ , contrary to
the assumption oñK .

Now suppose that̃B lies in a faceA of K̃ which isnot homeomorphic to a 2-cell. Then
the faceA is homeomorphic to a M¨obius band. LetC be its boundary cycle. Replacing the
faceA with a 2-cell yields an embedding of̃K on the sphere such thatC bounds a face
there. This implies thatC = τ (Ci ) for somei ∈ {1, 2, 3, 4}, sayi = 1, and that each of
C1 to C4 andτ (C2) to τ (C4) bounds a 2-cell face of̃K on the projective plane. Then the
union of those seven faces is homeomorphic to a 2-cell andτ (C) = C1 is contained in the
interior of the 2-cell, missing its boundaryC. Under such a situation,τ (B̃) lies in one of
the 2-cell faces ofK̃ on the projective plane. Thus, we conclude the same contradiction as
in the previous case, exchanging̃B andτ (B̃).

Now, we have already known that all vertices of attachment of any bridgẽB for K̃ in G̃
are contained in one ofC1 to C4 or one ofτ (C1) to τ (C4). Thus, the bridges for̃K in G̃
can be classified into eight groups, according to which cycles they attach to. (We say that
a bridge B̃ attaches to a cycleC if C contains all vertices of attachment of̃B. A cycle C
to which B̃ attaches is unique since its vertices of attachment do not lie on one side ofK̃
under our assumption oñK .)

If there is a bridgeB̃ which attaches toCi , but whichdoes not liein the faceAi , then
we can find a simple closed curve� on the projective plane so that� passes through̃B



336 S. Negami / European Journal of Combinatorics 26 (2005) 325–338

and runs acrossAi and meetsK̃ in only two pointsx andy. SinceK̃ is 3-edge-connected
if we neglect vertices of degree 2,� has to be essential. Since� is disjoint from τ (Ci ),
τ (Ci ) must bound a faceA′

i and the faceA′
i contains all bridges which attach toτ (Ci );

otherwise, we could find another essential simple closed curve�′ on the projective plane
with � ∩ �′ = ∅ so that�′ passes throughτ (B̃) andA′

i . In thiscase, we replaceCi andAi

with τ (Ci ) and A′
i , respectively. After such replacement, a bridgeB̃ attaches toCi if and

only if Ai containsB̃.
Now copy all the bridges lying inAi to both faces bounded byf (Ci ) and by f (τ (Ci ))

for i = 1, 2, 3, 4. Then we obtain an embedding ofG̃ on the sphere and henceG̃ is planar.
This completes the proof for graphs containing a subdivision ofK3,3.

Now we suppose thatK is a subdivision of K5. We mayassume thatG contains no
subdivision ofK3,3. Then all vertices of attachment of each bridgeB for K are contained in
a side ofK ; otherwise,K ∪ B would contain a subdivision ofK3,3. Now K̃ is a subdivision
of one of the graphs given inFig. 4.

Let B be any bridge forK in G. If p−1(B) is connected, oneof the graphs inFigs. 7
and8 will be a minor of K̃ ∪ p−1(B) by the same argument as in the previous case with
K3,3. Sincethey are not projective-planar byLemma 8, G̃ would not be projective-planar,
a contradiction. Therefore,p−1(B) consists of two components.

Let B̃ be a component ofp−1(B) and let Q be a path inB̃ joining two vertices of
attachment, sayx and y. Suppose thatQ cannot be embedded in a face of the planar
embedding ofK̃ . ThenK̃ ∪ Q ∪ τ (Q) is contractible to one of the graphs shown inFigs. 9
and 10. Since each of them is not projective-planar byLemma 8, G̃ also would not be
projective-planar, either. Therefore, allvertices of attachment of each bridge forK̃ in G̃
are contained in the boundary cycle of a face of the planar embedding ofK̃ . By the same
argument as in the previous case withK3,3, we can construct a planar embedding ofG̃.
This completes the proof.�

4. Decomposing into blocks

Finally, we shall recognize what happens if a graph is not 2-connected. As is well-
known, such a graphG decomposes intoblocks G0, G1, . . . , Gk so thatany two of them
meet in at most one vertex, called acut vertex. Each blockGi is either 2-connected or
isomorphic toK2. The system of those blocks forms a tree-like structure.

Consider a double coveringp : G̃ → G of G. Then p−1(Gi ) is a double covering
of Gi . If p−1(Gi ) is disconnected, then it consists of two components isomorphic toGi

itself. Thus, if p−1(Gi ) is disconnected for all blocksGi butone, sayG0, thenTheorem 4
follows immediately fromTheorems 1and5 since the block decomposition ofG induces
that of G̃. The double coveringp−1(G0) of G0 is one of the blocks of̃G and so is each
component ofp−1(Gi ) for i = 1, . . . , k. If G̃ is projective-planar, then all blocks of
G̃ are planar byTheorem 5. Thus, each ofG1, . . . , Gk is planar whileG0 is projective-
planar byTheorem 1. It is clear thatG = G0 ∪ G1 ∪ · · · ∪ Gk also is projective-planar in
this case.

