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A median order of a tournament T is a linear extension of an acyclic
subdigraph of T, maximal with respect to its number of arcs. This concept arises
naturally in voting theory, and many articles deal with the computation of such
orders. Determining a median order of a digraph is NP-hard, and the complexity
for tournaments is still unknown (see [1]). Surprisingly, the notion of median
order, well-studied for its own sake, has been seldom used as a tool in tournament
theory. It appears that median orders provide a very powerful inductive method.
In this paper, we apply them to two questions. The ®rst one is ®nding a vertex
whose ®rst neighborhood is no greater than its second neighborhood. This was
known as Dean's conjecture [2] until Fisher [3] proved it. We give, in Theorem 1,
a short constructive proof of this fact. Actually, our method affords a slight
extension (Theorem 2): if a tournament has no dominated vertex, there exist
two vertices which satisfy Dean's property. The second question is Sumner's
conjecture (see [8]), posed around 1972, asserting that for n > 1, every
tournament of order 2nÿ 2 contains every oriented tree of order n. In 1982,
Wormald [8] proved that, for n � 4, every tournament of order n log2 �2n=e�
contains every oriented n-tree. A year later, Reid and Wormald [7] showed that
every near-regular �2nÿ 2�-tournament contains every oriented n-tree. In
addition, they proved that every orientation of a caterpillar of order n and
diameter at most 4 is contained in every �2nÿ 2�-tournament. The ®rst linear
bound was given by HaÈggkvist and Thomason [5] in 1991. They obtained 12n in
place of 2nÿ 2, and determined an asymptotic bound of �4� o �1��n. Their
method, based on the notion of k-heart of a tree, was later used by Havet [6] to
reduce the bound to 7.6n. By means of median orders, we prove in Theorem 3
that Sumner's conjecture holds for arborescences (trees oriented from a root);
also, by the same short argument, that the bound of 4nÿ 6 holds for all trees
(Theorem 4). In the last section of this paper, we show in Theorem 5 that this
bound can be improved to �7nÿ 5�=2. But the calculation is more involved and
the argument no longer simple.

1. THE FEEDBACK PROPERTY

In this paper, digraphs are understood to be orientations of ®nite simple graphs,
that is, loopless and without multiple arcs or circuits of length two. Let
D � �V ;E� be a digraph with vertex set V and arc set E. The induced restriction
of D to a subset S of V is denoted by Djs. Let v be a vertex of D. The
outneighborhood of v in D is the set N�D �v� � fx 2 V�D� : v ! xg and the
second outneighborhood of v in D is the set N��D �v� � �[x2N�

D
�v�N

�
D �x��nN�D �v�.

The outdegree of v is the number of elements in N�D �v�; we denote it by d�D�v�.
The dual notions of indegree, inneighborhood and second inneighborhood are
denoted by dÿD�v�;NÿD �v� and NÿÿD �v�, respectively. Since we always deal with a
tournament T, the notations N��v�; d��v�; . . . refer to N�T �v�; d�T �v�; . . . A vertex
v of T is dominating (resp. dominated) if dÿ�v� � 0 (resp. d��v� � 0). Let
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T � �V ;E� be a ®nite tournament. An order of T is a total order L � �V;E0� of
the vertices of T. We shall often regard the order L as an enumeration �x1; . . . ; xn�
of the vertices of T, or as a tournament on V with arc set E0 � fxi ! xj : i < jg.
The pair (T, L) always denotes a tournament T together with an order L of T. We
denote by T \ L the acyclic directed graph �V ;E \ E0�. The interval �xi; xj�, for
i � j, of (T, L) is the subset of vertices fxi; xi�1; . . . ; xjg. An order L of T which
maximizes the number of arcs of T \ L is a median order of T. Note that every
median order L of T satis®es the feedback property: for every i, j such that
1 � i � j � n, both the outdegree of xi and the indegree of xj in �T \ L�j�xi;xj� are
at least � jÿ i�=2; that is:

d�Tj�xi ;xj �
�xi� � dÿTj�xi ;xj �

�xi� and dÿTj�xi ;xj �
�xj� � d�Tj�xi ;xj �

�xj�:

Indeed, assume for instance that this property does not hold for xi. Then inserting
xi just after xj would increase the number of arcs of T \ L. A local median order
of T is an order of T which satis®es the feedback property. Note that, by the
feedback property, x1; . . . ; xn is a Hamiltonian path whenever L � �x1; . . . ; xn� is
a local median order of T. Let T be a tournament of order n. A vertex v of T is a
feed vertex (resp. a back vertex) if there exists a local median order L of T such
that v is maximal in L (resp. minimal in L). We recall that a vertex x in a
tournament T is a king if fxg [ N��x� [ N���x� � V�T�.

