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Abstract

Let D be a locally finite, connected, 1-arc transitive digraph. It is shown that the reachability
relation is not universal ilD providedthat the stabilizer of an edge satisfies certain conditions which
seem to be typical for highly arc transitive digraphs. As an implication, the reachability relation
cannot be universal in highly arc transitive digraphs with prime in- or out-degree.

Two different aspects of the connection between hightt trangive digraphs and the theory of
totally disconnected locally compact groups are also considered.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Let D(V, E) denote a digraph with vertex-set(D) and edge-seE(D) € V(D) x
V(D). If not stated otherwise, digraphs considered in this paper are connected, infinite,
locally finite (i.e. the in-degredy (v) and the out—degrerdaJD“(v) of each vertex € V(D)
are both finite) and have no loops. Here “connected” means that for any pair of vertices
there is a path joining them in the underlying undirected graph. Denote bgDAuhe
automorphism group oD. If Aut(D) acts transitively orV (D) then all vertices have
the same irdegree and the same out-degree, which are then denoted tand dt,
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respectively. For simplity reasons the subscrif®@ is omitted whenever the digraph in
guestion is clear from the context. Furthermore, for a vertexV (D) define N,Jg(v) =
{ue V(D) | (v,u) € E(D)} andNg (v) = {u € V(D) | (u,v) € E(D)}.

Lets > 0 be an integer. As-arc in a digraphD is a sguence(vg, v1, ..., vs) Of s+ 1
vertices such thatvi, vi;1) € E(D) for eachi,0 <i < s— 1, andvi_1 # vj41 for each
i,1<i <s— 1. If Aut(D) acts transitively on the set afarcs, therD is calleds-arc
transitive A digraphD is said to behighly arc transitiveif Aut(D) is s-arc transitive for
all finites > 0.

Highly arc transitve digraphs were considered ifi] [from several different viewpoints,
leading to, amongothers, constructions of highly arc transitive digraphs and a
characterization of universal covering digraphs of highly arc transitive digraphs. Moreover,
a number of interesting problems were posedih fome of which have already been
patially or completely solved (se6]6, 7, 9]). An additional motivation for the study of
these digraphs is their connection to totally disconnected locally compact group8]jsee [

In Section 3we consider the reachability relation. Alternating walkin a digraphD
is a sguence(vg, v1, . . ., vpn) Of vertices such that, for each0 < i < n, ether (vi_1, vj)
and(vj+1, vj) are edges, o, vi—1) and(vi, vi+1) are edges iD. If eand€’ are edges in
D then we say tha' isreachablefrom e, writtene A€/, if there exi$s an alternating walk
in D whose initial and terminal edges arande’. Of courseA is an equivalace relation,
and the equivalence class containaig denoted by.A(e).

The relationA is closely related to the so-called propezfty(A digraphD hasproperty
Z if there exists @omomorphism fronD onto the directed infiniténe which is a Cayley
digraph of the additive group of integers. Obviously, the reachability relation in such a
digraph is not universal.) Inl] the problem of constructing highly arc transitive digraphs
without propertyZ wasposed and ing] the first examples of such digraphs with finite
in- and out-degrees were given. On the other hand it was showB]ithft highly arc
transitive digraphs with fiite and ungual in- and out-degrees always have propgrtgin
[3] an exampleas constructed of a highly arc transié digraph that does not have property
Z and has infinite in-degree and finite out-degree.) Hence, when looking for examples of
highly arc transitive digraphs with finite in- and out-degrees and with universal reachability
relation—a problem also posed it]{—digraphs with equal in- and out-degrees are the
only candidates. IrProposition 3.2a cnnection between alternating walks in a given
digraph and a certain somewhat technical condition placed on the stabilizer of an edge
is established. As an immediate consequence it is shown that the reachability relation in
a 1-ac trangtive digraphD is not universal provided the in- and out-degrees of both are
equal to a prime integeifbeorem 3.3 Moreover, the same holgsovidedthe stabilizer
of an edgee € E(D), with respect to its action on edges adjacend,tmduces a group of
a special form which, nevertheless, seems to be typical in the case of highly arc transitive
digraphsD (Theorem 3.4

Section 4deals with the connection between highly arc transitive digraphs and totally
disconnected locally compact groups (s&.[The first resilt is that if g is an element of
a totdly disconnected locally compact gro@ and the conjugacy class gfhas compact
closure inG thens(g) = 1 wheres is the scale function o. The proof of this relies
on a simple result about bounded automorphisms of highly arc transitive digraphs. (An
automorphisng of a connected digraph is said to beundedif there is a constant
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such ttat distv, g(v)) < C for all verticesv, wheredist(—, —) denotes the usual digraph
distance.) Next is a short proof of a theorem of Willi$4] Theorem 2]).

