

Available online at www.sciencedirect.com

European Journal of Combinatorics

European Journal of Combinatorics 25 (2004) 781-784

www.elsevier.com/locate/ejc

A theorem on paths in locally planar triangulations

Ken-ichi Kawarabayashi

Mathematics Department, Princeton University, Princeton, Fine Hall, Washington Road, NJ 08544, USA

Received 24 January 2003; accepted 8 June 2003

Available online 15 January 2004

Abstract

In this note, we show that every 5-connected triangulation in a surface with sufficiently large representativity is Hamiltonian-connected. © 2004 Elsevier Ltd. All rights reserved.

Keywords: Hamiltonian-connected; Large representativity; Surface

1. Introduction

The basic notation and terminology in this paper is the same as in [10] and [5].

A *closed surface* means a connected compact 2-dimensional manifold without boundary. For a closed surface F^2 , let $\varepsilon(F^2)$ denote the Euler characteristic of F^2 . The number $k = 2 - \varepsilon(F^2)$ is called the *Euler genus* of F^2 . We denote an orientable and nonorientable closed surface of genus g by S_g and N_g , respectively. It is well-known that for every even $k \ge 0$, it is either $S_{\frac{k}{2}}$ or N_k , and for every odd k, N_k .

Let G be a graph on a nonspherical closed surface F^2 . The *representativity* of G on F^2 , denoted by r(G), is the minimum number of intersecting points of G and ℓ , where ℓ ranges over all essential closed curves on F^2 . We say that G is *r*-representative if $r(G) \ge r$. Many researchers pointed out that graphs on a closed surface with sufficiently large representativity have similar properties to plane graphs, for example, with respect to chromatic number and hamiltonicity, etc., cf. [1, 3, 4, 10, 11].

Thomassen [9] conjectured that large representativity of a 5-connected triangulation implies it is Hamiltonian, and this was proved by Yu [11]. Thomassen [9] pointed out that 5-connectivity is the best possible because, no matter how large the representativity is,

E-mail address: k_keniti@math.princeton.edu (K. Kawarabayashi).

there are 4-connected triangulations which are not 1-tough. In this note, we will prove the following theorem, which is a generalization of Yu's result.

Theorem 1. For every nonnegative integer k, there exists an integer R such that if G is a 5-connected triangulation in a surface with Euler genus k and $r(G) \ge R$, then it is Hamiltonian-connected.

But perhaps the condition "triangulation" is not necessary. We refer the reader to [1] or [5] on this issue.

We introduce some notation. If G is a 2-connected plane graph with outer cycle C_1 and another facial cycle C_2 , then we call G a *cylinder* with outer cycle C_1 and inner cycle C_2 . In our proof of Theorem 1, we will use the following lemma due to Yu [11].

Lemma 1. Let G be a cylinder with outer cycle C_1 and inner cycle C_2 , x, $y \in V(C_1)$, and $u, v \in V(C_2)$ be four distinct vertices. Suppose that (1) any simple closed curve in the plane separating C_1 from C_2 intersects G at least 7 times, and (2) any simple curve in the plane from C_1 to C_2 intersects G at least 8 times. Then G has two disjoint paths P and Q with P from x to y and Q from u to v such that any $(P \cup Q)$ -bridge not containing vertices in $C_1 \cup C_2$ has at most 4 attachments and any $(P \cup Q)$ -bridge containing a vertex in $C_1 \cup C_2$ has at most 2 attachments.

2. Proof

Suppose $a, b \in V(G)$ are given. We want to prove that there exists a Hamiltonian path from *a* to *b*. Let us first consider the orientable case.

