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Abstract

Let D be a locally finite, connected, 1-arc transitive digraph. It is shown that the reachability
relation is not universal inD providedthat the stabilizer of an edge satisfies certain conditions which
seem to be typical for highly arc transitive digraphs. As an implication, the reachability relation
cannot be universal in highly arc transitive digraphs with prime in- or out-degree.

Two different aspects of the connection between highly arc transitive digraphs and the theory of
totally disconnected locally compact groups are also considered.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Let D(V, E) denote a digraph with vertex-setV(D) and edge-setE(D) ⊆ V(D) ×
V(D). If not stated otherwise, digraphs considered in this paper are connected, infinite,
locally finite (i.e. the in-degreed−

D(v) and the out-degreed+
D(v) of each vertexv ∈ V(D)

are both finite) and have no loops. Here “connected” means that for any pair of vertices
there is a path joining them in the underlying undirected graph. Denote by Aut(D) the
automorphism group ofD. If Aut(D) acts transitively onV(D) then all vertices have
the same in-degree and the same out-degree, which are then denoted byd−

D and d+
D ,
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respectively. For simplicity reasons the subscriptD is omitted whenever the digraph in
question is clear from the context. Furthermore, for a vertexv ∈ V(D) defineN+

D (v) =
{u ∈ V(D) | (v, u) ∈ E(D)} andN−

D (v) = {u ∈ V(D) | (u, v) ∈ E(D)}.
Let s ≥ 0 be an integer. Ans-arc in a digraphD is a sequence(v0, v1, . . . , vs) of s+ 1

vertices such that(vi , vi+1) ∈ E(D) for eachi , 0 ≤ i ≤ s − 1, andvi−1 �= vi+1 for each
i , 1 ≤ i ≤ s − 1. If Aut(D) acts transitively on the set ofs-arcs, thenD is calleds-arc
transitive. A digraphD is said to behighly arc transitiveif Aut(D) is s-arc transitive for
all finite s ≥ 0.

Highly arc transitive digraphs were considered in [1] from several different viewpoints,
leading to, amongothers, constructions of highly arc transitive digraphs and a
characterization of universal covering digraphs of highly arc transitive digraphs. Moreover,
a number of interesting problems were posed in [1], some of which have already been
partially or completely solved (see [3, 6, 7, 9]). An additional motivation for the study of
these digraphs is their connection to totally disconnected locally compact groups (see [8]).

In Section 3we consider the reachability relation. Analternating walkin a digraphD
is a sequence(v0, v1, . . . , vn) of vertices such that, for eachi , 0 < i < n, either (vi−1, vi )

and(vi+1, vi ) are edges, or(vi , vi−1) and(vi , vi+1) are edges inD. If eande′ are edges in
D then we say thate′ is reachablefrom e, writteneAe′, if there exists an alternating walk
in D whose initial and terminal edges aree ande′. Of courseA is an equivalence relation,
and the equivalence class containinge is denoted byA(e).

The relationA is closely related to the so-called propertyZ. (A digraphD hasproperty
Z if there exists ahomomorphism fromD onto the directed infiniteline which is a Cayley
digraph of the additive group of integers. Obviously, the reachability relation in such a
digraph is not universal.) In [1] the problem of constructing highly arc transitive digraphs
without propertyZ wasposed and in [6] the first examples of such digraphs with finite
in- and out-degrees were given. On the other hand it was shown in [9] that highly arc
transitive digraphs with finite and unequal in- and out-degrees always have propertyZ. (In
[3] an exampleis constructed of a highly arc transitive digraph that does not have property
Z and has infinite in-degree and finite out-degree.) Hence, when looking for examples of
highly arc transitive digraphs with finite in- and out-degrees and with universal reachability
relation—a problem also posed in [1]—digraphs with equal in- and out-degrees are the
only candidates. InProposition 3.2a connection between alternating walks in a given
digraph and a certain somewhat technical condition placed on the stabilizer of an edge
is established. As an immediate consequence it is shown that the reachability relation in
a 1-arc transitive digraphD is not universal provided the in- and out-degrees of both are
equal to a prime integer (Theorem 3.3). Moreover, the same holdsprovidedthe stabilizer
of an edgee ∈ E(D), with respect to its action on edges adjacent toe, induces a group of
a special form which, nevertheless, seems to be typical in the case of highly arc transitive
digraphsD (Theorem 3.4).