There is obviously a signi®cant difference between median orders and local
median orders since one can construct easily a local median order of a given
tournament of order n (in time O�n4�, for instance, by means of a greedy
algorithm), whereas ®nding a median order is NP-hard for digraphs. The crucial
property of (local) median orders is the following: if I is an interval of a (local)
median order L of T, then LjI is a (local) median order of TjI . This easy
observation provides a very powerful inductive tool, as we shall see in the
following section. In order to introduce the notion of local median orders, we use
it to prove the following classical (easy) result:

Proposition 1. Every tournament has a king. Moreover, a tournament with no
dominating vertex has at least three kings.

Proof. We prove ®rst that every back vertex of a tournament T is a king. Let
x1 be a back vertex of T and L � �x1; . . . ; xn� be a local median order of T. Now
pick any vertex xi. By the feedback property, both the outdegree of x1 and the
indegree of xi in �T \ L�j�x1; xi� are at least �iÿ 1�=2. So, either x1 dominates xi, or
there is 1 < k < i for which x1 dominates xk, which in turn dominates xi. Thus, x1

is a king of T. Now suppose that T has no dominating vertex, let xi be the
inneighbor of x1 which is minimal with respect to its index in L and let xj be the
inneighbor of xi which is minimal with respect to its index in L. We claim that
both xi and xj are kings of T. First, observe that xj belongs to �x1; xi�. Now, xi is a
back vertex, hence a king, of Tj�xi; xn�, and, via x1, is also a king of Tj�x1; xi�.
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Moreover, xj is a back vertex, hence a king, of Tj�xj; xn�, and, via xi, is at distance at
most two from the vertices of �x1; xjÿ1�. &

2. MEDIAN ORDERS AND SECOND NEIGHBORHOODS

One of the (apparently) simplest open questions concerning digraphs is
Seymour's second neighborhood conjecture, asserting that one can always ®nd,
in a ®nite digraph D � �V ;E�, a vertex x such that jN�D �x�j � jN��D �x�j (to avoid
this notation, we will say that x has a large second neighborhood in D). Very
surprisingly, this question remained unsolved even for tournaments (it was known
as Dean's conjecture [2]) until Fisher [3] proved the existence of such a vertex as
follows: Fisher and Ryan [4] exhibited a probability distribution p on V such that
p�N��v�� is greater than or equal to p�Nÿ�v�� for every vertex v. Subsequently,
Fisher proved that, for tournaments, this probability also satis®es p�Nÿ�v�� �
p�Nÿÿ�v�� for all vertices v. Thus, by an averaging argument and a sum
inversion, at least one vertex x has a large second neighborhood. In Theorem 1,
we give an explicit construction of such a vertex x. We ®rst need some de®nitions.
Let L � �x1; . . . ; xn� be a local median order of a tournament T. We distinguish
two types of vertices of Nÿ�xn�: a vertex xj 2 Nÿ�xn� is good if there exists
xi 2 N��xn�, with i < j, such that xi ! xj; otherwise xj is bad. We denote the set
of good vertices of (T, L) by GL.

Theorem 1. Every feed vertex of a tournament has a large second
neighborhood.

