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Abstract: We introduce the (a; b)-coloring game, an asymmetric version
of the coloring game played by two players Alice and Bob on a finite graph,
which differs from the standard version in that, in each turn, Alice colors a
vertices and Bob colors b vertices. We also introduce a related game, the
(a; b)-marking game. We analyze these games and determine the (a; b)-
chromatic numbers and (a;b)-coloring numbers for the class of forests and
all values of a and b. � 2005 Wiley Periodicals, Inc. J Graph Theory 48: 169–185, 2005
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1. INTRODUCTION

The coloring game is played on a finite graph G, using a set X of colors, by two

players Alice and Bob with Alice playing first. The players take turns coloring the

vertices of G with colors from X so that no two adjacent vertices have the same

color. Bob wins if at some time one of the players has no legal move; otherwise

Alice wins when the players eventually create a proper coloring of G. The game

chromatic number of G, denoted �gðGÞ, is the least integer t such that Alice has a
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winning strategy when the game is played on G using t colors. The game

chromatic number was first introduced by Bodlaender [1]. Faigle, Kern,

Kierstead, and Trotter [4] proved that the game chromatic number of a forest

is at most 4. This is best possible as was shown by Bodlaender. Since then many

authors have considered game chromatic number and related parameters,

including Cai and Zhu [2], Dinski and Zhu [3], Guan and Zhu [5], Kierstead

[6], Kierstead and Trotter [7,8], Kierstead and Tuza [9], Nešetřil and Sopena [10],

and Zhu [11,12].

While the game model makes it seem that Bob is a malevolent participant

in the coloring procedure, this is not the intent. Consider an application in which

there are two conflicting sets of requirements. Alice’s responsibility is to ensure

that the vertices can be properly colored with few colors, while Bob’s

responsibility is to ensure that the coloring meets some esthetic standard. In

ordinary coloring, 100% of the effort is devoted to using the minimum possible

number of colors. However in the coloring game, 50% of the effort (Alice’s part)

is devoted to minimality while the remaining 50% of the effort (Bob’s part) can

be devoted to esthetics. Here we consider the effect of varying these percentages.

More formally, we consider a variant of the coloring game in which Alice and

Bob are allowed to make several moves in a row. The ða; bÞ-coloring game is

played like the coloring game with the exception that on each turn Alice colors a

vertices and Bob colors b vertices. (If there are no uncolored vertices left, the

players are not required to complete their turns.) Thus the ð1; 1Þ-coloring game is

just the coloring game. The ða; bÞ-game chromatic number of G, denoted

�gðG; a; bÞ, is the least integer t such that Alice has a winning strategy when the

ða; bÞ-coloring game is played on G using t colors.

Marking games are simplified versions of coloring games that have proved

useful in bounding the game chromatic number. A marking game is played by

two players Alice and Bob with Alice playing first. At the start of the game, all

vertices are unmarked. A play by either player consists of marking an unmarked

vertex. The game ends when all the vertices have been marked. For any

t 2 f1; . . . ; Vj jg, let Mt denote the set of marked vertices after t plays and

Ut ¼ V �Mt denotes the set of unmarked vertices after t plays. So Mtj j ¼ t. For

an unmarked vertex u, let StðuÞ ¼ NG uð Þ \Mt. The score of the marking game is

max StðuÞj j : 1 � t � Vj j ^ u 2 Utf g:

Zhu [11] defined the game coloring number, colg Gð Þ, of G to be the least s such

that Alice has a strategy that results in a score strictly less than s in the marking

game. In later work, Nešetřil and Sopena [10] defined the Go number of G to be

one less than the game coloring number of G.

A play of a marking game determines a linear ordering on the vertices of G in

which x < y if x is marked before y. The importance of the game coloring number

of G is that if Alice uses the strategy for the marking game on G that guarantees

a score of colg Gð Þ to choose vertices to color, then she can win the coloring
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game using a set of colgðGÞ colors just by coloring with First-Fit. It follows easily

that

�g Gð Þ � colg Gð Þ:

Faigle et al. [4] actually bounded the game chromatic number of forests by

showing that the game coloring number of a forest is at most 4.

We will also consider the a; bð Þ-marking game. In this variation, Alice plays by

marking a vertices and Bob plays by marking b vertices. The a; bð Þ-game

coloring number, colg G; a; bð Þ, is the least s such that Alice has a strategy that

results in a score strictly less than s in the a; bð Þ-marking game. Here we must be

a little careful. The score is computed each time a player marks a vertex, not just

at the end of the turns. It then follows that

�g G; a; bð Þ � colg G; a; bð Þ:

For a class of graphs C let

�g C; a; bð Þ ¼ max
G2C

�g G; a; bð Þ and colg C; a; bð Þ ¼ max
G2C

colg G; a; bð Þ:

In this paper, we will determine the a; bð Þ-game chromatic and a; bð Þ-game

coloring numbers for the class F of forests and all values of a and b. Our

motivation for studying this class is twofold. First, it is a simple enough class that

we can obtain exact results. Second, there is a long history of game chromatic

results for forests being extended in non-trivial ways to more complicated graphs.

We shall prove the following theorem.

Theorem 1. Let a and b be positive integers.

(a) If a < b then �g F ; a; bð Þ ¼ colg F ; a; bð Þ ¼ 1.

(b) If b � a then bþ 2 � �g F ; a; bð Þ � colg F ; a; bð Þ � bþ 3.

(c) If b � a < max 2b; 3f g then bþ 3 � �g F ; a; bð Þ.
(d) If 4 � 2b � a < 3b then �g F ; a; bð Þ � bþ 2 < bþ 3 � colg F ; a; bð Þ.
(e) If 3b � a then colg F ; a; bð Þ � bþ 2.

There are several little surprises hidden in the statement of this theorem. There

are not many interesting examples of classes of graphs for which the known upper

bounds on the game chromatic number and the game coloring number differ.

Indeed, most interesting upper bounds on the game chromatic number are proved

by showing the same bound for the game coloring number. In the case of forests,

we actually have �g Fð Þ ¼ colg Fð Þ. A careful reading of the theorem indicates

that �g F ; 2; 1ð Þ ¼ colg F ; 2; 1ð Þ. At first we were misled by this fact. However,

this equality between �g and colg does not hold in general. Specifically,

Theorem 1 yields the following exact values.
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Corollary 2. Let a and b be positive integers.