Section 4deals with the connection between highly arc transitive digraphs and totally
disconnected locally compact groups (see [8]). The first result is that if g is an element of
a totally disconnected locally compact groupG and the conjugacy class ofg has compact
closure inG thens(g) = 1 wheres is the scale function onG. Theproof of this relies
on a simple result about bounded automorphisms of highly arc transitive digraphs. (An
automorphismg of a connected digraph is said to beboundedif there is a constantC
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such that dist(v, g(v)) ≤ C for all verticesv, wheredist(−,−) denotes the usual digraph
distance.) Next is a short proof of a theorem of Willis ([14, Theorem 2]).

In Section 2we discuss connections between the concept of out-spread (see definition
below and [1, Definition 3.5]) and results from [8]. A new characterization of connected
highly arc transitive digraphs that have out-spread 1 is also given. Furthermore we present
a result on bounded automorphisms of highly arc transitive digraphs which plays an
important role in the proofs of the results inSection 4but also seems to be of some interest
on its own. We also show that for a highly arc transitive digraphD already the stabilizer
of a vertex together with one additional automorphism generates a subgroup of Aut(D)

which acts highly arc transitively onD.

2. Definitions, bounded automorphisms and out-spread

A line L in a digraphD is an infinite sequence(. . . v−1, v0, v1, v2 . . .) of vertices
such that (vi , vi+1) ∈ E(D) for every i ∈ Z. Since infinite connected highly arc
transitive digraphs contain no directed cycles, the vertices of a line in such a graph are
pairwise different. IfL is as above, thenL[vi ,∞) and L[vi ,−∞) denote the sequences
(vi , vi+1, vi+2, . . .) and(vi , vi−1, vi−2, . . .), respectively. We also say thatL[vi ,∞) is a
positive halflineandL[vi ,−∞) is anegative halfline.

Two positive (negative) halflines P and Q in D are equivalentif in the underlying
undirected graph there are infinitely many disjoint paths connecting vertices inP to
vertices inQ. The equivalence classes of all infinite paths (not necessarily directed) with
respect tothis relation are called theendsof D. The concept of ends can be defined in
several different ways; this form of the definition is due to Halin [5].

The set ofdescendantsdesc(v) of a vertexv of a digraphD is the set of those vertices of
D which can be reached fromv by a directed path such that its first edge (if such an edge
exists) is of the form(v,w) for somew ∈ V(D). The set ofancestors(anc(v)) of a vertex
v is the set of those vertices ofD for whichv is a descendant. For a subsetA ⊆ V(D) we
define the sets desc(A) = ⋃

v∈A desc(v) and anc(A) = ⋃
v∈A anc(v). If L is a line inD,

then the subdigraph induced by desc(L) is denoted byFL , andEL denotes the subdigraph
induced by anc(L).

For a connected digraphD, definedist(u, v) as the distance between verticesu andv

in the underlying undirected graph (dist(u, v) is the length of the shortest possible path
betweenu andv).

Let v ∈ V(D) andn a positiveinteger. ByB(v, n) = {u ∈ V(D) | dist(v, u) ≤ n} we
denote the ball of radiusn with centerv. In thecaseD admits a vertex transitive group of
automorphisms, the cardinality ofB(v, n) does not depend on the vertexv.