However, the above argument does not hold in general. For example,Fig. 1 suggests
how to construct a projective-planar double coveringG̃ of a connected graphG with two
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blocksG0 andG1 such that bothG0 andG1 cannot be lifted isomorphically tõG. So we
need more delicate arguments for provingTheorem 4as a corollary ofTheorems 1and5.

Lemma 12. Let G be a connected nonplanar graph and G̃ a planar double covering of
G with covering transformation τ : G̃ → G̃. Then a pair {v, τ (v)} does not lie on the
boundary of a face for each vertex v ∈ V (G̃).

Proof. We can observe easily that the lemma holds, adding bridges to the planar double
coverings ofK3,3 andK5 given inFigs. 3and4. �

Theorem 4implies the following theorem of course. However, the following proof will
work for another proof ofTheorem 4, not using the arguments inSection 1.

Theorem 13. If a connected nonplanar graph G has a projective-planar double covering,
then exactly one of the blocks of G is nonplanar and projective-planar and the others are
planar.

Proof. Let G̃ be a projective-planar double covering of a connected nonplanar graphG
with projection p : G̃ → G and letG0, G1, . . . , Gk be the blocks of G. SinceG is
not planar, at least one of them, sayG0, is not planar. PutG̃0 = p−1(G0). Then G̃0
is projective-planar and coversG0 doubly. SinceG0 is 2-connected,G̃0 is planar by
Theorem 5. Choose arbitrarily one ofG1, . . . , Gk , sayGi , and letQ be a path inG joining
two cut verticesv0 andx , with possibly v0 = x , such thatv0 ∈ V (G0), x ∈ V (Gi ) and
Q ∩ (G0 ∪ Gi ) = {v0, x}. Put p−1(v0) = {ṽ0, τ (ṽ0)}.

EmbedG̃ in the projective plane. If̃G0 is not 2-cell embedded in the projective plane
as a subembedding of̃G, thenonly one face ofG̃0 is a crosscap and we can construct a
planar embedding of̃G0 so that the boundary cycle of each face in the projective-planar
embedding bounds a face in the plane. ByLemma 12, ṽ0 andτ (ṽ0) lie on two different
boundary cycles separately. This implies thatp−1(Gi ∪ Q) consists of two components
isomorphic toGi ∪ Q and that they are embedded separately in two distinct faces of the
projective-planar embedding of̃G0. Since at least one of the two faces is a 2-cell, this
induces a planar embedding ofGi ∪ Q and henceGi is planar.

Now suppose that̃G0 is 2-cell embedded in the projective plane. Ifp−1(Gi ∪Q) consists
of two components, then we can construct a planar embedding ofGi ∪ Q as well as in the
previous case andGi is planar. Otherwise,p−1(Gi ∪ Q) is embedded in a 2-cell so that
ṽ0 andτ (ṽ0) are placed on its boundary together. Sincep−1(Gi ∪ Q) is a planar double
covering ofGi ∪ Q, Gi ∪ Q must be planar byLemma 12and henceGi is planar.

In all cases, we have concluded thatGi is planar. Therefore,G0 is a unique nonplanar
block of G. �
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[6] P. Hliněný, A note on possible extensions of Negami’s conjecture, J. Graph Theory 32 (1999) 234–240.
[7] J.P. Huneke, A conjecture in topological graph theory,in: N. Robertson, P. Seymour (Eds.), Graph Structure

Theory, Contemp. Math., 147, 1993, pp. 363–379.
[8] S. Negami, Enumeration of projective-planarembeddings of graphs, Discrete Math. 62 (1986) 299–306.
[9] S. Negami, The spherical genus and virtually planar graphs, Discrete Math. 70 (1988) 159–168.

[10] S. Negami, Graphs which have no finite planar covering, Bull. Inst. Math. Acad. Sinica 16 (1988) 377–384.
[11] S. Negami, Composite planar coveringsof graphs, Discrete Math. 268 (2003) 207–216.
[12] Y. Suzuku, S. Negami, Projective-planar double coverings of 3-connected graphs, Yokohama Math. J. 50

(2003) 87–95.


	Projective-planar double coverings of graphs
	Introduction
	Composite planar coverings
	Double coverings of Kuratowski graphs
	Nonplanarity of double coverings
	Decomposing into blocks
	References


