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Abstract

Let C be a centrally symmetric compact convex body in R
2 whose center is

the origin. It is proved that if none of the elements a1, a2, a3 ∈ R
2 are inside

C then not all the sums ai + aj(i �= j) can be inside C.



1 Main result

Let C be a centrally symmetric compact convex body in the two-dimensional
plane R

2. For any x ∈ R
2, let

||x||C = min
0≤λ

{λ : x ∈ λC}.

It is easy to check that

0 < ||x||C for all x ∈ R
2 except that ||0||C = 0, (i)

||µx||C = |µ|||x||C for all R
2 and µ ∈ R, (ii)

||x + y||C ≤ ||x||C + ||y||C for all x, y ∈ R
2. (iii)

In other words, || · ||C is a norm. Defining the distance of two points x, y ∈ R
2

as ||x − y||C , we get the so-called Minkowski metric on R
2. With respect

to this metric, C is the unit ball around the origin, i.e., C = {x ∈ R
2 :

||x||C ≤ 1}. The space R
2 equipped with the Minkowski metric is called in

the literature the Minkowski space with gauge body C. See [8].

Theorem 1.1 Let a1, a2, a3 be elements of a Minkowski space with norm at
least 1. Then there is a pair i, j of distinct indices such that 1 ≤ ||ai + aj||.

First proof. It can be supposed that the origin is an inner point of C.
Otherwise the statement is trivial.

Suppose first that ||a1|| = ||a2|| = ||a3|| = 1 and denote the set of points
satisfying ||u|| = 1 by U . Its shift U + a1 = {u + a1 : u ∈ U} is denoted by
U ′.

It is easy to see that U ∩ U ′ consist of either two points or two straight
line segments. Actually, the former one is a special case of the latter one,
however we show the proof for the first (special case) as a warming up. Let
the two points in common be b′ and c′. It is obvious that b = b′ − a1 and
c = c′ − a1 are on U . The arc of U ′ containing the origin and connecting b′

and c′ is inside U , the other arc connecting them is outside of U . The shift
(by a1) of the arc of U connecting b and c and going through a1 is an arc of
U ′ outside U .

Let us show that c′ = −b. It is obvious that b′′ = b′ + a1 is on U ′. Its
mirror image with respect to a1 (the center of U ′) is denoted by d. Since
b′ − b = a1 − 0, b′ − 0 = b′′ − a1 = a1 − d , the triangles b, b′, 0 and 0, a1, d are
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congruent. Hence d = −b, that is d is the mirror image of b in U . Therefore
d is on both U and U ′, it must be either b′ or c′. It cannot be b′ (otherwise
d = −b′ + a1 = b′ imples 2b′ = a1, since both are on U , |a1| = 0 is a
contradiction), therefore d = c′, proving the statement. (By symmetry we
have c = −b′.)

Observe that b = −c′ and c′ = c+a1 imply b+c = −a1. Hence a1, b,−a1, c
are on U in this order and the angle between b and c containing −a1 is less
than 180o. We distinguish cases according to the distribution of a2 and a3

among the 3 arcs determined by b′, c′,−a1 on U . Call the arcs between b′

and c′, between −a1 and b and between c and −a1 by α, β and γ, resp.
Case 1. At least one of a2 and a3 is on α.
By symmetry, we may suppose that a2 is on α. a1 + a2 is a shift of a2

therefore it is on the arc of U ′ outside of U . Its norm is at least 1.
Case 2. a2 is on β, a3 is on γ or in the other way around.
By symmetry we can suppose that the first subcase holds. Define w2 and

w3 by a2 = b + w2 and a3 = c + w3, resp. Hence a2 + a3 = b + c + w2 + w3 =
−a1 + w2 + w3. By the convexity, a2 is in the halfplane determined by the
points −a1 and b, and not containing 0. Therefore (shift by −b) w2 = a2 − b
is on the same side of the line determined by −a1 − b = c and 0 as b and
a1. On the other hand, since a2 is on the same side of b as −a1, this is also
true for w2 = a2 − b. We can conclude that w2 lies in the angular sector
determined by b and c and containing −a1. By symmetry, the same can
be said about w3 (the roles of b and c are interchanged in the verification).
Hence w2 + w3 is in the same angular sector. Shift this angular sector with
−a1. It is determined by b − a1, 0 and c − a1, 0 and it contains −2a1. By
the convexity, again, this angular sector cannot contain an interior point of
C therefore a2 + a3 = w2 + w3 − a1 cannot be in its interior, proving the
statement in this case.