In [7] thedescendants of lines are investigated. Some of the results in [7] arerepeatedly
used in the proofs later on. To facilitate reading of this paper we list those results below:

Lemma 2.1 ([7, Lemma 1]). Let D be an infinite locally finite highly arc transitive
digraph. ThenAut(D) is transitive on the set of directed lines. Furthermore, if L=
(. . . , v−1, v0, v1, . . .) is a directed line in D then there exists, for every k∈ Z, an element
g ∈ Aut(D) such that g(vi ) = vi+k for all i ∈ Z.
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Lemma 2.2 ([7, Lemma 3]). Let D be an infinite locally finite highly arc transitive
digraph. Suppose L is a line in D. Then

(1) d+
FL

= d+
D.

(2) FL is highly arc transitive.

(3) Theundirected graph corresponding to FL has more than one end.

Theorem 2.3 ([7, Theorem 1]). Let D be a locally finite highly arc transitive digraph.
Suppose that there is a line L= (. . . , v−1, v0, v1, . . .) such that V(D) = desc(L). Then
there exists a surjective homomorphismφ : D → T where T is a directed tree with
d−

T = 1 and finite d+T . Theautomorphism group of D has a natural action on T as a
group of automorphisms such thatφ(g(v)) = g(φ(v)) for every g∈ Aut(D) and every
v ∈ V(D). Theaction of Aut(D) on T is highly arc transitive. Furthermore, the fibers
φ−1(v), v ∈ V(T) are finite and all have the same number of elements.

Remark. These results can clearly be formulated analogously forEL .

Bounded automorphisms of graphs have been investigated for example in [4, 10]. In
[4, 16] the connections between bounded automorphisms, and FC elements (elements with
finite conjugacy class) andFC− elements (elements in a topological group which have a
conjugacy class with compact closure) are pointed out. InSection 4we use the following
result on bounded automorphisms of highly arc transitive digraphs to establish a result
aboutFC− elements in topological groups.

Proposition 2.4. Let L be a line in the locally finite highly arc transitive infinite digraph
D. Suppose that g is a bounded automorphism of D. If L1 and L2 are two positive halflines
in FL, and L2 = g(L1) then L1 and L2 are in the same end of FL.

If g is a bounded automorphism of D such that g(v) ∈ desc(v)\{v} for some vertexv
then Dhas precisely two ends.

Proof. SinceL1 = (v0, v1, . . .) andL2 = (w0, w1, . . .) are both contained inFL the two
halflines will have a common ancestorv ∈ V(FL). Supposeg is abounded automorphism
of D which mapsL1 onto L2. We can without loss of generality assume that some vertex
wn is in desc(v0). If necessary take a directed pathP from v to v0 and replaceL1 with
P ∪ L1 andL2 with g(P ∪ L1). Of course a finite part ofg(P ∪ L1), namely g(P), may
not be contained inFL . But since this would not change the arguments of the following
two paragraphs we do not take care of this case separately and assume in the sequel that
g(P ∪ L1) ⊂ FL holds.

Sinceg is bounded we can assume that there is an integerk > 0 such that for infinitely
manyvi ∈ V(L1), i ∈ I, we can find infinitely many pairwise distinctw j i ∈ V(L2) such
thatw j i ∈ B(vi , k). By 2.1, there is ana ∈ Aut(D) suchthatai (v0) = vi for all integersi
and thereforeB(vi , k) = ai (B(v0, k)) also holds. SinceB(v0, k) is finite, there is a vertex
y ∈ B(v0, k) and infinitely many positive integerspi suchthatapi (y) ∈ L2[wn,∞). For
simplicity werenumber thepi suchthat p1, p2, p3, . . . are these numbers andpl+1 > pl

for all l ≥ 1.
Let ap1(y) = wr for somewr ∈ V(L2). Then there isa directed pathR from v0 to wr .

Under eachapl −p1 the vertexwr is mapped to a vertex ofL2 andv0 is mapped to a vertex
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of L1. Hence R is mapped onto a directed path fromL1 to L2 under eachapl −p1. But this
implies thatL1 andL2 are in the same end ofFL .

