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Abstract

In this note, we show that every 5-connected triangulation in a surface with sufficiently large
representativity is Hamiltonian-connected.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The basic notation and terminology in this paper is the same a€jiaifd [B].

A closed surface means a connected compact 2-dimensional manifold without
boundary. For a closed surfaé&, let ¢(F2) denote the Euler characteristic Bf. The
numberk = 2 — e(F?) is called theEuler genus of F2. We deote an orientable and
nonorientable closed surface of geruby §; and Ng, resgectively. It is well-known that
for every everk > 0, itis either8§ or Nk, and for ery oddk, N.

Let G be a graph on a nonspherical closed surfBée The representativity of G on
F2, denoted byr (G), is the mhimum number of intersecting points &f and¢, where
¢ ranges over all esstal closed curves orF2. We saythat G is r-representative if
r(G) > r. Many researchers pointed out that graphs on a closed surface with sufficiently
large representativity have similar propestte planegraphs, for example, with respect to
chromatic number and hamiltonicity, etc., cf, B, 4, 10, 11].

Thomassenq] conjectured that large representativity of a 5-connected triangulation
implies it is Hamiltonian, and this was proved by YL4]. Thomassend] pointed out that
5-connectivity is the best possible because, raiten how large the representativity is,
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there are 4-connected triangulations which are not 1-tough. In this note, we will prove the
following theorem, which is a generalization of Yu's result.

Theorem 1. For every nonnegative integer k, there exists an integer R such that if G is
a 5-connected triangulation in a surface with Euler genusk and r (G) > R, then it is
Hamiltonian-connected.

But perhaps the condition “triangulation” it necessary. We refer the readertpdr
[5] on this issue.

We introduce some notation. @ is a 2-connected plane graph with outer cy€leand
another facial cycl€,, then we call G a cylinder with outer cycleC; and inner cycleC,.
In our proof of Theorem 1, we will use the following lemma due to Yd]{

Lemma 1. Let G beacylinder with outer cycle C1 andinner cycleCp, X, y € V(C1), and
u,v € V(Cy) be four distinct vertices. Suppose that (1) any simple closed curve in the
plane separating C; from Cy intersects G at least 7 times, and (2) any simple curvein
the plane from C; to Cy intersects G at least 8 times. Then G has two disjoint paths P
and Q with P fromx to y and Q fromu to v such that any (P U Q)-bridge not containing
verticesin C1UCy hasat most 4 attachmentsand any (P U Q)-bridge containing a vertex
inCy U Cy hasat most 2 attachments.

2. Proof

Supposea, b € V(G) are given. We want to prove thtitere exists a Hailtonian path
fromatob. Let us firstconsider the orientable case.

SupposeH is a cylinder with outer cycleC; and inner cycleC,. If H is a graph
on a surface of Euler genus with disjoint facial cyclesCy, C;, of the same lengths
as Cy, Cz (respectively), then we can identify; andC; into a cycleCy, andC,, and
C: into a cycleC]. Let M be the graph obtained from the union Bf and H after
identifications. ThemM has Euler genuls+ 2. Conversely, we can say thidt is obtained
from M by cutting C{, C5, andby deleting the cylinderH. The cylinder-width of H
is the largest integea suchthat G hasa pairwise disjoint cyclesRy, ..., Ry suchthat
C1 C int(Ry) C int(Ry) € --- C int(Ry). (See the definition of int in1, 10], say.)
Using the agument in [, 3, 4, 6, 10], the following is not difficult to prove. For ank
andc, there exits anumberR such ttat any 3-connected graph on an orientable surface
with Euler genusk andr (G) > R containsk pairwise disjoint cylinder®), ..., Qk of
cylinder widh at leastt whose cutting and deletion results in a 2-connected plane graph.
Let us fixc = 33 and focus on one of thecylinders, sayQ;j. Then, we can tke two
disjoint noncontractible cycle®; andD» in Q; suchthata, b are not in the cylinder with
the outer cycleD; and the inner cycld,, and any arve from D1 to D; intersects the
cylinder at least 8 times. L&), D, be the nontriangulated fadicycles after cutting and
deleting the cylinder. Also, leD], D} be the nontriangulated faaticycles after cutting
and deleting two cycle®; andD5. Note hatD7, D7, D1, D2, D), D3 occur in this order
in the handleSince we takee = 33, we can also chood®/, Df, D), D; suchthata, b
are in neither the cylinder with the outer cydg and the inner cycl®7 nor the cylinder
with the outer cycleD;, and the inner cycl®?.
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We claim that we can choose these four cydlgs D2, D}, D5 such trat all of them are
chordless, any curve froid; to D, intersects the cylinder at least 8 times anth are not
in the gylinder. This means the cylinder is 3-connected since the cylinder is a subgraph of
the 5-connected triangulatio® and has no 2-cuts.