In Section 2we discuss connections between the concept of out-spread (see definition
below and 1, Definition 3.5]) and results fron8]. A new characterization of connected
highly arc transitive digraphs that have out-spread 1 is also given. Furthermore we present
a result on bounded automorphisms of highly arc transitive digraphs which plays an
important role in the proofs of the results$ection 4but also gems to be of some interest
on its own. We also show that for a highly arc transitive digr&phlready the stabilizer
of a vertex together with one additionaltamorphism generates a subgroup of @it
which acts highly arc transitively oD.

2. Definitions, bounded automor phisms and out-spread

A line L in a digraphD is an infinite sequencé ..v_1, vo, v1, v2...) of vertices
suchthat (vi,vi+1) € E(D) for everyi € Z. Sinceinfinite conneatd highly arc
transitive digraphs contain no directed @&l the vertices of a line in such a graph are
pairwise different. IfL is as above, theh[vi, co) andL[v;, —oo0) denote the sequences
(Vi, Vit1, Vig2,...) and(vi, vi_1, vi—2, ...), resgectively. We also say thdt[v;, c0) is a
postive halflineandL[v;, —o0) is anegative halfline

Two positive (negave) hdflines P and Q in D are equivalentif in the underlying
undirected graph there are infinitely many disjoint paths connecting verticés tim
vertices inQ. The euivalence classeof all infinite paths (not necessarily directed) with
respect tathis relation are called thendsof D. The oncept of ends can be defined in
several different ways; this form of the definition is due to Habh [

The set oflescendantdescv) of a vertexv of a digraphD is the set of those vertices of
D which can be reached fromby a directed path such that its first edge (if such an edge
exigs) is of he form(v, w) for somew € V(D). The set ofancestorganqv)) of a vertex
v is the set of those vertices &f for which v is a descedant. For a subs&t € V(D) we
define the sets degh) = | J, .5 desqv) and an€A) = J,.pandv). If L is aline inD,
then the subdigraph induced by déistis denoted byF| , andE denotes the subdigraph
induced by and.).

For a mnnected digraplD, definedist(u, v) as the distance between verticeandv
in the underlying undirected graph (dist v) is the length 6the shortest possible path
betweeru andv).

Letv € V(D) andn apositiveinteger. ByB(v, n) = {u € V(D) | dist(v, u) < n} we
denote the ball of radius with centerv. In thecaseD admits a vertex transitive group of
automorphisms, the cardinality &f(v, n) does not depend on the vertex

In [7] the descendants of lines are investigated. Some of the resulfsandrepeatedly
used in the proofs later on. To facilitate reading of this paper we list those results below:

Lemma2.1 ([7, Lemmal]). Let D be an infinite locally finite highly arc transitive
digraph. ThenAut(D) is transitive on the set of directed lines. Furthermore, if=£
(...,v-1,vp, v1,...) is adirected line in D then there exists, for evergiZ, an element
g € Aut(D) such hat g(vi) = viyk foralli € Z.
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Lemma 2.2 ([7, Lemma3]). Let D be an infinite locally finite highly arc transitive
digraph. Suppose L is aline in D. Then

(1) df =d.
(2) FL is highly arc transitive.
(3) Theundirected graph corresponding tg_Fhas more than one end.

Theorem 2.3 ([7, Theorem 1]). Let D be a locally finite highly arc transitive digraph.
Suppose that there is a line £ (..., v_1, vg, v1, ...) such hat V(D) = desgL). Then
there exists a sugctive homomorphismh : D — T where T is a diected tree with
d; = 1 and finite qf Theautomorphism group of D has a natural actionon T as a
group of automorphisms such thatg(v)) = g(¢(v)) for every ge Aut(D) and every

v € V(D). Theadion of Aut(D) on T is highly arc transitive. Furthermore, the fibers
¢ 1(v), v € V(T) are finite and all have the same number of elements.