(a) If b � a < 2b, or if a; bð Þ ¼ 2; 1ð Þ then �g F ; a; bÞ ¼ colg F ; a; bð Þ ¼
�

bþ 3.

(b) If 2b � a < 3b and b > 1 then �g F ; a; bð Þ ¼ bþ 2 and colg F ; a; bð Þ ¼
bþ 3.

(c) If 3b � a then �g F ; a; bð Þ ¼ colg F ; a; bð Þ ¼ bþ 2.

Of course, these results are most interesting for small values of a and b. The

same results hold if the class of forests is replaced by the class of trees.

This paper is organized as follows. In Section 2, we prove all upper bounds of

Theorem 1. The upper bounds of (b), (d), and (e) follow from Lemmas 2, 4, and

3, respectively. In Section 3, we prove all lower bounds. The lower bounds for (a),

(b), (c), and (d) follow from Lemmas 9, 6, 7 and 8, and 10, respectively. We end

this section by reviewing our notation.

For any positive integer n, let n½ � denote the set 1; 2; . . . ; nf g. Let � denote the

empty sequence and Si denote the set of i-sequences whose entries are chosen

from S. Two functions f : A! B and g : C ! D are compatible if f xð Þ ¼ g xð Þ for

all x 2 A \ C. In this case, f [ g denotes the function on A [ C that extends both f

and g. For A0 � A, we write f jA0 for the restriction of f to A0 and f A0½ � for the

range of f jA0. Let G ¼ V ;Eð Þ be a graph. If W � V we will sometimes write W

to denote the graph G W½ � induced in G by W. If v is a vertex of G, then

NG vð Þ ¼ x 2 V : vx 2 Ef g denotes the neighborhood of v. The degree of v is

dG vð Þ ¼ NG vð Þj j. For a subset S of V , let NG Sð Þ ¼
S

NG vð Þ � S : v 2 Sf g. If G is

clear from the context, we may drop the subscripts. The distance, dist x; yð Þ,
between two vertices x and y is the number of edges in the shortest path between x

and y. If, for example, the value of a is to be replaced by aþ 1, we will write

a aþ 1.

2. UPPER BOUNDS

In this section, we prove upper bounds on �g F ; a; bð Þ and colg F ; a; bð Þ. Not

surprisingly, our proofs are based on a proof that colg Tð Þ � 4, for any forest T .

There are two proofs of this result. The first [4] has given rise to the very general

activation strategy that Alice can use successfully on a wide variety of graphs,

including planar graphs. A second, easier proof [9] has not been as useful. But

it is this second proof that we exploit here. For completeness and to motivate

the harder proofs that follow, we include this basic proof in the proof of

Lemma 3.

For the rest of this section, let T ¼ V;Eð Þ be any fixed forest. We will show

that Alice has winning strategies for various versions of the game played on T . At

any time in the game, let M be the set of vertices that have been marked and

U ¼ V �M be the set of unmarked vertices. A component of U is called an
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unmarked component. Let S be an unmarked component. Then N Sð Þ � M, by our

definition of N Sð Þ. The weight w Sð Þ of S is the number w Sð Þ ¼ N Sð Þj j of marked

vertices adjacent to unmarked vertices in S. Note that, since S is a tree, if one of

the players marks a vertex v 2 S such that N vð Þ \M 6¼ ;, then each component S0

of S� vf g has weight w S0ð Þ � w Sð Þ.

Lemma 3. If b � a, then colg F ; a; bð Þ � bþ 3.

Proof. We will show that Alice has a strategy that results in a score of at most

bþ 2 in the a; bð Þ-marking game on T . We first show that colg T; 1; 1ð Þ � 4. Alice

will play so as to maintain the following invariant: At the end of each of Alice’s

plays, the weight of any unmarked component is at most 2. If she achieves this

goal, then no unmarked vertex is ever adjacent to more than three marked

vertices. Indeed, after Alice’s play, no unmarked vertex is adjacent to more than

two marked vertices, and after Bob’s next play no unmarked vertex is adjacent to

more than three marked vertices.

On her first play Alice marks any vertex and the invariant clearly holds. Now

suppose that the invariant held after Alice’s last play and Bob has just marked a

vertex v in a component S of V �M. Suppose S0 is now an unmarked component

of V � M [ vf gð Þ with weight 3. Then S0 � S and N Sð Þ [ vf g ¼ N S0ð Þ. Since T

is a forest, two marked vertices cannot each be adjacent to vertices in the same

two unmarked components. Thus there is at most one component S0 of

V � M [ vf gð Þ with weight 3. It is easy to check that there exists a vertex u 2 S0

such that after u is marked, each component of S0 � uf g has weight at most 2. So

if there is an unmarked component with weight 3, Alice chooses it; otherwise she

chooses any component of V � M [ vf gð Þ. Once she has chosen an unmarked

component S*, she marks a vertex u 2 S*, such that each component of S*� uf g
has weight at most 2.

Notice that Alice could still use the above strategy if Bob is allowed to pass on

some turns. It follows that colg T ; a; 1ð Þ � 4. Finally, consider the a; bð Þ-marking

game. We will show that Alice can still maintain the invariant. Then after any of

her turns, no unmarked vertex is adjacent to more than two marked vertices. It

follows that after any of Bob’s turns, no unmarked vertex is adjacent to more than

bþ 2 marked vertices, and so colg T; a; bð Þ � bþ 3. To maintain the invariant,

Alice simulates the (1,1)-marking game. She considers the set M of marked

vertices after her last turn together with the last b vertices v1; . . . ; vb that Bob has

marked. First she sets i :¼ 1. Then she asks herself where she would have played

in the (1,1)-marking game if Bob had just marked vi. Then M  M [ vif g. If her

response would be ui then she checks to see whether ui 2 viþ1; . . . ; vbf g. If so, by

reordering if necessary, assume ui ¼ viþ1. In this case, Bob has answered his own

threat, and she resets M  M [ viþ1f g and i iþ 2. Otherwise she marks ui
and resets M  M [ uif g and i iþ 1. Continuing in this fashion until i > b,

she marks vertices when necessary to respond to threats by Bob that he does not

answer himself. Eventually, when i > b, she will have marked at most b � a

vertices. If she has not yet marked a vertices she continues as though Bob was
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playing by passing in the (1,1)-marking game. In this way, she maintains the

invariant. &

Next we show that if a is large enough then the above bound can be slightly

improved.