Suppose H is a cylinder with outer cycle C_1 and inner cycle C_2 . If H' is a graph on a surface of Euler genus k with disjoint facial cycles C'_1, C'_2 of the same lengths as C_1, C_2 (respectively), then we can identify C'_1 and C_1 into a cycle C''_1 , and C'_2 and C_2 into a cycle C''_2 . Let M be the graph obtained from the union of H' and H after identifications. Then M has Euler genus k + 2. Conversely, we can say that H' is obtained from M by cutting C_1'' , C_2'' , and by deleting the cylinder H. The cylinder-width of H is the largest integer a such that G has a pairwise disjoint cycles R_1, \ldots, R_a such that $C_1 \subseteq \operatorname{int}(R_1) \subseteq \operatorname{int}(R_2) \subseteq \cdots \subseteq \operatorname{int}(R_a)$. (See the definition of int in [1, 10], say.) Using the argument in [1, 3, 4, 6, 10], the following is not difficult to prove. For any k and c, there exists a number R such that any 3-connected graph on an orientable surface with Euler genus k and $r(G) \ge R$ contains k pairwise disjoint cylinders Q_1, \ldots, Q_k of cylinder width at least c whose cutting and deletion results in a 2-connected plane graph. Let us fix c = 33 and focus on one of the k cylinders, say Q_i . Then, we can take two disjoint noncontractible cycles D_1 and D_2 in Q_j such that a, b are not in the cylinder with the outer cycle D_1 and the inner cycle D_2 , and any curve from D_1 to D_2 intersects the cylinder at least 8 times. Let D'_1 , D'_2 be the nontriangulated facial cycles after cutting and deleting the cylinder. Also, let D_1'', D_2'' be the nontriangulated facial cycles after cutting and deleting two cycles D'_1 and D'_2 . Note that D''_1 , D'_1 , D_1 , D_2 , D'_2 , D''_2 occur in this order in the handle. Since we take c = 33, we can also choose $D'_1, D''_1, D''_2, D''_2$ such that a, bare in neither the cylinder with the outer cycle D'_1 and the inner cycle D''_1 nor the cylinder with the outer cycle D'_2 and the inner cycle D''_2 .

We claim that we can choose these four cycles D_1 , D_2 , D'_1 , D'_2 such that all of them are chordless, any curve from D_1 to D_2 intersects the cylinder at least 8 times and a, b are not in the cylinder. This means the cylinder is 3-connected since the cylinder is a subgraph of the 5-connected triangulation G and has no 2-cuts.

Suppose there exists a chord xy in D_1 , say. Let A' and A'' be the two segments of D_1 bounded by $\{x, y\}$ such that A' + xy is noncontractible. We assume that A'' is chordless (we just take the smallest "chord" segment). Let u_1, \ldots, u_t and v_1, \ldots, v_s be the neighbors of x, y, respectively, such that $u_1, \ldots, u_t, v_s, \ldots, v_1$ is the path inside the disk $A'' \cup xy$ with u_1, v_1 being on A". Since G is a triangulation, $u_t = v_s$. Let u and v be the neighbor of u_1, v_1 in D'_1 , respectively such that the path uD'_1v is as long as possible. By the path uD'_1v , we mean the path between u and v along D'_1 such that all of vertices on it have at least one neighbor to A". By the path vD'_1u , we mean the path obtained from D'_1 by removing $V(uD'_1v) - \{u, v\}$. Set $D = vD'_1uu_1, \dots, u_tv_s, \dots, v_1v$. Now we consider D_1 as A' + xy and D'_1 as D. There are no 2-cuts in the segment $uu_1, \ldots, u_t v_s, \ldots, v_1 v$ of D'_1 since $\{x, y, u, v\}$ is not a cutset in G. This "replacement" of D_1, D'_1 does not destroy the assumption that any curve from D_1 to D_2 intersects the cylinder at least 8 times. (Because we just replace the "chord" part, which does not destroy the assumption.) By continuing this procedure, we can get D_1, D_2, D'_1, D'_2 such that all of them are chordless and any curve from D_1 to D_2 intersects the cylinder at least 8 times and both a and b are not in the cylinder.

By doing this procedure to each cylinder in each handle, we can get the cylinders which are 3-connected, internally 5-connected (a cylinder H with outer cycle C_1 and inner cycle C_2 is said to be *internally k-connected* if H - X does not contain a component which has no vertex in $V(C_1 \cup C_2)$ for any $X \subset V(H)$ with |X| < k. The definition of internally *k*-connected for planar graph with outer cycle C is similar to that of a cylinder.).