Remark. These results can clearly be formulated analogoush§far

Bounded automorphisms of graphs have been investigated for examglelifi.[In
[4, 16] the connections between bounded automorphisms, and FC elements (elements with
finite conjugacy class) an8C~ elements (elements in a topological group which have a
conjugacy class with compactodure) are pointed out. I8ection 4we use he following
result on bounded automorphisms of highly arc transitive digraphs to establish a result
aboutFC™ elements in topological groups.

Proposition 2.4. Let L be a line in the locally finite highly arc transitive infinite digraph
D. Suppose that g is a bounded automorphism of D4 l&ihd L, are two positive halflines
in F,and Lp = g(L1) then Ly and L, are in the same end of F

If g is a bounded automorphism of D such thatge desqv)\{v} for some vertex
then Dhas precisely two ends.

Proof. Sincel1 = (vg, v1,...) andL> = (wg, w1, ...) are both contained if_ the two

halflines will have a common ancestor V (FL). Supposeg is abounded automorphism

of D which mapslL; ontoL,. We can without loss of generality assume that some vertex

wp IS in descup). If necessary take a directed pa@hfrom v to vp and replace.1 with

P U L1 andL, with g(P U L1). Of course a finite part of(P U L1), nanely g(P), may

not be contained irF_. But shce this would not change the arguments of the following

two paragraphs we do not take care of this case separately and assume in the sequel that
g(PULjy) C FL holds.

Sinceg is bounded we can assume that there is an intkgelO such bat for irfinitely
manyv; € V(L1),i € Z, we can find infinitely many pairwise distinatj, € V(L2) such
thatwj, € B(vi, k). By 2.1, there is ara € Aut(D) suchthata' (vo) = v; for all integers
and therefordB(vj, k) = a' (B(vg, k)) also holds. Sinc8(vg, k) is finite, there is a vertex
y € B(vo, k) and infinitely many positive integeng suchthataP (y) € Ly[wp, 00). For
simplicity werenumber thep; suchthat p1, p2, ps, ... are these numbers a1 > p
foralll > 1.

LetaPi(y) = wy for somew, € V(L2). Then here isa directed pathR from vg to wy .
Under eactaP —P1 the vertexw; is mgpped to a vertex ok, andvg is maped to a vertex
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of L1. Herce R is magped onto a directed path froln to L, under eactaP ~P:. Butthis
implies thatL1 andL are in the same end &, .

Now we come tohe proof of the latter stateent in the lemma. Defin& as the line
... Q) Q9(Q)g%(Q) ... whereQ is a directed path with initial vertex and terminal
vertexw suchthatg(v) € NJD“(w). Lety : Fk — T be the map described itheorem 2.3
If Fx has more than two ends then there is a directed positive hallirthat starts abt
butdoes not belong to the same endrgf asK [v, 0o). Theng(K1) cannot belong to the
same end ag(K [v, o0)) = K[g(v), 00). Looking at the action of on the tre€T itis clear
that¢ (K1) and¢(g(K1)) belong to different ends of and hence&K; andg(K1) belong
to different ends of . This contradicts the first part of the Lemma. We conclude that
has only two ends. Similarl¥£k has only two ends and we can now conclude hdtas
only two ends. O

Let D be a digraph with finite out-degree and vertex transitive automorphism group.
Choose a vertex in D and definepk as the number of verticasin D such that there is a
directed path of lengtk from v to u. Because of the vertex transitivity of the automorphism
group, the value ofy does not depend on the choicaofTheout-spreadf D is defined as

lim sup(pe) /K.

k— o0

The in-spreadof a digraphD with finite in-degree is defied as the out-spread of the
digraph one gets by reversing the direction of all the ard3.in

In [7, Theorem 2] it is shown that the out-spread of a highly arc transitive digraph is
always an integer. Furthermore, ifi] the enphasis is on the digraphHs. andE_. It is
thus of particular interest to look at highly arc transitive locally finite digraprsichthat
D = FL or D = E. The theorem élow gives a characterization of such digraphsin terms
of the out-spread ob.

Lemma 2.5. Let D be a locally finite connected highly arc transitive digraph and L a
line in D. If F_ has only two ends then B E, . Sinilarly, if E| has only two ends then
D=F..