Lemma 4. If 3b � a, then colg F ;ð a,bÞ � bþ 2.

Proof. We will show that Alice has a strategy that results in a score of at most

bþ 1 in the a; bð Þ-marking game played on T . Suppose that S is an unmarked

component with weight 2. Then there exist two marked vertices x and y and a

unique x� y path PS in T with at least three vertices such that all internal vertices

of PS are in S. Alice’s strategy will be to play so that immediately after her play,

the following properties hold for each unmarked component S � U:

(1) w Sð Þ � 2.

(2) If w Sð Þ ¼ 2, then either Sj j ¼ 1 or dist x; yð Þ is odd.

Moreover, Alice will always mark a vertex v in an unmarked component S such

that:

(3) either w Sð Þ ¼ 0 or v is adjacent to a marked vertex or v is on a path

between two marked vertices.

Notice that (1)–(3) imply that an unmarked vertex is never adjacent to bþ 2

marked vertices. Indeed, after Alice’s play this follows from 1ð Þ. Moreover, by

(2) the only way that an unmarked vertex can be adjacent to two marked vertices

after Alice’s play is that it has no unmarked neighbors. Thus after Bob’s

next play no unmarked vertex can have bþ 2 marked neighbors. By (3), no

unmarked component with positive weight can ever gain weight while Alice is

playing. In particular, no unmarked vertex can ever have bþ 2 marked

neighbors.

Alice’s strategy is somewhat complicated by the requirement that she use all a

of her moves if there are unmarked vertices remaining. Suppose that at a certain

time both (1) and (2) hold. We claim that she can safely make two more moves,

satisfying (3) and maintaining (1) and (2). First, if each unmarked component has

size 1, Alice marks any two unmarked vertices (or one, if only one remains).

Otherwise, suppose that there exists an unmarked component S with Sj j � 2. If

w Sð Þ � 1, then Alice marks a vertex v 2 S such that if w Sð Þ ¼ 1, then v has a

neighbor in M. Each of the (at least 1) components of S� v has weight 1, so

Alice can now safely mark a vertex w 2 S that is adjacent to v, leaving all

unmarked components contained in S with weight 1. Otherwise w Sð Þ ¼ 2. Let

x; yf g ¼ N Sð Þ and PS ¼ xx1x2 . . . xn�1y. By (2) and the assumption that Sj j � 2, it

follows that n > 1 is odd. Alice can safely mark x1 and then xn�1. Then all

components S0 � S� x1; xn�1f g have weight at most 2. If w S0ð Þ ¼ 2, then

N S0ð Þ ¼ x1; xn�1f g and the unique x1 � xn�1 path has odd length.
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We first consider the case that b ¼ 1 and argue by induction on a. By the above

remarks, if Alice can maintain (1)–(3) with a ¼ k, then she can maintain (1)–(3)

with a ¼ k þ 2. The only difficulty is in the base steps a ¼ 3 and 4. First suppose

that a ¼ 3. It suffices to show that Alice can play satisfying (3) and maintaining

(1) and (2) after either three moves, or, using the previous argument, one move.

We consider the position at the start of Alice’s turn. There are three possibilities.

Position 1. (1) and (2) both hold. If there exists an unmarked component S

with w Sð Þ � 1 or Sj j ¼ 1, then Alice can safely mark a vertex v 2 S such that if

w Sð Þ ¼ 1, then v has a neighbor in M. Otherwise there exists an unmarked

component S such that w Sð Þ ¼ 2 and Sj j � 2. Let N Sð Þ ¼ x; yf g and PS ¼
xx1x2 . . . xn�1y. By 2ð Þ n is odd, and so n � 3. If dU x1ð Þ � 2, then Alice marks x1,

then x2, and finally z 2 N x1ð Þ \ S� x2f gð Þ. Then S� x1; x2; zf g has one

component S0 that contains x3; . . . ; xn�1f g, and possibly some other unmarked

components of weight 1. Only S0 has weight 2. Since PS0 ¼ x2 . . . xn�1y has odd

length, S0 satisfies 2. If dU x1ð Þ ¼ 1, then Alice marks x2. This breaks S� x2f g up

into an unmarked component S0 ¼ x1f g, an unmarked component S1 that con-

tains x3 . . . xn�1, and possibly some other unmarked components. Only S0 and S1

have weight 2. Both satisfy (2) since S0j j ¼ 1 and PS1
¼ x2 . . . xn�1y has odd

length.

Position 2. (1) fails, that is (since b ¼ 1), there exists an unmarked component

S � U with w Sð Þ ¼ 3. Let N Sð Þ ¼ x; y; zf g. After Alice’s last move 1ð Þ held, so

Bob has just marked one of these vertices, say z. After Alice’s last move z was in

some unmarked component S0. So S � S0 � zf g and N S0ð Þ ¼ x; yf g. Any other

unmarked component contained in S0 � z has weight 1. Any unmarked

component not contained in S0 � z still satisfies (1) and (2) (since b ¼ 1). So it

suffices for Alice to play (satisfying (3)) by marking vertices in S so that the

resulting unmarked components satisfy (1) and (2). By (2) applied to S0,

PS0
¼ xv1 . . . vn�1y has odd length. Clearly z is not on PS0

. Let vi be the closest

vertex on PS0
to z and Q ¼ zz1 . . . zt�1vi be the unique z� PS0

path. Without loss

of generality, dist x; við Þ ¼ i is odd and dist y; við Þ ¼ n� i is even. Alice first

marks vi. This leaves at most three unmarked components of S� vif g with

weight 2: the component S1 with x 2 N S1ð Þ, the component S2 with y 2 N S2ð Þ,
and the component S3 with z 2 S3. If i ¼ 1, then S1 ¼ ; and if t ¼ 1, then S3 ¼ ;.
However, since dist y; við Þ is even, S2 contains at least one vertex viþ1. All other

components of S� vi; viþ1; zt�1f g have weight 1.