Now we come to the proof of the latter statement in the lemma. DefineK as the line
. . . g−1(Q)Qg(Q)g2(Q) . . . whereQ is a directed path with initial vertexv and terminal
vertexw suchthatg(v) ∈ N+

D (w). Letφ : FK → T be the map described inTheorem 2.3.
If FK has more than two ends then there is a directed positive halflineK1 that starts atv
but does not belong to the same end ofFK asK [v,∞). Theng(K1) cannot belong to the
same end asg(K [v,∞)) = K [g(v),∞). Looking at the action ofg on the treeT it is clear
thatφ(K1) andφ(g(K1)) belong to different ends ofT and henceK1 andg(K1) belong
to different ends ofFK . This contradicts the first part of the Lemma. We conclude thatFK

has only two ends. SimilarlyEK has only two ends and we can now conclude thatD has
only two ends. �

Let D be a digraph with finite out-degree and vertex transitive automorphism group.
Choose a vertexv in D and definepk as the number of verticesu in D such that there is a
directed path of lengthk fromv to u. Because of the vertex transitivity of the automorphism
group, the value ofpk does not depend on the choice ofv. Theout-spreadof D is defined as

lim sup
k→∞

(pk)
1/k.

The in-spreadof a digraphD with finite in-degree is defined as the out-spread of the
digraph one gets by reversing the direction of all the arcs inD.

In [7, Theorem 2] it is shown that the out-spread of a highly arc transitive digraph is
always an integer. Furthermore, in [7] the emphasis is on the digraphsFL and EL . It is
thus of particular interest to look at highly arc transitive locally finite digraphsD suchthat
D = FL or D = EL . The theorem below gives a characterization of such digraphs in terms
of the out-spread ofD.

Lemma 2.5. Let D be a locally finite connected highly arc transitive digraph and L a
line in D. If FL has only two ends then D= EL. Similarly, if E L has only two ends then
D = FL.

Proof. Let L = (. . . , v−1, v0, v1, v2, . . .). SupposeFL has only two ends. We know that
N−

EL
(v) = N−

D (v) for all verticesv in EL . In order to prove the lemmawe must show

that N+
EL

(v) = N+
D (v) for all verticesv in EL and then the result follows becauseD is

connected. Letφ : FL → T be a map analogous to the map defined inTheorem 2.3. Set
Vi = φ−1(φ(vi )). BecauseFL has only two ends we know thatT is just a line. Hence,
if g ∈ Aut(FL ) andv andg(v) are in the sameφ-fiber then all theφ-fibers are invariant
underg. We now show that wecan find a numberk such that all the vertices inVk are
descendants ofv1.

By Lemma 2.1there exists an automorphismh of D suchthat h(vi ) = vi+1 holds
for all i ∈ Z. Note that thenh(Vi ) = Vi+1 for all i ∈ Z. Clearly FL is invariant
underh. In addition eachw ∈ V0 is the descendant of some vertexvn(w) ∈ L. Let
−m = min{n(w) | w ∈ V0}. Then all vertices of V0 are descendants ofv−m ∈ V−m

and clearly all vertices ofhm+1(V0) are descendants ofhm+1(v−m) ∈ V1. Hence, if k ≥ m,
each vertex ofVk is contained in desc(v1).
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If v is any vertex inV1 then clearly every vertex inVk is a descendant ofv. Note that
every vertex inN+

D (v0) is contained inV1 and thus every vertex inN+
D (v0) is an ancestor

of Vk. ThusN+
D (v0) ⊆ anc(L). Hence the out-degree of the vertices inD is the same as

the out-degree of the vertices inEL and thusEL = D. �

Theorem 2.6. Let D be a locally finite connected highly arc transitive digraph. The in-
spreadof D is 1 if and only if there is a line L such that D= FL . Similarly, the out-spread
of D is 1 if and only if there is a line L such that D= EL.

Proof. By Lemma 2.2and the remark followingTheorem 2.3EL has more than one end.
Since the in-spread ofD and therefore also ofEL is equal to 1,EL has exactly two ends
for every lineL. Then it follows from the lemma above thatD = FL . Theother statement
of the proposition follows in the same way.�

Remark. Lemma 2.1states that in a locally finite highly arc transitive digraph the
automorphism group acts transitively on the set of lines. Hence we could say in the above
theorem thatD has in-spread 1 if and only ifD = FL for every lineL in D and analogously
for the out-spread.