Proof. LetL = (..., v_1, vg, v1, V2, ...). SUpposeF_ has only two ends. We know that
NEL (v) = Np(v) for all verticesv in E_. In order to pove the lemmave must show

that NI;_(U) = NJDF(v) for all verticesv in E. and then the result follows becauBeis
connected. Lep : F. — T be a map analogous to the map definedlirerorem 2.3Set
Vi = ¢~ (¢ (vi)). BecauseF, has only two ends we know that is just a line. Hence,
if g € Aut(F_) andv andg(v) are in the same-fiber then all thep-fibers are invariant
underg. We now slow that wecan find a numbek such that all the vertices irvy are
descendants af;.

By Lemma 2.1there exists a aubmorphismh of D suchthath(vi) = vj+1 holds
for all i € Z. Note hat thenh(V;) = V41 for all i € Z. Clearly F_ is invariant
underh. In addition eachw € Vp is the descedant of some vertexn,) € L. Let
—m = min{n(w) | w € Vop}. Then all vetices of Vg are descendants af.,, € V_ny
and clearly all vertices di™1(Vp) are descendants bf'"t1(v_p) € Vi. Herce, ifk > m,
each vertex oV is contained in des@y).
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If v is any vertex inVy then clearly every vertex iN is a descadant ofv. Note hat
every \ertex in NE;(vo) is contained inV1 and thus every vertex ihlE;(vo) is an ancestor
of Wk. Thus NE;(vo) C andl). Herce the out-degree of the verticeslnis the same as
the out-degree of the verticesf) and thuse; = D. O

Theorem 2.6. Let D be a locally finite connected highly arc transitive digraph. The in-
spreadof D is 1 if and only if there is a line L such that B F_. Sinilarly, the out-spread
of D is 1 if and only if there is aline L suchthat B E| .

Proof. By Lemma 2.2and the remark followingheorem 2.3 has more than one end.
Since he in-spread oD and therefore also df| is equal to 1,E| has exactly two ends
for every lineL. Then it follows from the lemma above th&t = F_. Theother statement
of the proposition follows in the same wayl]

Remark. Lemma 2.1states that in a locally finite highly arc transitive digraph the
automorphism group acts transitively on the set of lines. Hence we could say in the above
theorem thaD hasin-spread 1 ifand only® = F| for everylineL in D and analogously

for the out-spread.

We end this section with the following result about automorphism groups of highly arc
transitivedigraphs.

Proposition 2.7. Let D be an infinite connected highly arc transitive digraph and let a
group H act highly arc transitively on D. Furthermore, kete V (D), (v, u) € E(D), and

let g bean automorphism of D with@) = u. Then tle goup G = (H, U g) acts highly
arc transitively on D.

Proof. For eachs > 0, the groupH, acts transitively on the set sfarcs inD with initial
vertexv. At the sanetime, the groupG acts transitively orV/ (D), sinceD is connected
andH, acts transitively oNZ (v) andNg (v), whereg(v) € N (v) andg=1(v) € N5 (v).
The result follows. O

3. Reachability

If a digraphD is 1-arc transitive, then the subdigrapp4(e)) induced by.A(e) are
isomorphic to a fixed digraph which will be denoted By D). In [1] the following result
aboutA(D) was shown:

Proposition 3.1 ([1, Proposition 1.1]).Let D be a connected 1-arc transitive digraph.
ThenA(D) is 1-arc transitive and connected. Furthermore, either

(1) Aisuniversal andA(D) = D, or
(2) A(D) is bipartite.

There are examples of highly arc transitive infinite digraphs for which the reachability
relation is universal (se€l] p. 378]), but no example of an fimite locally finite highly
arc transitive digraph with universal reachability relation is known. As mentioned in the
introduction all highly arc transitive digraphs with finite and unequal in- and out-degree
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have property which implies that they cannot have universal reachability relation. Hence
the following results are formulated only fdigraphs with equal in- and out-degrees.

We have chosen a quite general approach to the question of universality of the
reachability relation. It is based on the analysis of the action of the stabilizer of an edge
(u,v) € E(D) onthe seINng(v) in 1-arc tansitive digraph®. The resits of this section
can be seen as illustrations of this approach.

Let a groupG act on a seV and letf2 C V be setvise fixed byG. By G, we denote
the pointwise stabilizer it6 of 2, andby G = G/G, the restriction ofG to (2. For
elementsy, v € V we defineGy,, = {g € G | g(u) = uandg(v) = v}.