Suppose there exists a chaxg in D3, say Let A" and A” be the two segments @1
bounded by{x, y} suchthat A’ + xy is noncontractible. We assume th&t is chordless
(we just take the smallest “chord” segment). Lgt. . ., uy andvs, .. ., vs be the neighbors
of x, y, resgectively, such thatiy, ..., ut, vs, ..., v1 is the path inside the disR” U xy
with u1, v1 being onA”. SinceG is a rriangulation,u; = vs. Let u andv be the neighbor
of ug, vy in D], resgectively such that the pathD’v is as long as possible. By the path
uDjv, we mean the path betweanandv along D7 such that all of vertices on it have
at least one neighbor t&”. By the pathvD}u, we mean the path obtained from; by
removingV (uDjv) — {u, v}. SetD = vDjuuy, ..., Utvs, ..., viv. Now we @nsiderDy
asA’' +xy andD] asD. There are o 2-cuts in he segmentiug, . .., Utvs, ..., viv of D]
since{x, y, u, v} is not a cutset irG. This “replacement” ofD1, D] does not destroy the
assumption that any curve froby to D intersects the cylinder at least 8 times. (Because
we just replace the ‘fword” part, which does not destroy the assumption.) By continuing
this pracedure, we can gdb1, Do, D/l, D/2 such ttat all of them are chordless and any
curve fromD; to D; intersects the cylinder at least 8 times and m#ndb are not in the
cylinder.

By doing this procedure to each cylinderdach handle, we can get the cylinders which
are 3-connected, internally 5-connected (a cylinderith outer cycleC; and inner cycle
C, is said to benternally k-connected if H — X does not contain a component which has
no vertex inV(Cy U Cp) for any X ¢ V(H) with | X] < k. Thedsdfinition of internally
k-connected for planar graph with outer cy€ds similar to that of a cylinder.).

Let G’ bethe plane graph after cutting and deleting all the cylinders. Theis also
3-connected since all namdngulated faces are chordless. There are now 2
nontriangulated face&, ..., Fx suchthat Fy_1, Fz correspond toDj, D5 in each
cylinder for 1 < i < k. We add a vertex; and edges td~ for 1 < i < 2k suchthat
foranyr € V(F), if r has at least two neighbors to the cylinder, then we add the edge
rri. Let G” bethe resulting graph. We claii®” is 4-connected. Suppose there is a 3-cut
{X1, X2, X3}. SinceG’ is 3-connected, none of are in{x1, X2, x3}. But inthis case, we can
easily find a 4-cut irG, a mntradiction. Henc&” is 4-connectedThen we usé¢he result
of Thomasseng]. We can find a Hamiltonian patR froma to b in G”. The Haniltonian
path P passes through each Letr; andr;” be two vetices inF which is jug before
ri, and justafterr; in P, resgectively. We extend® to a Hamiltonian path irG. In each
cylinder, we can take four distinct vertices_1, S, _;, Si, Sy suchthatsy_1,s, , are
adjacent tay;_,,ry_,, resgectively, ands;, s, are adjacent to,, ro;, resgectively, for
1 <i < k. By applying Lemma 1 to each wecan find two disjoint path®); ,, P, such
thatPy , isfromsy_3tos, , andPj isfroms; to sy, and all \ertices in the cylinder
are either orP;, _, or P, for1 <i < k. Then wecan get the Hamiltonian path froato b
usingP — {ry,....,r}, Py 4, Py forl <i <k, andsy_ar5 ;.S 1r5 1, il %, Syl
for 1 <i < k. This mmpletes the proof of the orientable case.

Let us briefly sketch a proof for the nonorientable chigelf k is even, tha using the
theorem of Rbertson and Seymou@][and the &dove argument, we can find pairwise
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disjoint cylinders whose removal results in the 3-connected planar “nearly” triangulation,
and the cylinder is also 3-connected internally 5-connected “nearly” planar triangulation
(the word “nearly” means that all faces except for at mdstates are triangulated). So
we can find the Haittonian path froma to b by the same argument of orientable case.

If k is odd, we can also find — 1 pairwise dsjoint cylinders whose removal results in
the 3-connected projective planar “nearlyamgulation, and the ¢éinder in each handle is
also 3-connected internally 5-connected “nearly” planar triangulation. By the theorem of
Fielder et al. 2], the large represertigity, and the above argument, we can find a cywle

in the projective plane graph such that if all chords of nonplanar crossings are deleted, the
resulting graph is the 3-connected platragarly” triangulation with outer cycl&/. Then

we use lhe theorem of Sanderg][and the agument above to construct a Hamiltonian path
from a to b. This mmpletes the proof. [
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