Position 2a. The length of Q is even. Then S3 6¼ ; . Alice plays by marking

viþ1 2 S2 and zt�1 2 S3. Since each of the paths PS1
¼ xv1 . . . vi�1, PS2

¼ viþ2 . . .
vn�1y, and PS3

¼ zz1 . . . zt�1 is odd, 2ð Þ is satisfied.

Position 2b. The length of Q is odd. Since PS1
¼ xv1 . . . vi�1 and PS3

¼
zz1 . . . zt�1vi are odd, S1 and S3 satisfy (2). However, Alice still must deal with S2.

If dS viþ1ð Þ > 2, then she marks viþ1 and w 2 NS viþ1ð Þ � vi; viþ2f g. This results

in at most one new component S0 with weight 2. Then PS0 ¼ viþ2 . . . vn�1y has odd
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length, so (2) is satisfied. Otherwise, dS viþ1ð Þ ¼ 2. If i ¼ n� 2, then S2j j ¼ 1 and

we are done, since S2 satisfies (2) already. If not, Alice marks viþ2 and viþ3. This

leaves at most two new components of S2 � viþ2; viþ3f g with weight 2: the

component S0 ¼ viþ1f g and the component S00 that contains vn�1. (If n ¼ iþ 4,

then S00 ¼ ;.) Since S0j j ¼ 1, S0 satisfies (2), and since PS00 ¼ viþ3; . . . ; vn�1y is

odd, S00 satisfies 2ð Þ.

Position 3. (1) holds for all unmarked components S, but there exists an un-

marked component S such that (2) fails. There can only be one such component,

since b ¼ 1. Then PS ¼ xv1; . . . ; vn�1y has even length. Alice satisfies (1) and (2)

by marking v1.

This completes the proof when a ¼ 3. Next we check that with minor

modifications, Alice’s strategy also works when a ¼ 4. Position 1 is easy by our

introductory remarks, since 4 is even. Also Position 3 is easy: Alice marks v1 to

obtain Position 1 with three remaining moves. Thus she is done by the case a ¼ 3.

So we are left with Position 2. Position 2b is now easier: after Alice marks vi and

viþ1, both (1) and (2) hold. In Position 2a, Alice first marks zt�1. This leaves

Position 2b and she is again done by the case a ¼ 3. This completes the case

b ¼ 1.

Finally we consider the case b > 1. To maintain (1) and (2), Alice simulates

the (3,1)-marking game. She considers the set M of marked vertices after her last

turn together with the last b vertices v1; . . . ; vb that Bob has marked. First she

asks herself where she would have played in the (3,1)-marking game if Bob had

just marked v1. Then M  M [ v1f g. If her response would be u; v;w, then she

marks the vertices in the set X ¼ u; v;wf g � v2; . . . ; vbf g. Let a0 ¼ a� Xj j and

b0 ¼ b� 4þ Xj j. Note that 3b0 � a0. Now the situation is the same as if Alice was

playing the a0; b0ð Þ-marking game and Bob had just marked the vertices in the set

v2; . . . ; vbf g � u; v;wf g. Thus, arguing inductively, Alice can play so as to

maintain (1)–(3). &

Finally, we show that Alice has an improved strategy for the a; bð Þ-coloring

game on forests. We will need to modify the definition of weight now that we are

dealing with colored vertices rather than marked vertices. Given a forest T ¼
V;Eð Þ, suppose that c : C ! X is a proper coloring with C � T and S is a

component of T � C. (So N Sð Þ � C.) For an uncolored vertex u 2 S, define the

weight w uð Þ of u by w uð Þ ¼ c vð Þ : v 2 C \ N uð Þf gj j and the weight w Sð Þ of S by

w Sð Þ ¼
P

u2S w uð Þ. Thus w uð Þ is the number of colors used on vertices in

C \ N uð Þ. Also

c vð Þ : v 2 N Sð Þf gj j � w Sð Þ � N Sð Þj j:

Let i ffi j denote that i � j mod 3ð Þ. Call a pair x; yf g � C well colored by c if

c xð Þ ¼ c yð Þ if and only if dist x; yð Þ ffi 2. A component S of T � C is well bounded

by c if w Sð Þ � 2 and all pairs x; yf g � N Sð Þ are well colored. The coloring c is

good if c is proper and all components of T � C are well bounded by c.
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Lemma 5. If 4 � 2b � a, then �g F ; a; bð Þ � bþ 2.

Proof. We must show that Alice has a winning strategy in the a; bð Þ-coloring

game on T ¼ V ;Eð Þ using the set X ¼ bþ 2½ � of colors. It suffices to show that

Alice can always play so that immediately after her turn the coloring c : C ! X

that the players have produced is good. Then, in particular, all the colored

neighbors of any uncolored vertex have been colored with the same color. It

follows that Bob cannot win on his next play.

First we show that if c : C ! X is a good coloring, then there is a good

extension of c to c0 : C [ uf g ! X for some uncolored vertex u. Let S be a

component of T � C and u 2 S be adjacent to a colored vertex x 2 C. Color u

with a color different from c xð Þ. Moreover, if w Sð Þ ¼ 2 and y 2 N S� uf gð Þ \ C,

then color u so that c0 uð Þ ¼ c yð Þ if and only if dist u; yð Þ ffi 2. This is possible

since x; yf g is well colored and so dist u; yð Þ ffi 2 if and only if dist x; yð Þ ffi 0. Thus

if Alice obtains a good coloring before coloring a vertices, she can still complete

her turn while maintaining a good coloring.

As in the marking game, when Bob colors vertices in a well bounded,

uncolored component S, Alice will try to process vertices so that S is broken up

into several new, well bounded, uncolored components. In the marking game,

Bob’s ability to color multiple vertices proved to be only a minor annoyance,

because if his moves got in the way of Alice’s intended moves, she could pretend

that they were her own. This is no longer the case in the coloring game. Alice

may want to color a vertex with a particular color, but find that Bob has either

already colored that vertex with a different color or has colored a neighbor of it

with the same color.

