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who noticed that if G is a disjoint union of two complete graphs of order n=2
then this number is n2=12 þ o(n2). Erdó́s conjectured that any other graph
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1. INTRODUCTION

How few triangles can there be in a graph and its complement? Equivalently,

one can ask for the minimum number of monochromatic triangles in any 2-

coloring of the edges of Kn, the complete graph of order n. From the well-known

result of Goodman [5] (see also [10]), it follows that this number is at least

n3=24 þ oðn3Þ and the disjoint union of two complete graphs of order n=2 shows

that this estimate is tight.

Motivated by this result Erdó́s posed a naturally related question. What is the

minimum number of edge-disjoint monochromatic triangles in any 2-coloring of

the edges of the complete graph Kn? Denote this minimum by f3ðnÞ. To obtain an

upper bound on f3ðnÞ, consider again the coloring in which the edges of the first

color form two disjoint cliques of size n=2 each. Then the second color forms

a complete bipartite graph and thus there are no monochromatic triangles in this

color. On the other hand, there are approximately

2

n=2
2

� �

3
¼ n2

12
þ o

�
n2
�

edge-disjoint triangles in the first color. This example shows that f3ðnÞ � n2=12þ
oðn2Þ and led to the following conjecture of Erdó́s (see, e.g., Problem 14 in [2]).

Conjecture 1.1. If n is sufficiently large, then

f3ðnÞ ¼
n2

12
þ o

�
n2
�
:

This conjecture was studied recently by Erdó́s et al. in [3] where they

computed f3ðnÞ for small values of n and showed that f3ð11Þ ¼ 6. They use this

result, together with the special case of Wilson’s theorem that guarantees the

existence of nearly optimal packing of the edges of Kn by edge-disjoint copies of

K11, to prove that f3ðnÞ � ð3n2=55Þ þ oðn2Þ.
In this paper, we show that the conjecture of Erdó́s can be studied more pro-

fitably using the fractional version of the original problem. Using this approach,

we are able to obtain an improvement on the above bound for f3ðnÞ. Our main

result is as follows.

Theorem 1.1. If n is sufficiently large, then

f3ðnÞ �
n2

12:89
þ o

�
n2
�
:
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In [3] the authors also considered the more general question of finding the

minimum number of monochromatic copies of Kk (k ¼ 3 is triangle case) in a 2-

coloring of the edges of Kn. As before, let fkðnÞ denote the value of this minimum.

They proved that the sequence fkðnÞ=nðn� 1Þ converges to the limit, which

equals its supremum. Erdo}s et al. also obtain upper and lower bounds on fkðnÞ.
In particular, they proved that

n2

204
þ o

�
n2
�
� f4ðnÞ �

n2

36
þ o

�
n2
�
:

Using similar ideas as in the case of triangles, we are able to improve this bound

and obtain the following result.

Theorem 1.2. If n is sufficiently large, then

f4ðnÞ �
n2

106
þ o

�
n2
�
:

Our methods are easily generalizable and can also be used to improve known

estimates for fkðnÞ when k � 5. We discuss this briefly in concluding remarks.

The rest of this short paper is organized as follows. In the next section, we

discuss the fractional version of the triangle-packing problem and use a result

from [8] to show that it is equivalent to the original question. We also prove a

useful averaging lemma that allows us to iteratively improve the density of

fractional triangle packings. In Section 3, we determine the minimum values of

fractional triangle packings for 2-colorings of complete graphs of order n for

n � 10. These values (even the result for n ¼ 7) together with ideas from Section

2 already give an improvement of the best previously known bound for f3ðnÞ.
In this section, we also prove some basic results about the possible values of

fractional triangle packings, which may be of independent interest. In Section 4,

we discuss the computational aspects of the problem for n � 11 and describe our

computer-aided proof of Theorem 1.1. In Section 5, we briefly extend our

methods to the problem of packing edge-disjoint copies of K4 and prove

Theorem 1.2. The last section contains some concluding remarks.