We end this section with the following result about automorphism groups of highly arc
transitivedigraphs.

Proposition 2.7. Let D be an infinite connected highly arc transitive digraph and let a
group H act highly arc transitively on D. Furthermore, letv ∈ V(D), (v, u) ∈ E(D), and
let g bean automorphism of D with g(v) = u. Then the group G= 〈Hv ∪ g〉 acts highly
arc transitively on D.

Proof. For eachs ≥ 0, the groupHv acts transitively on the set ofs-arcs inD with initial
vertexv. At the sametime, the groupG acts transitively onV(D), sinceD is connected
andHv acts transitively onN+

D (v) andN−
D (v), whereg(v) ∈ N+

D (v) andg−1(v) ∈ N−
D (v).

The result follows. �

3. Reachability

If a digraph D is 1-arc transitive, then the subdigraphs〈A(e)〉 induced byA(e) are
isomorphic to a fixed digraph which will be denoted by∆(D). In [1] the following result
about∆(D) was shown:

Proposition 3.1 ([1, Proposition 1.1]).Let D be a connected 1-arc transitive digraph.
Then∆(D) is 1-arc transitive and connected. Furthermore, either

(1) A is universal and∆(D) = D, or

(2) ∆(D) is bipartite.

There are examples of highly arc transitive infinite digraphs for which the reachability
relation is universal (see [1, p. 378]), but no example of an infinite locally finite highly
arc transitive digraph with universal reachability relation is known. As mentioned in the
introduction all highly arc transitive digraphs with finite and unequal in- and out-degree
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have propertyZ which implies that they cannot have universal reachability relation. Hence
the following results are formulated only fordigraphs with equal in- and out-degrees.

We have chosen a quite general approach to the question of universality of the
reachability relation. It is based on the analysis of the action of the stabilizer of an edge
(u, v) ∈ E(D) on the setN+

D (v) in 1-arc transitive digraphsD. The results of this section
can be seen as illustrations of this approach.

Let a groupG act on a setV and letΩ ⊆ V be setwise fixed byG. By GΩ we denote
the pointwise stabilizer inG of Ω , andby GΩ ∼= G/GΩ the restriction ofG to Ω . For
elementsu, v ∈ V we defineGu,v = {g ∈ G | g(u) = u andg(v) = v}.
Proposition 3.2. Let D be a digraph such that in-degree and out-degree of any vertex are
equal to a fixed integer d. Let G= Aut(D), e = (u, v) ∈ E(D) andΩ ⊆ V(D)\{u, v}.
Furthermore, let H be a subgroup of Gu,v which fixesΩ setwise and stabilizes no vertex
from Ω . If all proper subgroups of HΩ have index at least d, thenthere is no alternating
walk with initial edge e and terminal vertex inΩ .

Proof. Let f be an edge adjacent toe suchthate∪ f determines an alternating walk, and
let w /∈ {u, v} denote a vertex off . Sincethe orbit ofw underH has length less thand,
the stabilizerHw of w has index less thand in H . Therefore |HΩ : HΩ

w | < d also holds.
But this impliesHΩ

w = HΩ by our assumption. SinceH stabilizes no vertex fromΩ , Hw

also has this property.By induction this property extends to the stabilizer of all vertices
contained in an alternating walk with initial edgee.

In particular let P be such an alternating walk with its terminal vertexx ∈ Ω . Then the
pointwise stabilizerHV(P) satisfiesHΩ

V(P) = HΩ and fixesx, contradicting the fact that
H stabilizes no vertex fromΩ . �

Theorem 3.3. Let p be a prime and let D be a 2-arc transitive digraph with in-degree and
out-degree equal to p. Then the reachability relation in D is not universal.

