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A theorem on paths in locally planar triangulations
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Abstract

In this note, we show that every 5-connected triangulation in a surface with sufficiently large
representativity is Hamiltonian-connected.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The basic notation and terminology in this paper is the same as in [10] and [5].
A closed surface means a connected compact 2-dimensional manifold without

boundary. For a closed surfaceF2, let ε(F2) denote the Euler characteristic ofF2. The
numberk = 2 − ε(F2) is called theEuler genus of F2. We denote an orientable and
nonorientable closed surface of genusg by Sg andNg , respectively. It is well-known that
for every evenk ≥ 0, it is eitherS k

2
or Nk , and for everyoddk, Nk .

Let G be a graph on a nonspherical closed surfaceF2. The representativity of G on
F2, denoted byr(G), is the minimum number of intersecting points ofG and�, where
� ranges over all essential closed curves onF2. We saythat G is r-representative if
r(G) ≥ r . Many researchers pointed out that graphs on a closed surface with sufficiently
large representativity have similar properties to planegraphs, for example, with respect to
chromatic number and hamiltonicity, etc., cf. [1, 3, 4, 10, 11].

Thomassen [9] conjectured that large representativity of a 5-connected triangulation
implies it is Hamiltonian, and this was proved by Yu [11]. Thomassen [9] pointed out that
5-connectivity is the best possible because, no matter how large the representativity is,
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there are 4-connected triangulations which are not 1-tough. In this note, we will prove the
following theorem, which is a generalization of Yu’s result.

Theorem 1. For every nonnegative integer k, there exists an integer R such that if G is
a 5-connected triangulation in a surface with Euler genus k and r(G) ≥ R, then it is
Hamiltonian-connected.

But perhaps the condition “triangulation” isnot necessary. We refer the reader to [1] or
[5] on this issue.

We introduce some notation. IfG is a 2-connected plane graph with outer cycleC1 and
another facial cycleC2, then we call G a cylinder with outer cycleC1 and inner cycleC2.
In our proof of Theorem 1, we will use the following lemma due to Yu [11].

Lemma 1. Let G be a cylinder with outer cycle C1 and inner cycle C2, x, y ∈ V (C1), and
u, v ∈ V (C2) be four distinct vertices. Suppose that (1) any simple closed curve in the
plane separating C1 from C2 intersects G at least 7 times, and (2) any simple curve in
the plane from C1 to C2 intersects G at least 8 times. Then G has two disjoint paths P
and Q with P from x to y and Q from u to v such that any (P ∪ Q)-bridge not containing
vertices in C1∪C2 has at most 4 attachments and any (P ∪ Q)-bridge containing a vertex
in C1 ∪ C2 has at most 2 attachments.

2. Proof

Supposea, b ∈ V (G) are given. We want to prove thatthere exists a Hamiltonian path
from a to b. Let us firstconsider the orientable case.

SupposeH is a cylinder with outer cycleC1 and inner cycleC2. If H ′ is a graph
on a surface of Euler genusk with disjoint facial cyclesC ′

1, C ′
2 of the same lengths

as C1, C2 (respectively), then we can identifyC ′
1 and C1 into a cycleC ′′

1 , andC ′
2 and

C2 into a cycleC ′′
2. Let M be the graph obtained from the union ofH ′ and H after

identifications. ThenM has Euler genusk + 2. Conversely, we can say thatH ′ is obtained
from M by cutting C ′′

1 , C ′′
2 , andby deleting the cylinderH . The cylinder-width of H

is the largest integera suchthat G hasa pairwise disjoint cyclesR1, . . . , Ra suchthat
C1 ⊆ int(R1) ⊆ int(R2) ⊆ · · · ⊆ int(Ra). (See the definition of int in [1, 10], say.)
Using the argument in [1, 3, 4, 6, 10], the following is not difficult to prove. For anyk
andc, there exists anumberR such that any 3-connected graph on an orientable surface
with Euler genusk andr(G) ≥ R containsk pairwise disjoint cylindersQ1, . . . , Qk of
cylinder width at leastc whose cutting and deletion results in a 2-connected plane graph.
Let us fix c = 33 and focus on one of thek cylinders, sayQ j . Then, we can take two
disjoint noncontractible cyclesD1 andD2 in Q j suchthata, b are not in the cylinder with
the outer cycleD1 and the inner cycleD2, and any curve from D1 to D2 intersects the
cylinder at least 8 times. LetD′

1, D′
2 be the nontriangulated facial cycles after cutting and

deleting the cylinder. Also, letD′′
1, D′′

2 be the nontriangulated facial cycles after cutting
and deleting two cyclesD′

1 andD′
2. Note that D′′

1, D′
1, D1, D2, D′

2, D′′
2 occur in this order

in the handle.Since we takec = 33, we can also chooseD′
1, D′′

1, D′
2, D′′

2 suchthat a, b
are in neither the cylinder with the outer cycleD′

1 and the inner cycleD′′
1 nor the cylinder

with the outer cycleD′
2 and the inner cycleD′′

2.
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Weclaim that we can choose these four cyclesD1, D2, D′
1, D′

2 such that all of them are
chordless, any curve fromD1 to D2 intersects the cylinder at least 8 times anda, b are not
in the cylinder. This means the cylinder is 3-connected since the cylinder is a subgraph of
the 5-connected triangulationG and has no 2-cuts.