2. FRACTIONAL VERSION

In this section, we discuss the fractional version of Conjecture 1.1 and observe

that it is equivalent to the original problem. Then we will use this fact to obtain a

procedure which allows us iteratively improve lower bounds on f3ðnÞ.
Our starting point is a theorem of Haxell and Rödl relating values of integer

and fractional packings of graphs. Let H be any fixed graph. For a graph G, we

define �HðGÞ to be the maximum size of a set of pairwise edge-disjoint copies of
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H in G. We say that a function w from the set of copies of H in G to ½0; 1� is a

fractional H-packing of G if
P

H3e wðHÞ � 1 for every edge e of G. Then ��HðGÞ
is defined to be the maximum value of

P
H wðHÞ over all fractional H-packings w

of G. Clearly, �HðGÞ � ��HðGÞ for any two graphs H and G. On the other hand,

the following result of Haxell and Rödl [8] shows that for sufficiently large graphs

G the values of the optimal integer and fractional H-packings differ only by a

relatively small additive factor.

Theorem 2.1. Let H be a fixed graph and G be a graph on n vertices. Then

��HðGÞ� �HðGÞ ¼ oðn2Þ:

We will simplify the notation to deal with the special case when H is a triangle,

writing �4ðGÞ ¼ �K3
ðGÞ, ��4ðGÞ ¼ ��K3

ðGÞ. We will often refer to the latter as the

number of fractional triangles in G. Let f �3 ðnÞ be the minimum possible value of

��4ðGÞ þ ��4ðGÞ over all 2-colorings G [ G of the edges of complete graph of

order n. The following corollary follows immediately from the above theorem

together with the fact that f �3 ðnÞ � f3ðnÞ ¼ �ðn2Þ. It shows that to prove the

conjecture of Erdó́s, it is enough to study f �3 ðnÞ.

Corollary 2.1. If n is sufficiently large, then f3ðnÞ ¼
�
1 � oð1Þ

�
f �3 ðnÞ.

In fact this corollary (which we found independently) has a considerably

simpler proof than Theorem 2.1. It can be deduced in a fairly straightforward

manner from Szemerédi’s Regularity Lemma (see, e.g., [9]) and a result of

Pippenger and Spencer [11]. The simplications are due particularly to the fact that

we are considering G and G simultaneously, and also that we only need the case

when H is a triangle. Next we need to establish a few properties of f �3 ðnÞ.

Lemma 2.1. The sequence
f �
3
ðnÞ

nðn�1Þ is increasing in n.

Proof. Consider 2-coloring the edges of complete graph Knþ1. Let

C1; . . . ;Cnþ1 be its complete subgraphs induced by all possible subsets of

vertices of size n. By definition, for every 1 � i � nþ 1 we can find a fractional

packing wi of monochromatic triangles of Ci with total value at least f �3 ðnÞ.
Note that each edge of Knþ1 belongs to n� 1 of the Ci, so w ¼ 1

n�1

P
i wi is a

valid fractional packing of the monochromatic triangles of Knþ1. Its value is at

least nþ1
n�1

f �3 ðnÞ. Therefore

f �3 ðnþ 1Þ
ðnþ 1Þn �

nþ1
n�1

f �3 ðnÞ
ðnþ 1Þn ¼ f �3 ðnÞ

nðn� 1Þ :
&

Note that, by definition, f �3 ðnÞ=nðn� 1Þ is bounded by 1=2 for every n.

Therefore by the above lemma, this sequence converges to a constant which we

denote by c3. From the example in the Introduction, we have that c3 � 1=12, and

Conjecture 1.1 suggests that it equals 1=12. We adopt the idea of the previous

lemma to give a procedure which iteratively improves lower bounds on c3 starting

with some particular value of f �3 ðnÞ.
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Lemma 2.2. f �3 ð3nÞ � 9 f �3 ðnÞ þ n� 1.