On his last turn, Bob may have colored vertices in several uncolored

components. Alice will repair any damage that he has done in these components

one at a time. Consider any uncolored component S, its neighborhood N ¼ N Sð Þ,
and the set B � S of vertices in S that Bob colored on his last turn. Let c : N ! X

be the coloring of N at the start of Bob’s last turn and cb : N [ B! X be the

coloring of N [ B at the end of Bob’s last turn. Alice will repair any damage that

Bob has done by coloring a set A � S� B of at most 2 Bj j of the (at least) 2b

vertices that she is allowed to color on her next turn to create a good coloring

ca : N [ B [ A! X that extends cb. More formally, it suffices to prove the

following lemma.

Lemma 6. Let S be a proper subtree of a tree T , N ¼ N Sð Þ, and c : N ! X be a

good coloring. For every subset B � S with Bj j � b and proper coloring

cb : N [ B! X extending c, there exists a subset A � S� B with Aj j � 2 Bj j and
a good coloring ca : N [ B [ A! X extending cb.

Proof. We argue by induction on Bj j. The base step B ¼ ; is trivial, so

consider the induction step B 6¼ ;. By the induction hypothesis, it suffices to show

that there exist subsets B0 � B and A0 � S� B and a coloring c0 : N [
A0 [ B0 ! X extending cbjB0 such that
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(1) B0 6¼ ; and A0j j � 2 B0j j.
(2) c0 is a good coloring.

(3) cb [ c0 is a proper coloring.

The condition that A0 � S� B ensures that c0 is compatible with cb. By (1) we

make progress without using up too many vertices. We will consider several

possible cases. Clearly w Sð Þ 6¼ ;.

Case 0. w Sð Þ ¼ 1 (with respect to c). Let P ¼ x ¼ x0x1 . . . xn ¼ yð Þ be a

shortest path from a vertex in N to a vertex in B and set B0 ¼ yf g. Let s ffi n,

where s 2 0; 1; 2f g. Let � ¼ X � cb B [ xf g½ � be the set of colors in X that do not

appear on any vertex in B [ xf g. Then � 6¼ ;, since w Sð Þ � 1. First suppose that

s 6¼ 0. Let A0 ¼ x1f g and let c0 x1ð Þ ¼ �, where � 2 �. Clearly (3) holds. The only

component (if any) of S� A0 [ B0ð Þ that has weight at least two is the component

that contains x2. Since dist x1; yð Þ 6ffi 2 and c0 x1ð Þ 6¼ c0 yð Þ, this component is well

bounded and c0 is good. Otherwise, s ¼ 0. Let A0 ¼ x1; x2f g. Since c is a good

coloring c xð Þ 6¼ c yð Þ. Set c0 x2ð Þ ¼ �, where � 2 �. Next set c0 x1ð Þ ¼ �, where

� 2 �� �f g if �j j > 1 and � ¼ c yð Þ otherwise. Note that if �j j ¼ 1, then y is the

only vertex of B [ xf g that is colored with �. It follows that in either case, cb [ c0

is a proper coloring. Also the only component of S� A0 [ B0ð Þ with weight

greater than 1 is the component that contains x3. Since dist x2; yð Þ ffi 1 and

c0 x2ð Þ 6¼ c0 yð Þ, this component is well bounded and c0 is good.

So suppose that Case 0 fails. Then w Sð Þ ¼ 2. Let

P ¼ x ¼ x0x1 . . . xn ¼ yð Þ

be a path between two vertices of N that is as long as possible. Since w Sð Þ ¼ 2,

there is only one choice for the internal vertices of P. Since c is good, there is

only one choice for the color of the endpoints of P. So neither the length of P nor

the colors of its endpoints depend on the choice of endpoints for P. Let

� ¼ X � cb B [ x; yf g½ �. Since c is good, � ¼ X � cb B [ N½ �. Note that � 6¼ ; if

two vertices in B [ x; yf g have the same color. In particular, if x and y have a

common neighbor, then � 6¼ ;. For each v 2 B, let Qv be the path in T from v
to P.

Case 1. Case 0 fails, but there exists i 2 0; 1; . . . ; n� 1f g such that

xi; xiþ1 2 B [ x; yf g. Let S1 and S2 be the two components obtained from S by

removing the edge xixiþ1. Each is empty or has weight 1 with respect to c. Since

N S1ð Þ \ N S2ð Þ ¼ ;, we are done by Case 0 applied to S1 and S2.

Note that if Case 1 fails then the neighbors in P of any vertex in B \ P are

eligible for A0; this is important in what follows.

Case 2. Cases 0 and 1 fail, but there exists i 2 n� 1½ � such that xi 2 B. Let

s; t 2 0; 1; 2f g satisfy s ffi dist x; xið Þ and t ffi dist y; xið Þ. If possible, choose i so

that x; xif g is well colored if and only if xi; yf g is well colored. If this is not
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possible, try to choose xi so that if x; xif g is not well colored then s 6¼ 0 and if

xi; yf g is not well colored then t 6¼ 0.

First suppose that both x; xif g and xi; yf g are well colored. Set A0 ¼ ;,
B0 ¼ xif g, and c0 ¼ cbjN [ B0. Then c0 is good and cb [ c0 ¼ cb is proper.

Next suppose that neither x; xif g nor xi; yf g is well colored. Since x; yf g is well

colored, c xð Þ ¼ c yð Þ iff sþ t ffi 2. Without loss of generality, suppose that s � t.

Consider the possibility that t ¼ 0. If s ¼ 2 then c xð Þ ¼ c yð Þ, but c xð Þ 6¼ c xið Þ ¼
c yð Þ, which is a contradiction. Similarly, if s 6¼ 2 then c xð Þ 6¼ c yð Þ, but c xð Þ ¼
c xið Þ ¼ c yð Þ, which is another contradiction. We conclude that t > 0. Thus either

ið Þ s ¼ 1 ¼ t or iið Þ both s ¼ 2 and t 6¼ 0. If ið Þ then c xð Þ ¼ c yð Þ; if iið Þ then

c yð Þ ¼ c xið Þ. Regardless, � 6¼ ;. Let � 2 �. Set A0 ¼ xi�1; xiþ1f g and B0 ¼ xif g.
Since Case 1 fails, A0 � S� B. Let c0 xi�1ð Þ ¼ � ¼ c0 xiþ1ð Þ. Then cb [ c0 is a

proper coloring, since � 2 �. The only possible components of S� A0 [ B0ð Þ with

weight greater than 1 are the component that contains x1 and the component that

contains xn�1. Regardless of whether ið Þ or iið Þ hold, both x; xi�1f g and xiþ1; yf g
are well colored. So c0 is good.