Proposition 3.2. Let D be a digaph such that in-degree and out-degree of any vertex are
equal to a fixed integer d. Let & Aut(D),e = (u,v) € E(D) and 2 € V(D)\{u, v}.
Furthermore, let H be a subgroup of G which fixes(? setwise and stabilizes no vertex
from 2. If all proper subgroups of K have index at least d, thethere is no alternating
walk with initial edge e and terminal vertex i@.

Proof. Let f be an edge adjacentésuchthateU f deternines an alternating walk, and
letw ¢ {u, v} denote a vertex of . Sincethe orbit ofw underH has length less thaah,
the stabilizeH,, of w has index less thathin H. Therdore |[H  : Hu{2| < d also holds.
But this impliesHu{2 = H* by our assumption. Sindd stabilizes no vertex fron2, H,,
also has this property induction this propeyt extends to the stabilizer of all vertices
contained in an alternating walk with initial edge

In partiaular let P be such an alternating wavith its terminal vertex € (2. Then the
pointwise stabilizeHy p) satisfiesH\?(P) = H¥ and fixesx, contradicting the fact that
H stabilzes no vertex fronf2. O

Theorem 3.3. Let p be a prime and let D be a 2-arc transitive digraph with in-degree and
out-degree equal to p. Then the réadbility relation in D is not universal.

Proof. Let (u, v) be an edge oD. As D is 2-arc transitive, the stabiliz&s,, ,, where
G = Aut(D), acts transitively OrNE)'(v). Since|NJDr(v)| = pis a prime tkere is a group
H < Gy, which restriction toN (v) is isomophic toZ . By redacing 2 with N, (v) in
Proposition 3.2the resulfollows. O

We mention that the examples of those highly arc transitive digraphs without property
Z which were constructed irf] do not have a universal reachability relation. This follows
also fromTheorem 3.3ince hose digraphs have in-degree and out-degree equal to 2.

Similar arguments cabe used to prove the following more general result. We mention
that alsoTheorem 3.3can be deduced from the following one by puttidg= p and
K=2Zp.

Theorem 3.4. Let D be a l-arc transitive digraph withfd = d; = d > 1. Let

+
(u, v) € E(D) be such that ta restiction GL\{?,(U) ofthe stabilizer G , to NE;(v) contains

a ubgroup K# 1 which has no nontrivial permutation representation of degree less than
d. (For example, let K be a simple group in a nontrivial permutation representation of
smallest degree.) Then the reachability relation in D is not universal.
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Proof. By replacing 2 with NS(U) and H with the preimage ofK in Gy, in
Proposition 3.2the resulfollows. [

We mention that the nontrivial permutation representations of smallest degree of all
finite simple groups are known. Se&Z], where the determination of such representations
of finite simple groups modulo their classification was completed. In connection with the
results of this section it would also be interesting to know which permutation groups can
b @)
v

arise as Au’i{ where(u, v) is an edge of a locally finite ghly arc transitive digrapb.

4. Highly arctransitive digraphs and topological groups

The theory of locally compact groups is that part of the theory of topological groups that
has widest appeal and most applications. When looking at locally compact groups there are
the connected groups on one end of the spectrum and the totally disconnected groups on
the other end of the spectruithe automorphism group of a locally finite connected graph
with the topology of pointwise convergence is an example of a totally disconnected locally
compact group]l, 16].

An important result in the theory of locally compact totally disconnected groups is
the the@rem of van Dantzigd] that such a group must always contain a compact open
subgroup. The applications that follow involve concepts and ideas from the structure theory
developed by Willis, see 13, 15. The important concepts of Willis’s theory are the scale
function and tidy subgroups.

Definition 4.1. (A) Let G be a locally compact tolig disconnected group and an
element inG. For a compact open subgroupin G define

Up=()dg'Ug" and U =()g'Ud.
i=0 i=0

SayU istidy for g if

() U=UsU_=U_U;and A

(2) Upd'Urg™ and(JZpg'U_g' are both closed is.
(B) Let G be a locally compact totally disconnected group. Bhale finctionon G is

defined by the formula

s(g) = min{|U : U ng~*Ug| : U a cmmpact open subgroup &f}.

The connection between the scale function and tidy subgroups is described in the
following theorem due to Willis.

Theorem 4.2 ([15, Theorem 3.1], seeq, Theorem 6.1]).Let G be a bcally compact
totally disconmcted group and ge G. Then $g) = |U : U N g~tUg| if and only if
U istidy for g.