Case 3. Either both a2 and a3 are on β or both are on the γ.
By symmetry we can suppose that the first subcase holds. Similarly to

the previous case, one can see that (by the convexity) w2 = a2 − b and
w3 = a3 − (−a1) are on the same side of the line determined by b′ and c as
−a1. The same must hold for the sum w2 + w3 = a2 + a3 − b + a1. Shift
this line by b − a1, that is by −2a1. The so obtained line � contains the
points b− a1 and −2a1 which are points of U−′ the shift of U by −a1. Since
these two points are arc which is outside of U , by the convexity, � cannot
go through the interior of C. w2 + w3 + (−b + a1) will be on the side of �
opposite to C, therefore it cannot be in the interior of U .
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If the intersection of U and U ′ consists of two intervals then let b′ and c′

denote the middle points of these intervals. The proof can be repeated.
To complete the proof we have to see that the stament is true when the

vectors are allowed to be outside U . Define a∗
i as the vector λai satisfying

||λai|| = 1. Let di = ai−a∗
i . By symmetry we can suppose that 1 ≤ ||a∗

1+a∗
2||.

The sum d1 +d2 is in the (smaller) angular sector σ determined by a∗
1 and a∗

2.
Consequently, a1 + a2 = d1 + d2 + a∗

1 + a∗
2 is in the angular sector σ′ obtained

by shifting σ by a∗
1 + a∗

2. It remained to verify that σ has no inner point of
C. This is an easy consequence of the convexity.

Second proof. Suppose that ||a1|| = ||a2|| = ||a3|| = 1. The general
case can be reduced to this one as in the previous proof. It is also supposed
that C has inner points, U is defined like in the first proof.

Let L be a linear transformation in R
2. It is easy to see that a ∈ C iff

La ∈ LC for any centrally symmetric compact convex body. Hence, if the
theorem holds for C then it also holds for LC.

Let (0, u) ∈ U, (0 < u). There is a line �1 containing this point and being
“above” C. The line containing (0,−u) and parallel to �1 is denoted by �1.
Similarly, let (v, 0) ∈ U(0 < v). There is a line �2 which is “on the right” of C.
The line �2 is parallel to �2 and contains (−v, 0). It is obvious that there is a
linear transformation L which maps the parallelogram defined by �1, �1, �

2, �2

to the square Q1 defined by the lines y = 1, y = −1, x = 1, x = −1. Therefore
we may suppose for the rest of the proof that U is within Q1 and contains
the points (1, 0), (−1, 0), (0, 1), (0,−1). Hence U is between the square Q1

and the square Q2 determined by the points (1, 0), (−1, 0), (0, 1), (0,−1).
Two cases will be distinguished.
Case 1. The angle between two of the vectors a say between a1 and a2 is

at most 90o.
Consider the vectors a∗

i = µiai lying on Q2, where µi ≤ 1(i = 1, 2). Let
us prove that a∗

1 + a∗
2 cannot be an inner point of Q1. By symmetry we can

suppose that the coordinates of a∗
1 = (x1, y1) satisfy 0 ≤ x1, 0 ≤ y1, y1 ≤ x1.

Of course we know x1 + y1 = 1. By the condition of the angle between a1

and a2 we can have the following cases: (i) y2 positive, x2 negative, −x2 ≤
y1, y2 = x2 + 1, (ii) both x2 and y2 are non-negative, x2 + y2 = 1, (iii) y2 is
negative, x2 is non-negative, y1 ≤ x2, y2 = x2 − 1.

In case of (i) −x2 = 1−y2 and −x2 ≤ y1 imply 1 ≤ y1 +y2. In case of (ii)
x1 +y1 +x2 +y2 = 2 implies that either x1 +x2 or y1 +y2 is at least 1. In case
of (iii) x1 + y1 = 1 and y1 ≤ x2 result in 1 ≤ x1 + x2. One of the coordinates
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of the sum a∗
1 + a∗

2 is at least 1, that is the sum cannot be an inner point of
Q1. If a∗

i is replaced by ai(i = 1, 2) then the sum which turned out to be at
least one was increased (non-decreased), therefore a1 +a2 cannot be an inner
point of Q1 either, consequently 1 ≤ ||a1 + a2|| holds.

Case 2. All the angles among a1, a2 and a3 exceed 90o.
Let a be an arbitrary element of R

2. Take the shift of U by a: U ′ =
U + a = {u + a : u ∈ U}. Suppose that U ∩ U ′ contains at least two
elements. The middle points of the two intervals (they can be points) of the
intersection U ∩ U ′ are denoted by v and w, respectively. Let α denote the
arc between v and w on U which contains the inner points of U ′. Similarly,
let β denote the arc between v and w on U ′ which contains the inner points
of U . It is easy to see that α and β are mirror images with respect to the
point a/2, therefore they are congruent. The shift of α by a is denoted by
γ. This is an arc of U ′, disjoint and congruent to α. Hence the angles of β
and γ with respect to the center a of U ′ is at most 180o. This is trivially
true if the intersection U ∩ U ′ does not have two different elements. We can
conclude that the angle vaw containing the arc of U ′ with inner points in U
is at most 180o.