Proof. Consider a 2-edge-coloring of K3n. Since any six vertices contain a

monochromatic triangle, we can greedily find n� 1 vertex disjoint monochro-

matic triangles T1; . . . ;Tn�1. Denote by Tn the remaining three vertices and

consider an n-partite subgraph of K3n with the parts T1; . . . ;Tn. By definition, for

any of 3n distinct copies of Kn with exactly one vertex in every Tj, we can find a

fractional packing wi of monochromatic triangles with total value at least f �3 ðnÞ.
Note also that every edge of the n-partite subgraph is contained in precisely 3n�2

such copies of Kn. Therefore 3�ðn�2ÞP
i wi is a valid fractional packing of

monochromatic triangles of this n-partite subgraph. Hence this subgraph contains

at least 3�ðn�2Þ � 3n f �3 ðnÞ ¼ 9 f �3 ðnÞ fractional monochromatic triangles. All of

them are edge-disjoint from T1; . . . ; Tn�1. This implies that f �3
�
3n
�
� 9 f �3 ðnÞþ

n� 1 and completes the proof of the lemma. &

Corollary 2.2. c3 � f �
3
ðnÞ
n2 þ 1

6n
� 1

8n2 for every n � 1.

Proof. Iterating the result of Lemma 2.2, we obtain that f �3
�
3kþ1n

�
�

9kþ1 f �3 ðnÞ þ
Pk

i¼0 9k�i 3in� 1
��

for every k � 0. This implies

c3 � f �3 ð3kþ1nÞ
3kþ1nð3kþ1n� 1Þ >

f �3 ð3kþ1nÞ
9kþ1n2

� f �3 ðnÞ
n2

þ 1

n

Xk
i¼0

1

9
3�i � 1

n2

Xk
i¼0

9�i�1:

Taking the limiting value of this expression as k tends to infinity gives the result

of the lemma. &

It is easy to verify that the last result beats the simple bound c3 �
f �3 ðnÞ=nðn� 1Þ for every n. Moreover, we can immediately improve on the

bound of 3=55 from [3]. Indeed, it is known and easy to show that

f �3 ð7Þ � f3ð7Þ ¼ 2, that is, every 2-coloring of the edges of K7 contains two

edge-disjoint monochromatic triangles. By substituting the value of f �3 ð7Þ in

Corollary 2.2, we deduce c3 � 2
49
þ 1

42
� 1

392
¼ 73

1176
> 1

16:11
.

3. VALUES OF f*3 (n) FOR SMALL n

In this section, we will calculate f �3 ðnÞ for a few small values of n. These values

combined with Corollary 2.2 will give further improvements on the lower bound

for c3. In the course of doing so, we prove some results about the values of ��4ðGÞ
which may be of some independent interest. We start with a lemma which gives

an upper bound on f �3 ðnÞ.

Lemma 3.1. For 6 � n � 10 we have f �3 ðnÞ � n� 5.

Proof. It is easy to see that the size of the maximum fractional packing of

monochromatic triangles in 2-edge-coloring of Kn is always bounded by the size
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of a set of edges which covers all monochromatic triangles. Therefore to prove

the lemma, it is sufficient to exhibit a coloring of Kn and a set of n� 5 edges that

cover all monochromatic triangles in this coloring. For n ¼ 6, let one color be

the graph which is obtained by joining the new vertex to the three consecutive

vertices of 5-cycle. For future reference, we denote it by G6. In this coloring,

there are two monochromatic triangles which share one edge and we are done.

Suppose that we already constructed graph Gn�1 such that Gn�1 is triangle-free

and all the triangles in Gn�1 can be covered by the set of edges En�1 of size

n� 1 � 5 (it is true for n ¼ 7). We obtain Gn from Gn�1 as follows. Let v be a

vertex in Gn�1 that is not an endpoint of any edge in En�1. Add a new vertex v0

which has the same neighborhood as v in Gn�1 together with the edge ðv; v0Þ.
From our construction, it follows that Gn remains triangle-free and

En ¼ En�1 [ ðv; v0Þ is a set of edges of size n� 5 which covers all triangles in

Gn. This completes the proof of the lemma. &

Lemma 3.2. f �3 ð6Þ ¼ f3ð6Þ ¼ 1.

Proof. The well-known fact that the Ramsey number Rð3; 3Þ ¼ 6 implies that

both values are at least 1, and the corresponding upper bound follows from

Lemma 3.1. &

Lemma 3.3. ��4ðGÞ ¼ 1 iff all triangles of G share a common edge. If

��4ðGÞ > 1 then ��4ðGÞ � 2.