Willis's theory can be understood in tesnof graphs and automorphism groups of
graphs, seeg]. In this approach to Willis’s theorg fundamental role is played by highly
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arc transitive digraphs. In the following Lemma several results fr@n$éctons 2—4] are
collected together.

Theorem 4.3. Let G be a locally compact totally disconnected group, g an element in
G and U a compact open subgroup of G. Rit= G/U. Letwvg be a point inf2. Set

vi = g'(vo). Define a digraph D such that the vertex set of Dfdsand the edgeet is the
orbit G(vo, v1). Then:

(1) If U satisfies condition(1) in Definition4.1 (A) then the digraph D is highly arc
transitive.

(2) If U is tidy for g then D is not only highly arc transitive but the subgraph in D
spanned bydesgup) is a tree.

We now turn to bounded automorphisms and the scale function.

Definition 4.4. Let G be a totally disconnected locally compact group. An elengentG
is said to be afrC~ elemenif the conjugacy class off has compact closure i@.

Suppose nowG is a totally disconnected locally compact group and tBadcts & a
group of automorphism on some connected locally finite grdpRurthermore suppose
that the stabilizer irG of a vertex inX is a ciompact open subgroup. Thebg Lemma 4]
says thag is anFC~ element ofG if and only if g acts as a bounded automorphismxn

Theorem 4.5. Let G be a¢tally disconnected locally compact group and@ — R the
scale finction on G.1g is an FC elementin G then(g) = 1 = s(g™ ).

Proof. Note that ifg is anFC~ element ofG, theng ™! is also arFC~ element. Let) be a
compact open subgroup Gfthat is tidy forg. Setf2 = G/U. Letvg be a pointinf2 such
thatU = G,, andv; = gi (vo). Define a digraptD such ttat the vertex set ob is {2 and
the alge set ofD is the orbitG(vp, v1). It follows from Theorem 4.3hat the digraph
D is highly arc transitive. LeD’ be the connected component bf that containsv.
Furthemore, definés’ as the subgroup @ that leave®’ invariant. Clearlyg is contained
in G’ andg is anFC~ element ofG’. By [16, Lemma 4] we know thay acts onD’ as
a bounded automorphism. But = g(vg) € desquvp) and thereforey leaves invariant a
line L. Herce Proposition 2.4mplies thatg can only be a bounded automorphisnDif
has preciselywo ends. Sincé&J is assumed to be tidy, the subgraph induced by dgsc
is a tree. This implies thdD’ is just an infinite directed line and hen@g, fixesv_1. By
Theorem 4.2

s(@=U:UNngugl=1Gy:GyuNGy,l=IGyuv_1l=1 O
We now trn to periodic elements and cycles in digraphs.

Definition 4.6. An elementg in a topological grougs is said to beperiodicif the closure
of the cyclic subgroupg) is compact inG. DefineP(G) as the set of all periodic elements
in G.

Suppose now thds is a totally disconnected locally compact group &hd a conpact
open subgroup d&. Considemg the action of5 on the coset spacg/U we can recognize
the periodic elements because they are thg delments generating cyclic subgroups that
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have all their orfis finite (follows from [L6, Lemma 2]). The following proof of 14,
Theorem 2] further illustrates the use of highly arc transitive digraphs in the theory of
totally disconnected locally compact groups.

Theorem 4.7 ([14, Theorem 2]). Let G be a totally disconnected locally compact group.
The set RG) of periodic elements in G is closed.

Proof. The trick is to use the fact that a conneciefihite highly arc transitive digraph has
no directed cycles.

Supposeg is in the closure ofP(G) but g is not periodic. LetU be a compact open
subgroup ofG that is tidy forg. Define tle digraphD’ in the same way as in the proof
of Theorem 4.5If g is not periodic then the orbit afp under(g) is infinite and therefore
D’ is infinite. The segU is an open neighborhood gf and must therefore contain some
periodic elemenh. The fact thath € gU = gG,, impliesh(vg) = g(vo) = v1. The
element is perodic so the orbit obg under(h) is finite and therefore there is an integer
suchthath™(vg) = vo. The sguencevg, v1 = h(vo), v2 = h%(v), ..., vn = h"(vo) = vo
is a directed cycle iD’. This mntradicts the result mentioned above. Hence we conclude
that it is impossibletat the closure oP(G) contains any elements that are not periodic.
ThusP(G) is closed. O
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