Finally suppose that for all v 2 B \ P, exactly one of x; vf g and v; yf g is not

well colored. Then without loss of generality, x; xif g is well colored (so xi; yf g is

not). If t 6¼ 0 then set A0 ¼ xiþ1f g and B0 ¼ xif g. Again A0 � S� B. Choose

c0 xiþ1ð Þ 2 X � cb B [ yf g½ �. Then cb [ c0 is proper. There are only two new

components of S� A0 [ B0ð Þ with weight 2: the one that contains x1 . . . xi�1 and

the one that contains xiþ2 . . . xn�1. Both are well bounded since x; xif g and

xiþ1; yf g are well colored. Thus c0 is good. Otherwise t ¼ 0. Then c xið Þ ¼ c yð Þ,
since xi; yf g is not well colored. First suppose that xiþ2 2 B. Then xiþ2; yf g is well

colored, since otherwise we would have preferred xiþ2 to xi either because

x; xiþ2f g is not well colored or because dist xiþ2; yð Þ 6ffi 0. Let A0 ¼ xiþ1f g
and B0 ¼ xi; xiþ2f g. Choose c0 xiþ1ð Þ 2 X � cb B½ �. Otherwise, xiþ2 =2B. Let A0 ¼
xiþ1; xiþ2f g and B0 ¼ xif g. Choose c0 xiþ2ð Þ 2 X � cb B [ yf g½ � and c0 xiþ1ð Þ 2

X � cb B½ � [ c0 xiþ2ð Þf gð Þ. Regardless of whether xiþ2 2 B0 or xiþ2 2 A0, the

pair xiþ2; yf g is well colored. So as above, c0 is good. Moreover cb [ c0 is

proper.

Now we may assume that the internal vertices of P are not in B.

Case 3. Cases 0, 1, and 2 fail, but there exist distinct vertices u; v 2 B such that

v 2 Qu. Let R be the union of the components of S� vf g that do not meet P.

Then u 2 R. Let S0 ¼ S� R and B0 ¼ B \ S0. So v 2 B0. Then 0 < B0j j < Bj j. By

the induction hypothesis applied to S0, there exists a set A0 � S0 � B0, with

A0j j � 2 B0j j and a good coloring c0 : N [ A0 [ B0 ! X extending cbjN [ B0.
Clearly cb [ c0 is a proper coloring, since no element of B \ R is adjacent to any

element of A0.

Case 4. Case 0, 1, 2, and 3 fail, but there exist distinct u; v 2 B such that

Qu \ Qv 6¼ ;. Choose u, v, and w so that w 2 Qu \ Qv and w is as far from P as

possible. If possible, pick u so that u is not adjacent to w. Since Case 3 fails,

w =2 B. Let R be the union of the components of S� wf g that do not meet P. Then
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u; v 2 R. By the choice of w and the fact that Case 3 fails, each component of R

contains at most one element of B.

First suppose that u is not adjacent to w. Let Su be the component of S� wf g
that contains u. Let S0 ¼ S� Su and B0 ¼ B� uf g 6¼ ;. By the induction

hypothesis applied to S0, there exists a set A0 � S0 � B0, with A0j j � 2 B0j j, and a

good coloring c0 : N [ A0 [ B0 ! X extending cbjN [ B0. Since u is not adjacent

to any element of A0, it follows that cb [ c0 is a proper coloring.

Otherwise, by the choice of u, every vertex in B \ R is adjacent to w. This time

we will find a good coloring ca that actually extends cb. Let S* ¼ S� R and

B* ¼ B [ wf gð Þ � B \ Rð Þ. Let � be a color that is not used on any neighbor of

w. Such a color exists because if � is empty then one of x and y is not adjacent to

w. Let f : N [ B*! X be the extension of cbj N [ B*ð Þ defined by f wð Þ ¼ �. By

the induction hypothesis applied to S* with f playing the role of cb, there exists a

set A* � S*� B*, with A*j j � 2 B*j j, and a good coloring c0 : N [ B* [ A*! X

extending f . Let A ¼ A* [ wf g and ca ¼ cb [ c0. Then Aj j � 2 B*j j þ 1 < 2 Bj j.
Clearly ca is proper. Moreover, it is good, since B \ R � N wð Þ, and so the

uncolored components of R� A [ Bð Þ have weight 1.

Case 5. Cases 0, 1, 2, 3, and 4 fail. Then B \ P ¼ ; and Qu \ Qv ¼ ; for any

distinct u; v 2 B. Choose z 2 B \ S such that, if possible, dist z;Pð Þ 6ffi 2. Set

B0 ¼ zf g. Let w be the endpoint of Qz in P. Since Case 2 fails, w =2 B. Since Cases

2 and 4 fail, N vð Þ \ Bj j � 1 for any v 2 P. Moreover, N wð Þ \ B� zf gð Þ ¼ ;. Let

D ¼ u 2 x; y; zf g : dist u;wð Þ ffi 2f g. For each u 2 D, let u0 be the neighbor of w

on the u� w path in T . Since Case 4 fails, z0 (if it exists) has no neighbors in

B� zf g.
First suppose that Dj j � 1. Let A0 ¼ u0 : u 2 Df g [ wf g. Then A0j j � 2 B0j j.

Since b � 2, we have Xj j ¼ bþ 2 � 4. Let c0 wð Þ be any color in X � cb x; y; zf g½ �.
If u 2 D, let c0 u0ð Þ be any color in X � cb N u0ð Þ \ Bð Þ½ � distinct from c0 wð Þ and

cb uð Þ. Then c0 is good and cb [ c0 is proper.

Otherwise Dj j � 2. First suppose that z =2D. Then dist x;wð Þ ffi 2 ffi dist w; yð Þ.
So dist x; yð Þ ffi 1. Since x; yf g is well colored, c xð Þ 6¼ c yð Þ. Thus one of these

colors, say c xð Þ, is distinct from cb zð Þ. Let A0 ¼ w; y0f g, c0 wð Þ ¼ c xð Þ, and

c0 y0ð Þ 2 X � cb N y0ð Þ \ Bð Þ [ x; yf g½ �. Then c0 is good and cb [ c0 is proper.