Proof. For ��4ðGÞ < 2, we have that every pair of triangles must share an

edge. If all the triangles contain the same edge, then ��4ðGÞ ¼ 1 and we are done.

Otherwise G contains three triangles which are pairwise edge-intersecting, but

which do not have an edge which belongs to all of them. Clearly such triangles

form a K4, and therefore ��4ðGÞ � ��4ðK4Þ ¼ 2, since we can assign weight 1=2 to

all four triangles in K4. &

Corollary 3.1. (i) f �3 ð7Þ ¼ 2.

(ii) G6 and its complement is the only coloring achieving f �3 ð6Þ ¼ 1.

(iii) f3ð7Þ ¼ 2.

Proof. (i) As we already proved in Lemma 2.1, f �3 ð7Þ � 7
5
f �3 ð6Þ � 7

5
> 1.

Therefore, from Lemma 3.1, we have that f �3 ð7Þ � 2, and the equality holds by

Lemma 3.1.

(ii) Let G be a graph on six vertices with ��4ðGÞ ¼ 1 and ��4ðGÞ ¼ 0. Let e be

the edge which belongs to all triangles of G (such e exists by Lemma 3.3).

Deleting either endpoint of e leaves a graph on five vertices with no triangles in it

or in its complement, that is, an induced 5-cycle. This uniquely determines G6.

Note also that G6 ffi G6 � e.

(iii) If f3ð7Þ ¼ 1 then there is a graph G on seven vertices with triangle-free

complement that does not contain 2 edge-disjoint triangles. By the proof of
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Lemma 3.3, it must contain a K4. Let X be the set of vertices of this K4 and let Y

be the set of the remaining three vertices. Clearly Y cannot form a triangle, and

hence contains a pair u; v of non-adjacent vertices. If u or v have two neighbors in

X, this creates two edge-disjoint triangles. Therefore each of them has at most one

neighbor in X and thus there is a vertex w 2 X not adjacent to both u and v. This

contradicts the assumption that G is triangle-free and completes the proof. &

Lemma 3.4. If 2 < ��4ðGÞ < 3 then ��4ðGÞ ¼ 5=2 and the triangles of G form a

wheel with five spokes.

Proof. First note that there is no optimal packing which assigns weight 1 to

some triangle T . For such a packing, the graph formed by the triangles edge-

disjoint from T would have a value of ��4 strictly between 1 and 2, in contradiction

to Lemma 3.3. In particular, for every triangle, at least two of its edges are shared

with another triangles. Indeed, suppose T is a triangle and e is the only edge of it

shared with another triangle. For any valid assignment of weights to the triangles

of G consider changing the weight of T to 1 and the weight of all other triangles

containing e to 0. This gives a valid weight assignment which has the same total

weight, so the optimum can be achieved while giving T weight 1, contradiction.

Next we note that there cannot be two vertex disjoint triangles A,B. By the

above discussion, two edges of A are shared with other triangles, which must be

edge disjoint from B. Thus we have two triangles or possibly a K4 edge-disjoint

from B. This implies ��4 � 3. So every two triangles share a vertex.

Case 1. G contains K4. Let X be such a copy of K4. Since 2 < ��4ðGÞ < 3, G

contains an additional triangle T , which must share some edge with X. As noted

above, T has another edge also shared with a triangle T 0. Note that T 0 cannot

be edge-disjoint from X, so in fact G contains K5 with a deleted edge. But

��4ðK5 � eÞ ¼ 3, as can be seen by assigning weight 1=2 to the six triangles that

share a vertex with the missing edge e.

Case 2. G is K4-free. Note that any triangle shares exactly two of its edges with

other triangles, as �4 < 3 and in this case triangles which share different edges of

the same triangle are edge-disjoint. Consider a triangle A, and triangles B;C that

share two different edges with A. Let x be their common vertex. Then any other

triangle must contain x. Indeed, any other triangle must share a vertex with each

of A, B, and C, and if this vertex is not x we form K4.