Proof. Let (u, v) be an edge ofD. As D is 2-arc transitive, the stabilizerGu,v, where
G = Aut(D), acts transitively onN+

D (v). Since|N+
D (v)| = p is a prime there is a group

H ≤ Gu,v which restriction toN+
D (v) is isomorphic toZp. By replacingΩ with N+

D (v) in
Proposition 3.2, the resultfollows. �

We mention that the examples of those highly arc transitive digraphs without property
Z which were constructed in [6] do nothaveauniversal reachability relation. This follows
also fromTheorem 3.3since those digraphs have in-degree and out-degree equal to 2.

Similar arguments canbe used to prove the following more general result. We mention
that alsoTheorem 3.3can be deduced from the following one by puttingd = p and
K ∼= Zp.

Theorem 3.4. Let D be a 1-arc transitive digraph with d+D = d−
D = d > 1. Let

(u, v) ∈ E(D) be such that the restriction G
N+

D (v)
u,v of the stabilizer Gu,v to N+

D (v) contains
a subgroup K �= 1 which has no nontrivial permutation representation of degree less than
d. (For example, let K be a simple group in a nontrivial permutation representation of
smallest degree.) Then the reachability relation in D is not universal.



26 A. Malnič et al. / European Journal of Combinatorics 26 (2005) 19–28

Proof. By replacing Ω with N+
D (v) and H with the preimage ofK in Gu,v in

Proposition 3.2, the resultfollows. �

We mention that the nontrivial permutation representations of smallest degree of all
finite simple groups are known. See [12], where the determination of such representations
of finite simple groups modulo their classification was completed. In connection with the
results of this section it would also be interesting to know which permutation groups can

arise as Aut
N+

D (v)
u,v where(u, v) is an edge of a locally finite highly arc transitive digraphD.

4. Highly arc transitive digraphs and topological groups

The theory of locally compact groups is that part of the theory of topological groups that
has widest appeal and most applications. When looking at locally compact groups there are
the connected groups on one end of the spectrum and the totally disconnected groups on
the other end of the spectrum.The automorphism group of a locally finite connected graph
with the topology of pointwise convergence is an example of a totally disconnected locally
compact group [11, 16].

An important result in the theory of locally compact totally disconnected groups is
the theorem of van Dantzig [2] that such a group must always contain a compact open
subgroup. The applications that follow involve concepts and ideas from the structure theory
developed by Willis, see [13, 15]. The important concepts of Willis’s theory are the scale
function and tidy subgroups.

Definition 4.1. (A) Let G be a locally compact totally disconnected group andg an
element inG. For a compact open subgroupU in G define

U+ =
∞⋂

i=0

gi Ug−i and U− =
∞⋂

i=0

g−i Ugi .

SayU is tidy for g if

(1) U = U+U− = U−U+ and
(2)

⋃∞
i=0 gi U+g−i and

⋃∞
i=0 g−i U−gi are both closed inG.

(B) Let G be a locally compact totally disconnected group. Thescale functionon G is
defined by the formula

s(g) = min{|U : U ∩ g−1Ug| : U a compact open subgroup ofG}.
The connection between the scale function and tidy subgroups is described in the

following theorem due to Willis.

Theorem 4.2 ([15, Theorem 3.1], see [8, Theorem 6.1]).Let G be a locally compact
totally disconnected group and g∈ G. Then s(g) = |U : U ∩ g−1Ug| if and only if
U is tidy for g.

Willis’s theory can be understood in terms of graphs and automorphism groups of
graphs, see [8]. In this approach to Willis’s theorya fundamental role is played by highly
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arc transitive digraphs. In the following Lemma several results from [8, Sections 2–4] are
collected together.

Theorem 4.3. Let G be a locally compact totally disconnected group, g an element in
G and U a compact open subgroup of G. PutΩ = G/U. Let v0 be a point inΩ . Set
vi = gi (v0). Define a digraph D such that the vertex set of D isΩ and the edge set is the
orbit G(v0, v1). Then:

(1) If U satisfies condition(1) in Definition4.1 (A) then the digraph D is highly arc
transitive.