Next suppose that z 2 D. By the choice of z, for every u 2 B, dist u;Pð Þ ffi 2. In

particular, N vð Þ \ B ¼ ; for all v 2 P. Without loss of generality, we may assume

that x 2 D. Choose a neighbor w0 of w on P so that dist w0; yð Þ 6ffi 2. Let

A0 ¼ w0; z0f g and c0 w0ð Þ ¼ � ¼ c0 z0ð Þ, where � 2 X � cb x; y; zf g½ �. Then cb [ c0 is

proper. We must check that c0 is good. Here there is one additional complication.

The component of S� A0 [ B0ð Þ that contains w has three colored neighbors –

both w0 and z0 and either x or y. However, w0 and z0 are both adjacent to the same

vertex w and are both colored with the same color �. Thus the weight of this

component is only 2. It now follows, using the choice of w0, that c0 is good. &

This completes the proof of Lemma 5. &
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3. LOWER BOUNDS

In this section, we prove lower bounds on �g F ; a; bð Þ and colg F ; a; bð Þ. Let

T ¼ Tn be the forest on the vertex set V ¼
S20

i¼1 n½ �
i

whose edges are pairs of the

form e ¼ a1; . . . ; aið Þ a1; . . . ; aiþ1ð Þ. Then every non-leaf has degree n or nþ 1.

All our proofs will show that Bob can win the appropriate game on T if n is

sufficiently big. More precisely, we will show that for some m Bob can win in m

turns playing on Tn whenever n � m aþ bð Þ. In this case, at the start of Bob’s mth

turn, every non-leaf will have at least b uncolored neighbors. In the proofs that

follow we will explicitly calculate the number of turns m that Bob uses to win, but

implicitly assume that n � m aþ bð Þ. For i 2 n½ �, we call the vertex ið Þ a root of T .

Notice that each component of T has radius 20 with a root for its center. Bob will

always play relatively close to the center. In particular, whenever our strategy

calls for Bob to color a neighbor of a vertex v, it will be the case that v is not a

leaf.

When proving lower bounds on �g F ; a; bð Þ, we will use the following concept.

Suppose that at some point in the a; bð Þ-coloring game the players have created a

partial coloring c : C ! X, where X is the set of colors used for the game. For any

vertex y, define the weight w yð Þ of y by w yð Þ ¼ c zð Þ : z 2 N yð Þf gj j. So Bob will

win if w yð Þ ¼ Xj j for some vertex y.

Lemma 7. For all positive integers a and b, bþ 2 � �g F ; a; bð Þ.

Proof. We argue that Bob can win the a; bð Þ-coloring game on T with the set

X ¼ bþ 1½ � of colors in two turns. After Alice’s first turn, Bob colors a root x

with bþ 1 and colors b� 1 other vertices arbitrarily. After Alice’s response, let y

be an uncolored neighbor of x. For each color � 2 b½ �, Bob colors an uncolored

neighbor of y with �. Then w yð Þ ¼ bþ 1. &

As remarked in the Introduction, Bodlaender proved that 4 � �g Fð Þ ¼
�g F ; 1; 1ð Þ. The following lemma also yields this fact.

Lemma 8. 4 � �g F ; 2; 1ð Þ.
Proof. We will show that Bob can win the 2; 1ð Þ-coloring game on T using

the set X ¼ 3½ � of colors in 13 turns. First we identify some winning positions for

Bob in this game. These claims are valid for positions relatively close to the

center.

Position 0. It is Bob’s turn and w vð Þ � 2 for some uncolored vertex v. Then Bob

wins in one turn by coloring an uncolored neighbor of v with the third color.

Position 1. There is an uncolored path P ¼ v1v2v3 and a color � 2 X such that

each vi is adjacent to a vertex colored � 2 X. Note that if Alice colors one or two

of the vertices in v1; v2; v3f g then she must leave Position 0. Otherwise Bob wins

by coloring a neighbor of v2 with a color other than �. After Alice’s next play,

this leaves Position 0. So Bob wins in two turns.
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Position 2. It is Bob’s move and there is an uncolored path P ¼ v1v2v3 and a

color � 2 X such that at least two vertices of P have a neighbor colored �. Then

Bob produces Position 1 by coloring a neighbor of a vertex in P so that every

vertex in P has a neighbor colored �. So Bob wins in three turns.

Position 3. There is an uncolored star s; v1; v2; v3f g with leaves v1; v2; v3 such

that for each i 2 3½ �, vi is adjacent to a vertex colored i. Note that if Alice colors s

then she must leave Position 0. Otherwise, if Alice colors a vertex in v1; v2; v3f g,
then she must leave Position 0 or 2. So Alice does not color any of the vertices in

s; v1; v2; v3f g. On his next turn Bob wins by coloring a neighbor of v1 distinct

from s with 2. Regardless of how Alice plays, she must leave Position 0 or 2. So

Bob wins in four turns.

Position 4. It is Bob’s move and there is an uncolored path v1sv2 such that for

each i 2 2½ �, vi is adjacent to a vertex colored �i and �1 6¼ �2. Let v3 2 N sð Þ \
U � v1; v2f g and u 2 N v3ð Þ \ Uð Þ � sf g. Then Bob creates Position 3 by

coloring u with �3 2 X � �1; �2f g. So Bob wins in five turns.

We now describe Bob’s strategy. On his first turn, Bob colors a root y1. After

Alice’s response, Bob chooses a path P ¼ y1 . . . y11 in T such that the vertices

y2; . . . ; y11 are uncolored. Then he colors y11. After Alice plays, there exists a

yi � yj subpath P0 ¼ yi . . . yj of P such that the endpoints of P0 are colored, the

internal vertices of P0 are uncolored, and P0j j � 5. We shall show by induction on

t ¼ P0j j that Bob can win from this position in t turns.