Let b, c be the vertices belonging to B, C but not A. There must be triangles

Tb 6¼ B containing xb and Tc 6¼ C containing xc. Tb and Tc cannot be edge-

disjoint, or together with A we have �4ðGÞ � 3. If Tb and Tc share exactly one

edge, we have a wheel with five spokes, which has ��4 ¼ 5=2. Since the addition

of any triangle to this wheel will cause ��4 � 3, we conclude that G is the wheel

with five spokes. Otherwise Tb ¼ Tc, and we have a wheel with four spokes,

which has ��4 ¼ 2. In this case, there is another triangle T in G which contains x

and cannot be edge-disjoint from the wheel, so it must contain a spoke. Also, we
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know that since ��4ðGÞ > 2 we cannot cover all the triangles in the graph by two

edges. Therefore, there are two triangles T and T 0 outside the wheel which

contain two neighboring spokes. Note that in this case, T and T 0 must be edge-

disjoint to avoid K4. In addition, one of the four triangles in the wheel is also

edge-disjoint from both T and T 0. This implies that �4ðGÞ � 3 and completes the

proof. &

Corollary 3.2. f �3 ð8Þ ¼ 3:

Proof. Similarly as before, f �3 ð8Þ � 8
6
f �3 ð7Þ � 8

3
> 5=2. Therefore, by the

previous result, we obtain that if all the triangles are in the same color then ��4 of

this color is at least 3. On the other hand, if there are triangles of both colors then

one color should have ��4 > 1. Then Lemma 3.3 implies that ��4 of this color is at

least 2. Since the other color also contains a triangle, we again obtain three

fractional monochromatic triangles and therefore f �3 ð8Þ � 3. Now the equality

follows by Lemma 3.1. &

It is worth mentioning that f3ð8Þ ¼ 2 (see [3]), and thus n ¼ 8 is the first value

of n for which f �3 ðnÞ is larger than f3ðnÞ.

Lemma 3.5. f �3 ð9Þ ¼ 4:

Proof. Note that f �3 ð9Þ � 9
7
f �3 ð8Þ � 27

7
. So by Lemmas 3.3 and 3.4, we can

assume that all triangles are in one color. Consider a graph G on nine vertices

such that G is triangle-free, that is, the size of the maximum independent set

�ðGÞ � 2. We need to show that ��4ðGÞ � 4.

First we make the simple observation that, since �ðGÞ � 2, any four vertices of

G induce a subgraph that contains a triangle or two vertex disjoint edges. Now we

consider a few simple cases according to the degrees of vertices in G. First,

suppose that there is a vertex v of degree at most 2. Then six non-neighbors of v
form a K6 and therefore ��4ðGÞ � ��4ðK6Þ ¼ 5 > 4.

If there is a vertex v of degree 3 then, since �ðGÞ � 2, the five non-neighbors

of v form a K5, and the three neighbors of v must contain an edge. This forms a

triangle which is edge-disjoint from K5 and implies that ��4ðGÞ � ��4ðK5Þ þ 1 ¼
10=3 þ 1 > 4.

If there is a vertex v of degree 4 then the four non-neighbors of v form a K4. As

we already pointed out above the four neighbors of v contain either a triangle,

which together with v forms another K4, or two vertex disjoint edges, which form

two edge-disjoint triangles with v. In both cases, ��4ðGÞ � 2 þ 2 ¼ 4.

If there is a vertex v of degree 6 then, since Rð3; 3Þ ¼ 6 and �ðGÞ � 2, the

neighbors of v contain a triangle. The other three vertices of NðvÞ span an edge,

so we have an edge-disjoint K4 and triangle in fvg [ NðvÞ. Also, the two non-

neighbors of v must be adjacent. By the above discussion, they both have degree

at least 5, so each of them have at least four neighbors in NðvÞ. Since jNðvÞj ¼ 6,

they must have a common neighbor in NðvÞ. This forms an additional triangle,
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which is edge-disjoint from the previous configuration, and again implies that

��4ðGÞ � 4.