Define now a = a1 + a2 + a3. Then a2 + a3 = a − a1, etc., therefore
the statement of the theorem can be reformulated: not all three vectors
a − a1, a − a2, a − a3 can be inner points of U . These vectors all lie on U ′.
Since their pairwise angles are more than 90o, they cannot be all within an
angle ≤ 180o, they cannot all lie on the arc of U ′ inside U . One of them is
either on U ∩ U ′ or outside U .

The theorem is sharp in the following sense.

Proposition 1.2 For any given Minkowski space and a1 with ||a1|| = 1 there
exist a2, a3 satisfying ||a2|| = ||a3|| = ||a1 +a2|| = ||a1 +a3|| = ||a2 +a3|| = 1.

Proof. The vectors a2 = b, a3 = c from the first proof will satisfy the
conditions.

2 Further results, remarks, problems

Theorem 1.1 is rather trivial for the Euclidean space. However this special
case was one of the ingredients of the proof of an inequality concerning ran-
dom vectors (see e.g. [4] and [7]). Our recent generalization for Minkowski
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spaces (Theorem 1.1) makes possible to prove the inequality for Minkowski
spaces, too.

Theorem 2.1 Let ξ and η be independent and identically distributed random
elements of a Minkowski space. Then

P (||ξ + η|| ≥ x) ≥ 1

2
P 2(||ξ|| ≥ x). (1)

This theorem can be proved by the method used in in the papers [4], [5],
[6], [7]. Both [4] and [7] start with the proof of the theorem above for the
special case of the Euclidean metric.

The above mentioned papers prove generalizations and extensions of (1).
The basic ingredients of the proofs are (i) geometric statement analogous to
Theorem 1.1 and extremal theorems for graphs. The earlier papers mostly
consider Euclidean spaces only. Let us briefly see what are the open questions
for Minkowski spaces.

The statement of Theorem 1.1 is well-known in any dimensional Eu-
clidean space or even in a Hilbert space. Unfortunetely, it is not true for
a Minkowski space in R

3 as the following examle shows. Let C be the cube
determined by the 8 points having three ±1s as coordinates. Each of the
points (1,−1

3
,−1

3
), (−1

3
, 1,−1

3
), (−1

3
,−1

3
, 1) have a norm 1. However the sum

of any two has a norm 2
3
. It was shown in [7] (in a more general context:

Lemma 4) that 2
3

can always be attained.
[4], [5], [6] [3] contain many analogous results for the Euclidean spaces.

One of them is that if 1 ≤ |a1|, |a2|, . . . , |ak| holds then at least one of the
k − 1-term subsums has an absolute value at least 1. Eli Goodman [2] asked
if this is true for a Minkowski space of dimension at most k − 1.

Problem 2.2 [2] Let M be a k− 1-dimensional Minkowski space, a1, . . . , ak

satisfy 1 ≤ ||ai||(1 ≤ i ≤ k). Is it true that

1 ≤ ||
k∑

i=1, �=j

ai||

must hold for some 1 ≤ j ≤ k?

For dimension k the generalization of the example above serves as a
counter-example.
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The following definition is needed to formulate the (simplest) problems
what are really needed to extend the probabilistic results for Minkowski
spaces. Let M be a Minkowski space.

δ(k, M) = min max
1≤i<j≤k

||ai + aj||,

where the minimum is taken for all choices of vectors a1, . . . , ak ∈ M, 1 ≤
||ai||(1 ≤ k).

Proposition 2.3 If M is a two-dimensional Minkowski space then δ(k, M)
is attained for vectors satisfying 1 = ||a1|| = . . . = ||ak|| = ||a1 + a2|| =
||a2 + a3|| = . . . = ||ak−1 + ak|| = ||ak + a1||.

Problem 2.4 Suppose that M is two-dimensional and k is a multiple of 4.
Prove that δ(k, M) is attained for a system of vectors invariant for a rotation
with 90o.

Problem 2.5 Determine δ(k, M) for a two-dimensional Minkowski space
with the norm || ||p. (k=4 is easy.)

Problem 2.6 Find connections between δ(k, M) and the modul of convexity

I(ε, M) = sup
||x|| = ||y|| = 1
||x − y|| = ε

||x + y||.

The interested reader finds many results in the cited literature which are
proved for the Euclidean space and are waiting for extension for Minkowski
spaces.

Finally let us mention a related result. We formulate it in our terminology,
which is rather different from the original one.

Theorem 2.7 [1]. For any n there is an n-dimensional Minkowski space
with a strictly convex norm which contains m = cn(1 < c) vectors a1, . . . , am

of norm 1, such that each of the sums ai ± aj(1 ≤ i < j ≤ m) has a norm 1.
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