(2) If U is tidy for g then D is not only highly arc transitive but the subgraph in D
spanned bydesc(v0) is a tree.

We now turn to bounded automorphisms and the scale function.

Definition 4.4. Let G be a totally disconnected locally compact group. An elementg in G
is said to be anFC− elementif the conjugacy class ofg has compact closure inG.

Suppose nowG is a totally disconnected locally compact group and thatG acts as a
group of automorphism on some connected locally finite graphX. Furthermore suppose
that the stabilizer inG of a vertex inX is a compact open subgroup. Then [16, Lemma 4]
says thatg is anFC− element ofG if andonly if g acts as a bounded automorphism onX.

Theorem 4.5. Let G be a totally disconnected locally compact group and s: G → R the
scale function on G. If g is an FC− element in G then s(g) = 1 = s(g−1).

Proof. Note that ifg is anFC− element ofG, theng−1 is also anFC− element. LetU be a
compact open subgroup ofG that is tidy forg. SetΩ = G/U . Let v0 be a point inΩ such
thatU = Gv0 andvi = gi (v0). Define a digraphD such that the vertex set ofD is Ω and
the edge set ofD is the orbitG(v0, v1). It follows from Theorem 4.3that the digraph
D is highly arc transitive. LetD′ be the connected component ofD that containsv0.
Furthermore, defineG′ as the subgroup ofG that leavesD′ invariant. Clearlyg is contained
in G′ andg is anFC− element ofG′. By [16, Lemma 4] we know thatg acts onD′ as
a bounded automorphism. Butv1 = g(v0) ∈ desc(v0) and thereforeg leaves invariant a
line L. HenceProposition 2.4implies thatg can only be a bounded automorphism ifD′
has preciselytwo ends. SinceU is assumed to be tidy, the subgraph induced by desc(v0)

is a tree. This implies thatD′ is just an infinite directed line and henceGv0 fixesv−1. By
Theorem 4.2

s(g) = |U : U ∩ g−1Ug| = |Gv0 : Gv0 ∩ Gv−1| = |Gv0v−1| = 1. �
We now turn to periodic elements and cycles in digraphs.

Definition 4.6. An elementg in a topological groupG is said to beperiodicif the closure
of the cyclic subgroup〈g〉 is compact inG. DefineP(G) as the set of all periodic elements
in G.

Suppose now thatG is a totally disconnected locally compact group andU is a compact
open subgroup ofG. Considering the action ofG on the coset spaceG/U wecan recognize
the periodic elements because they are the only elements generating cyclic subgroups that
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have all their orbits finite (follows from [16, Lemma 2]). The following proof of [14,
Theorem 2] further illustrates the use of highly arc transitive digraphs in the theory of
totally disconnected locally compact groups.

Theorem 4.7 ([14, Theorem 2]). Let G be a totally disconnected locally compact group.
The set P(G) of periodic elements in G is closed.

Proof. The trick is to use the fact that a connectedinfinite highly arc transitive digraph has
no directed cycles.

Supposeg is in the closure ofP(G) but g is not periodic. LetU be a compact open
subgroup ofG that is tidy forg. Define the digraphD′ in the same way as in the proof
of Theorem 4.5. If g is not periodic then the orbit ofv0 under〈g〉 is infinite and therefore
D′ is infinite. The setgU is an open neighborhood ofg and must therefore contain some
periodic elementh. The fact thath ∈ gU = gGv0 implies h(v0) = g(v0) = v1. The
elementh is periodic so the orbit ofv0 under〈h〉 is finite and therefore there is an integern
suchthathn(v0) = v0. The sequencev0, v1 = h(v0), v2 = h2(v0), . . . , vn = hn(v0) = v0
is a directed cycle inD′. This contradicts the result mentioned above. Hence we conclude
that it is impossible that the closure ofP(G) contains any elements that are not periodic.
ThusP(G) is closed. �
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