If there is a vertex v of degree at least 7 then the neighbors of v contain a

triangle, and four other neighbors contain either a triangle or two independent

edges. Together with v, this forms two edge-disjoint K4’s or edge-disjoint copies

of K4 and two triangles. Therefore ��4ðGÞ � 4. Finally, since G has an odd

number of vertices, it cannot be 5-regular. Therefore, we cover all the possible

cases and the proof is complete. &

From this result together with Lemma 3.1, it follows that f �3 ð10Þ ¼ 5, since

5 � f �3 ð10Þ � 10
8
f �3 ð9Þ ¼ 5. Also substituting the value of f �3 ð9Þ into Corollary

2.2, we can further improve the bound on c3 and show c3 � 4
81
þ 1

54
� 1

648
> 1

15:07
.

4. COMPUTER-AIDED PROOFS

Up to this point, the evaluation of f �3 ðnÞ has been relatively painless, but it seems

that to proceed further by the above methods would require excessive case

checking. It also might be discouraging to note that evaluating f �3 ð10Þ did not

improve the bound for c3 we got from f �3 ð9Þ. But at n ¼ 11, the pattern of

Lemma 3.1 breaks: f �3 ð11Þ � 11
9
f �3 ð10Þ � 55

9
> 6, so there is a jump of more than

one. In fact, we will see that f �3 ð11Þ ¼ 7, a jump of two, which gives us another

significant improvement on the bound. This gives us one incentive for continuing

our efforts.

We also want to demonstrate the computational advantages that the fractional

method offers, in addition to the improvement that Corollary 2.2 gives on any

result obtained from the integer method. The most important is the use of

averaging to prune the search space: instead of checking all colorings on n

vertices, we will see it is enough to only check colorings that are one vertex

extensions of the colorings on n� 1 vertices with the lowest values of ��4 ¼
��4ðGÞ þ ��4ðGÞ. In fact, this reduction of complexity from 2n2

to 2n is necessary

to make the problem computationally feasible at the values of n we consider.

A secondary factor is the speed of computing ��4ðGÞ compared to �4ðGÞ. Very

efficient algorithms have been developed for solving linear programs, whereas

integer programs are much harder. We now give a description of our algo-

rithm. A magma program implementing it can be downloaded from www.math.

princeton.edu/�bsudakov/papers.html.

Initialization. Choose a starting value for n, the number of vertices, and d, the

‘search depth.’ Check all graphs G on n vertices. Find the d smallest values of

��4 ¼ ��4ðGÞ þ ��4ðGÞ that occur. Build a list Ln of all graphs for which ��4 is one

of the d � 1 smallest values. (Our lists will always be ‘reduced’: containing no

isomorphic or complementary pairs.)

Iteration. Check all one-vertex extensions of the graphs in Ln. By averaging,

any other graph on nþ 1 vertices must have ��4 at least ðnþ 1Þ=ðn� 1Þ times the
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dth smallest value for graphs on n vertices. We refer to this lower bound as the

level at nþ 1. The smallest values below the level that we find by checking these

extensions are indeed the smallest values for all graphs on nþ 1 vertices. We find

as many of the smallest values as possible up to a maximum of d.

If there are d values below the level, then we let Lnþ1 be the graphs with the

d � 1 smallest values and proceed with the iteration. However, there may not be d

values below the level, so then we have to reduce the depth of the search: we let

Lnþ1 be all the graphs we have found below the level, and calculate the level for

nþ 2 to be ðnþ 2Þ=n times the level for nþ 1. Then we proceed with the iteration.

Termination. There may come a point at which no values are found below the

level, at which point nothing further can be said. To get results for larger n, it is

then necessary to start again with a larger search depth.

The values in the table below were obtained by running the algorithm for only

a few days starting at n ¼ 6 with search depths 4 and 5. Each column begins with

the number of vertices n, and the ith row contains the ith smallest value of

��4ðGÞ þ ��4ðGÞ for graphs G on n vertices.

Note that the first row of the table gives f �3 ðnÞ, which is all that concerns us.

However, it is necessary to run the algorithm at search depth at least 4 to obtain it.