First consider the base step t ¼ 5. If yi and yj have different colors then we

have Position 4. Otherwise yi and yj have the same color � and we have Position

2. In either case, Bob wins in five turns. Next consider the induction step. Let u be

an uncolored neighbor of yiþ1, which is different than yiþ2. Bob colors an

uncolored vertex v 2 N uð Þ � yiþ1f g with the same color as yi. To avoid Position

2, Alice must color yiþ1 or u. But then to avoid Position 0, she must color both

yiþ1 and u. Then by the induction hypothesis, Bob can win in t � 1 additional

turns. We conclude that Bob can win in 2þ t � 13 turns. &

Lemma 9. If a < 2b, then bþ 3 � �g F ; a; bð Þ.

Proof. We will show that Bob can win the a; bð Þ-coloring game on T using

the set X ¼ bþ 2½ � of colors in 2bþ 3 turns. Call an uncolored vertex dangerous

if it has weight at least 2. Bob’s plan is to force Alice to leave a dangerous vertex

x at the end of one of her turns. He can then win by coloring b neighbors of x so

that w xð Þ ¼ bþ 2.

On his first turn, Bob colors some root x with �. The first round of play ends

after Alice completes her second turn. On his next 2b turns, Bob colors vertices

v1; . . . ; v2b2 with color �, where dist x; við Þ ¼ 3, dist vi; vj
� �

¼ 6 for all distinct

i; j 2 2b2½ �, and before Bob colors vi, the only colored vertex on the x� vi path in

T is x. Let P be the set of x� vi paths such that i 2 2b2½ �. After Alice’s response,

the second round of play ends.
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During the second round, Alice colored at most

2ba � 2b 2b� 1ð Þ ¼ 4b2 � 2b

of the 4b2 internal vertices of paths in P. Thus at the start of the third round, there

exists a b-subset P0 � P such that each path P 2 P0 has an uncolored (internal)

vertex y. If y is the only uncolored vertex in P then y is dangerous and Bob wins.

Otherwise both internal vertices of each path in P0 are uncolored. On his next

turn, for each P 2 P0, Bob colors an external neighbor of an internal vertex y 2 P

with a color � 6¼ �. This makes y dangerous. Alice is now stuck. On her next turn,

she must color each of b dangerous vertices in [P. But in doing so she creates

b additional dangerous vertices in [P and she can color less than 2b vertices

in all. &

Lemma 10. If a < b then �g F ; a; bð Þ > t for every integer t.

Proof. We will show that Bob has a strategy for the a; bð Þ-coloring game

played on T with the set X ¼ t½ � of colors that wins in a fixed number of moves.

Actually we will prove a stronger statement. For natural numbers s and t, let

P s; tð Þ mean that there exists an independent s-set S � U of non-leaves such that

w yð Þ � t for all y 2 S. We shall show that for all natural numbers s and t, there

exists a natural number m for which Bob has a strategy that produces a position

for which P s; tð Þ holds after m turns. We argue by induction on t. The base step

t ¼ 0 is trivial, so consider the induction step t ¼ t0 þ 1. Let s0 ¼ sb. Then there

exists m0 such that Bob can play so that after m0 turns, P s0; t0ð Þ holds. Let

m ¼ m0 þ s. Suppose that Bob has played so as to obtain an s0-set S0 that

witnesses P s0; t0ð Þ. For his next s moves, Bob colors exactly one neighbor y0 of

each vertex y 2 S0 with a color c yð Þ such that if w yð Þ < t then c yð Þ has not yet

been used on a neighbor of y. So now w yð Þ � t0 þ 1 ¼ t for every vertex y 2 S0.
During this time, Alice colors at most as vertices of S0. Thus after m turns

S0 � Cj j � b� að Þs � s where C is the set of colored vertices. So S0 � C

witnesses P s; tð Þ. &

Lemma 11. If a < 3b, then bþ 3 � colg F ; a; bð Þ.
Proof. We will show that Bob can obtain a score of bþ 2 in the a; bð Þ-

marking game on T in 9b2 þ 3bþ 2 turns. Call an unmarked vertex dangerous, if

it has two marked neighbors. Bob’s plan is to force Alice to leave a dangerous

vertex x at the end of one of her turns. He can then obtain a score of bþ 2 by

marking b additional neighbors of x.

On his first turn, Bob marks a root x. The first round of play ends after Alice

completes her second turn. At the start of the second round, Bob chooses a 9b3-

set P of internally disjoint paths such that for each P 2 P:

	 Pj j ¼ 5:
	 x is an endpoint of P.

	 P� xf g � U, where U is the set of unmarked vertices.
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On his next 9b2 turns, Bob marks all the (still) unmarked endpoints of the paths in

P, but no other points on these paths. After Alice’s response, the second round of

play ends.

During the second round, Alice marked at most

9b2a � 9b2 3b� 1ð Þ ¼ 27b3 � 9b2

of the 27b3 internal vertices on the paths in P. Thus at the start of the third round

of play, there exists a 3b2-subset P0 � P such that for all P 2 P0, at least one of

the (internal) vertices of P is unmarked. If P does not have two consecutive

unmarked vertices then P has a dangerous vertex and we are done. So suppose

each P 2 P0 has at least two consecutive unmarked vertices. On his next 3b turns,

Bob plays as follows. For each P 2 P0 with three unmarked vertices, Bob marks

an external neighbor of the central vertex of P. For each P 2 P0 with only two

(consecutive) unmarked vertices, Bob marks an external neighbor of an un-

marked, external neighbor of the central vertex of P. In either case we are left

with a path P0 � U on three vertices such that each vertex of P0 has a marked

neighbor. Let P0 ¼ P0 : P 2 P0f g. The third round ends after Alice’s response.

During the third round, Alice marks

3ba � 3b 3b� 1ð Þ ¼ 9b2 � 3b

vertices. If she marks a vertex of a path P0 2 P0 then she must mark all three

vertices of P0, since otherwise she will leave a dangerous vertex. Thus at the start

of the fourth round of play, there exists a b-subset P00 � P0 such that for every

P0 2 P00 all three vertices of P0 are unmarked. On his next turn, Bob plays by

marking an external neighbor of the central vertex of P0 for each P0 2 P00. So for

each path P0 2 P00, the central vertex is dangerous. Alice is now stuck. She must

mark each of the b dangerous central vertices that Bob has left. However this

creates 2b additional dangerous vertices and she can mark at most 3b� 1 vertices

on any one turn. &

This completes the proof of Theorem 1.
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