Let G' be the plane graph after cutting and deleting all the cylinders. Then G' is also 3-connected since all nontriangulated faces are chordless. There are now 2knontriangulated faces F_1, \ldots, F_{2k} such that F_{2i-1}, F_{2i} correspond to D'_1, D'_2 in each cylinder for $1 \le i \le k$. We add a vertex r_i and edges to F_i for $1 \le i \le 2k$ such that for any $r \in V(F_i)$, if r has at least two neighbors to the cylinder, then we add the edge rr_i . Let G'' be the resulting graph. We claim G'' is 4-connected. Suppose there is a 3-cut $\{x_1, x_2, x_3\}$. Since G' is 3-connected, none of r_i are in $\{x_1, x_2, x_3\}$. But in this case, we can easily find a 4-cut in G, a contradiction. Hence G'' is 4-connected. Then we use the result of Thomassen [8]. We can find a Hamiltonian path P from a to b in G''. The Hamiltonian path P passes through each r_i . Let r'_i and r''_i be two vertices in F_i which is just before r_i , and just after r_i in P, respectively. We extend P to a Hamiltonian path in G. In each cylinder, we can take four distinct vertices $s_{2i-1}, s'_{2i-1}, s_{2i}, s'_{2i}$ such that s_{2i-1}, s'_{2i-1} are adjacent to r'_{2i-1}, r''_{2i-1} , respectively, and s_{2i}, s'_{2i} are adjacent to r'_{2i}, r''_{2i} , respectively, for $1 \le i \le k$. By applying Lemma 1 to each *i*, we can find two disjoint paths P'_{2i-1} , P'_{2i} such that P'_{2i-1} is from s_{2i-1} to s'_{2i-1} and P'_{2i} is from s_{2i} to s'_{2i} , and all vertices in the cylinder are either on P'_{2i-1} or P'_{2i} for $1 \le i \le k$. Then we can get the Hamiltonian path from a to b using $P - \{r_1, \ldots, r_k\}$, P'_{2i-1} , P'_{2i} for $1 \le i \le k$, and $s_{2i-1}r'_{2i-1}$, $s'_{2i-1}r''_{2i-1}$, $s_{2i}r''_{2i}$, $s'_{2i}r''_{2i}$ for $1 \le i \le k$. This completes the proof of the orientable case.

Let us briefly sketch a proof for the nonorientable case N_k . If k is even, then using the theorem of Robertson and Seymour [6] and the above argument, we can find k pairwise

disjoint cylinders whose removal results in the 3-connected planar "nearly" triangulation, and the cylinder is also 3-connected internally 5-connected "nearly" planar triangulation (the word "nearly" means that all faces except for at most 2k faces are triangulated). So we can find the Hamiltonian path from *a* to *b* by the same argument of orientable case. If *k* is odd, we can also find k - 1 pairwise disjoint cylinders whose removal results in the 3-connected internally 5-connected "nearly" planar triangulation. By the theorem of Fielder et al. [2], the large representativity, and the above argument, we can find a cycle *W* in the projective planar "nearly" triangulation of nonplanar crossings are deleted, the resulting graph is the 3-connected planar "nearly" triangulation with outer cycle *W*. Then we use the theorem of Sanders [7] and the argument above to construct a Hamiltonian path from *a* to *b*. This completes the proof.

Acknowledgements

The author would like to thank the referee for helpful suggestions. This research was partly supported by the Japan Society for the Promotion of Science for Young Scientists.

References

- T. Böhme, B. Mohar, C. Thomassen, Long cycles in graphs on a fixed surface, J. Combin. Theory Ser. B 85 (2002) 338–347.
- [2] J. Fielder, J.P. Huneke, R.B. Richter, N. Robertson, Computing the orientable genus of projective graphs, J. Graph Theory 20 (1995) 297–308.
- [3] K. Kawarabayashi, A. Nakamoto, K. Ota, Subgraphs of graphs on surfaces with high representativity, J. Combin. Theory Ser. B 89 (2003) 207–229.
- [4] K. Kawarabayashi, A. Nakamoto, K. Ota, 2-connected 7-coverings of 3-connected graphs on surfaces, J. Graph Theory 43 (2003) 26–36.
- [5] B. Mohar, C. Thomassen, Graphs on Surfaces, Johns Hopkins Press, Baltimore, 2001.
- [6] N. Robertson, P.D. Seymour, Graph minors VII, Disjoint paths on a surface, J. Combin. Theory Ser. B 45 (1988) 212–254.
- [7] D. Sanders, On paths in planar graphs, J. Graph Theory 24 (1997) 341-345.
- [8] C. Thomassen, A theorem on paths in planar graphs, J. Graph Theory 7 (1983) 169-176.
- [9] C. Thomassen, Trees in triangulations, J. Combin. Theory Ser. B 60 (1994) 56-62.
- [10] C. Thomassen, Color-critical graphs on a fixed surface, J. Combin. Theory Ser. B 70 (1997) 67–100.
- [11] X. Yu, Disjoint paths, planarizing cycles, and spanning walks, Trans. Amer. Math. Soc. 349 (1997) 1333–1358.