Also, it is worth mentioning that the above table shows that to compute f �3 ðnÞ for

n � 15, it is enough to check only the one-vertex extensions of the colorings

which achieve the value f �3 ðn� 1Þ.
The construction achieving these values is just a continuation of Lemma 3.1.

As in the proof of this lemma we denote by Gn one of the colors. Note that we

have already constructed Gn for n � 10. To get Gn from Gn�1, we pick an edge of

E10 (these are the five edges which cover all the triangles in G10) that we have not

yet used and duplicate (see Lemma 3.1 for description) one of its vertices. This

allows us to assert that f �3 ð15Þ ¼ 15 without actually computing it. The above

construction gives an upper bound, and the lower bound follows from the fact that

f �3 ð15Þ � 15
13
: f �3 ð14Þ ¼ 15.

Proof of Theorem 1.1. Substituting the value of f �3 ð14Þ in Corollary 2.2, we

obtain c3 � 13
196

þ 1
84
� 1

1568
> 1

12:888
. &

Finally, we present some interesting facts discovered in the course of our

computations, which may suggest some further topics of investigation.

i nn 6 7 8 9 10 11 12 13 14 15

1 1 2 3 4 5 7 9 11 13 15
2 2 3 4 5 6 8 10 12 * *
3 5/2 10/3 13/3 16/3 20/3 25/3 31/3 38/3 * *
4 3 7/2 9/2 17/3 7 26/3 32/3 * * *
5 10/3 4 14/3 6 22/3 * * * * *
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First, there are comparatively few graphs that achieve the minimum value of

��4. Most strikingly there are only four graphs (excluding isomorphs and

complements) on ten vertices that achieve ��4ðGÞ þ ��4ðGÞ ¼ 5, and these are

given by the duplication procedure of Lemma 3.1. We can also describe these

graphs as those obtained by taking C5ð2Þ (the two point blowup of the 5-cycle)

and possibly adding edges that connect two points that represent the same point

of C5.

It is natural to ask for a classification of the colorings with minimum value of

��4ðGÞ þ ��4ðGÞ. It seems that a change in structure should occur at n ¼ 20,

because here both K10;10 and C5ð4Þ give the conjectured minimum value of 30

fractional triangles. So we might think that for n � 20 the extremal graphs are

derived by the duplication procedure, and for n � 20 are complete bipartite

graphs.

Next, in our computation, we have observed a value of ��4ðGÞ with denomi-

nator k for all 1 � k � 17. This suggest the following two natural questions. Can

all denominators be achieved? How does the maximum denominator depend on

the size of the graph?

5. EDGE-DISJOINT K4’s

In this section, we study packings of edge-disjoint cliques of size 4 and present

the proof of Theorem 1.2. To do so, we will adapt the ideas and methods of

Section 2. Similarly as before we define f �4 ðnÞ to be the minimum possible value

of ��K4
ðGÞ þ ��K4

ðGÞ over all possible 2-colorings G [ G of the edges of Kn. The

abovementioned result of Haxell and Rödl (Theorem 2.1) implies that f4ðnÞ ¼�
1 � oð1Þ

�
f �4 ðnÞ. Also, essentially the same proof as in Lemma 2.1 shows that

f �4 ðnÞ=nðn� 1Þ is increasing. Since this sequence is bounded, it converges to a

limit which we denote by c4. Next we prove the analogs of Lemma 2.2 and

Corollary 2.2.

Lemma 5.1. f �4 ð4nÞ � 16 f �4 ðnÞ þ n� 4.

Proof. Consider 2-edge-coloring of K4n. By the well-known bound on the

Ramsey number Rð4; 4Þ (see, e.g., [6]) any 18 vertices of K4n contain a

monochromatic copy of K4. So by a greedy procedure, we can find n� 4 vertex

disjoint monochromatic K4’s C1; . . . ;Cn�4. Partition the remaining 16 vertices

into 4 sets Cn�3; . . . ;Cn of size 4 each and consider an n-partite subgraph of K4n

with the parts C1; . . . ;Cn. By definition, for any of 4n distinct copies of Kn with

exactly one vertex in every Cj, we can find a fractional packing wi of

monochromatic K4’s with total value at least f �4 ðnÞ. Note also that every edge of

the n-partite subgraph is contained in precisely 4n�2 such copies of Kn. Therefore