Suppose there exists a chordxy in D1, say. Let A′ and A′′ be the two segments ofD1
bounded by{x, y} suchthat A′ + xy is noncontractible. We assume thatA′′ is chordless
(we just take the smallest “chord” segment). Letu1, . . . , ut andv1, . . . , vs be the neighbors
of x, y, respectively, such thatu1, . . . , ut , vs , . . . , v1 is the path inside the diskA′′ ∪ xy
with u1, v1 being onA′′. SinceG is a triangulation,ut = vs . Let u andv be the neighbor
of u1, v1 in D′

1, respectively such that the pathu D′
1v is as long as possible. By the path

u D′
1v, we mean the path betweenu andv along D′

1 such that all of vertices on it have
at least one neighbor toA′′. By thepathvD′

1u, we mean the path obtained fromD′
1 by

removingV (u D′
1v) − {u, v}. SetD = vD′

1uu1, . . . , utvs , . . . , v1v. Now we considerD1
asA′ + xy andD′

1 asD. There are no 2-cuts in the segmentuu1, . . . , utvs , . . . , v1v of D′
1

since{x, y, u, v} is not a cutset inG. This “replacement” ofD1, D′
1 does not destroy the

assumption that any curve fromD1 to D2 intersects the cylinder at least 8 times. (Because
we just replace the “chord” part, which does not destroy the assumption.) By continuing
this procedure, we can getD1, D2, D′

1, D′
2 such that all of them are chordless and any

curve fromD1 to D2 intersects the cylinder at least 8 times and botha andb are not in the
cylinder.

By doing this procedure to each cylinder ineach handle, we can get the cylinders which
are 3-connected, internally 5-connected (a cylinderH with outer cycleC1 and inner cycle
C2 is said to beinternally k-connected if H − X does not contain a component which has
no vertex inV (C1 ∪ C2) for any X ⊂ V (H ) with |X | < k. Thedefinition of internally
k-connected for planar graph with outer cycleC is similar to that of a cylinder.).

Let G′ be the plane graph after cutting and deleting all the cylinders. ThenG′ is also
3-connected since all nontriangulated faces are chordless. There are now 2k
nontriangulated facesF1, . . . , F2k such that F2i−1, F2i correspond toD′

1, D′
2 in each

cylinder for 1 ≤ i ≤ k. We add a vertexri and edges toFi for 1 ≤ i ≤ 2k suchthat
for any r ∈ V (Fi ), if r has at least two neighbors to the cylinder, then we add the edge
rri . Let G′′ bethe resulting graph. We claimG′′ is 4-connected. Suppose there is a 3-cut
{x1, x2, x3}. SinceG′ is 3-connected, none ofri are in{x1, x2, x3}. But in this case, we can
easily find a 4-cut inG, a contradiction. HenceG′′ is 4-connected. Then we usethe result
of Thomassen [8]. We can find a Hamiltonian pathP from a to b in G′′. The Hamiltonian
path P passes through eachri . Let r ′

i andr ′′
i be two vertices in Fi which is just before

ri , and justafterri in P, respectively. We extendP to a Hamiltonian path inG. In each
cylinder, we can take four distinct verticess2i−1, s′

2i−1, s2i , s′
2i suchthat s2i−1, s′

2i−1 are
adjacent tor ′

2i−1, r ′′
2i−1, respectively, ands2i , s′

2i are adjacent tor ′
2i , r ′′

2i , respectively, for
1 ≤ i ≤ k. By applying Lemma 1 to eachi , wecan find two disjoint pathsP ′

2i−1, P ′
2i such

that P ′
2i−1 is from s2i−1 to s′

2i−1 andP ′
2i is from s2i to s′

2i , and all vertices in the cylinder
are either onP ′

2i−1 or P ′
2i for 1 ≤ i ≤ k. Then wecan get the Hamiltonian path froma to b

usingP − {r1, . . . , rk}, P ′
2i−1, P ′

2i for 1 ≤ i ≤ k, ands2i−1r ′
2i−1, s′

2i−1r ′′
2i−1, s2i r ′

2i , s′
2i r

′′
2i

for 1 ≤ i ≤ k. This completes the proof of the orientable case.
Let us briefly sketch a proof for the nonorientable caseNk . If k is even, then using the

theorem of Robertson and Seymour [6] and the above argument, we can findk pairwise
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disjoint cylinders whose removal results in the 3-connected planar “nearly” triangulation,
and the cylinder is also 3-connected internally 5-connected “nearly” planar triangulation
(the word “nearly” means that all faces except for at most 2k faces are triangulated). So
we can find the Hamiltonian path froma to b by the same argument of orientable case.
If k is odd, we can also findk − 1 pairwise disjoint cylinders whose removal results in
the 3-connected projective planar “nearly” triangulation, and the cylinder in each handle is
also 3-connected internally 5-connected “nearly” planar triangulation. By the theorem of
Fielder et al. [2], the large representativity, and the above argument, we can find a cycleW
in the projective plane graph such that if all chords of nonplanar crossings are deleted, the
resulting graph is the 3-connected planar“nearly” triangulation with outer cycleW . Then
we use the theorem of Sanders [7] and the argument above to construct a Hamiltonian path
from a to b. This completes the proof. �
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