4�ðn�2Þ P
i wi is a valid fractional packing of monochromatic K4’s of this n-partite

subgraph. Hence this subgraph contains at least 4�ðn�2Þ � 4n f �3 ðnÞ ¼ 16 f �4 ðnÞ
fractional monochromatic K4’s. All of them are edge-disjoint from C1; . . . ;Cn�4.
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This implies that f �4
�
4n
�
� 16 f �4 ðnÞ þ n� 4 and completes the proof of the

lemma. &

Corollary 5.1. c4 � g4ðnÞ
n2 þ 1

12n
� 4

15n2.

Proof. Iterating the result of Lemma 5.1, we obtain that for every k � 0

f �4
�
4kþ1n

�
� 16kþ1f �4 ðnÞ þ

Xk
i¼0

16k�ið4in� 4Þ:

This implies

c4 � f �4 ð4kþ1nÞ
4kþ1nð4kþ1n� 1Þ >

f �4 ð4kþ1nÞ
16kþ1n2

� f �4 ðnÞ
n2

þ 1

16n

Xk
i¼0

4�i � 4

n2

Xk
i¼0

16�i�1:

Taking the limiting value of this expression as k tends to infinity gives the result

of the lemma. &

Finally we will need a result of Gyárfás, who proved in [7] that f4ð19Þ � 2.

Proof of Theorem 1.2. First, note that f �4 ð22Þ � f4ð22Þ � 3. Indeed, in any 2-

edge-coloring of K22 there is a monochromatic copy of K4. Delete any three

vertices from this K4. By the result of Gyárfás, we can find two edge-disjoint

monochromatic K4’s in the remaining 19 vertices. Altogether, we obtain three

monochromatic copies of K4, which by our construction, are obviously edge-

disjoint. Now, by substituting the value of f �4 ð22Þ in Corollary 5.1, we conclude

that c4 � 3
484

þ 1
264

� 4
7260

¼ 137
14520

> 1=106. &

6. CONCLUDING REMARKS

The conjecture of Erdó́s concerning edge-disjoint triangles remains open. We

consider its resolution to be the main outstanding problem, and so have not

attempted a more detailed analysis of the question for copies of larger complete

graphs. We merely remark that our general method extends in a straightforward

manner, but that the main difficulty would be establishing good bounds for small

graphs. It seems that such bounds will depend on the Ramsey numbers Rðk; kÞ,
which are unknown for k � 5. In the triangle case, our result is sufficiently close

to 1=12 to provide strong evidence for the truth of the conjecture. However, it

seems that a method based on analysis of small cases will get ever closer to the

answer without reaching it, so new ideas are required.

There are various ways of weakening the statement that may lead to more

manageable but still interesting problems. For instance, in discussion with N.

Alon and N. Linial, they suggested that a simpler question one could ask is to
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show that the smallest number of edge-disjoint triangles in the complement of a

triangle-free graphs G of order n is at least ð1 þ oð1ÞÞn2=12. It can be proved that

in this problem, it is enough to consider graph G with �ðn2Þ edges. Perhaps some

structure of dense triangle free graphs can be exploited here?

Another question raised in [3] asks for the minimum number of edge-disjoint

monochromatic triangles all of the same color. A construction based on the

blowup of C5 shows that there can be as few as n2=20 in each color, and Jacobson

conjectures that this is best possible. We have nothing to add to the trivial

observation that halving a lower bound for the Erdó́s conjecture gives a lower

bound for Jacobson’s conjecture. Indeed, one half of the edge-disjoint mono-

chromatic triangles must be of the same color. Thus Theorem 1.1 gives a bound

of roughly n2=26 for this problem.

Our investigations of the possible values of ��4ðGÞ suggest the following

problem. It is known (see e.g., [1] and [4]) that the fractional part of the linear

programming value of a fractional matching of a 3-uniform hypergraph can

take any rational value between 0 and 1, but is this true for the hypergraph of

triangles? It is not even obvious that any denominator can be achieved, but our

computations so far suggest that this is the case.
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