Proof. We prove here a stronger result. Let L � �x1; . . . ; xn� be a local
median order of a tournament T. We prove by induction on n that xn satis®es
jN��xn�j � jGLj. The case n � 1 holds vacuously. Assume now that n is greater
than one. If there is no bad vertex, we have GL � Nÿ�xn�. Moreover, the feedback
property ensures that jN��xn�j � jNÿ�xn�j, so the conclusion holds. Now we
assume that there exists a bad vertex xi, and we choose it as minimal with respect
to its index i. Denote by Gu

L the set GL \ �xi�1; xn�, by Gd
L the set GL \ �x1; xi�, by

N��xn�u the set N��xn� \ �xi�1; xn� and by N��xn�d the set N��xn� \ �x1; xi�.
Applying the induction hypothesis to the restriction of (T, L) to �xi�1; xn� gives
directly that Gu

Lj � jN��xn�u
�� ��, since every good vertex of this restriction is, a

fortiori, a good vertex of (T, L). By the minimality of the index of xi, every vertex
of �x1; xiÿ1� is either in Gd

L or in N��xn�d. Moreover, since xi is bad, we have
N��xn�d � N��xi� \ �x1; xi� and (equivalently), Gd

L � Nÿ�xi� \ �x1; xi�. The feed-
back property applied to �x1; xi� gives:

jGd
Lj � jNÿ�xi� \ �x1; xi�j � jN��xi� \ �x1; xi�j � jN��xn�dj: �1�

Thus jGd
Lj � jN��xn�dj and jGu

Lj � jN��xn�uj, so our induction hypothesis
holds for every non-negative integer n. &
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A natural question is to seek another vertex with a large second neighborhood.
Obviously, this is not always possible: consider for instance a regular tournament
dominating a single vertex, or simply, a transitive tournament. In both cases, the
sole vertex with large second neighborhood is the dominated vertex. We prove
now that a tournament always has two vertices with large second neighbourhood,
provided that every vertex has outdegree at least 1. The notion of local median
orders turns out to be too weak for that purpose, so we use median orders.

We introduce the notion of sedimentation of a median order L � �x1; . . . ; xn� of
T, denoted by Sed(L). We recall that, by the proof of Theorem 1, jN��xn�j � jGLj.
If jN��xn�j < jGLj, then Sed�L� � L. If jN��xn�j � jGLj, we denote by b1; . . . ; bk

the bad vertices of (T, L) and by v1; . . . ; vnÿ1ÿk the vertices of N��xn� [ GL, both
enumerated in increasing order with respect to their index in L. In this case Sed(L)
is the order �b1; . . . ; bk; xn; v1; . . . ; vnÿ1ÿk� of T.

Lemma 1. The order Sed(L) is a median order of T.

Proof. If Sed�L� � L, there is nothing to prove. Otherwise, we assume that
jN��xn�j � jGLj. The proof is by induction on k, the number of bad vertices. If
k � 0, all the vertices are good or in N��xn�, in particular Nÿ�xn� � GL. Thus,
jN��xn�j � jNÿ�xn�j and the order Sed�L� � �xn; x1; . . . ; xnÿ1� is a median order
of T. (Note that this is not true for local median orders.) Now, assume that k is a
positive integer. Let i be the index of the vertex b1 in L (that is b1 � xi�. As
before, denote by Gu

L the set GL \ �xi�1; xn�, by Gd
L the set GL \ �x1; xi�, by N��xn�u

the set N��xn� \ �xi�1; xn� and by N��xn�d the set N��xn� \ �x1; xi�. By (1),
jGd

Lj � jN��xn�dj. Since jGu
Lj � jN��xn�uj and jGd

Lj � jGu
Lj � jN��xn�dj�

jN��xn�uj, we have jGu
Lj � jN��xn�uj; jGd

Lj � jN��xn�dj and again by (1)
jN��xi� \ �x1; xi�j � jNÿ�xi� \ �x1; xi�j; in particular L0 � �b1; x1; . . . ; xiÿ1;
xi�1; . . . ; xn� is a median order of T. Observe also that the bad vertices of
�T; L0� are exactly the bad vertices of �T ;L�. To conclude, apply the induction
hypothesis to the restriction of �T ; L� to �x1; . . . ; xiÿ1; xi�1; . . . ; xn�. &

De®ne now inductively Sed0�L� � L and Sedq�1�L� � Sed�Sedq�L��. If the
process reaches a rank q such that Sedq�L� � �y1; . . . ; yn� and jN��yn�j <
jGSedq�L�j, call the order L stable. Otherwise, call L periodic.

Theorem 2. A tournament with no dominated vertex has at least two vertices
with large second neighborhood.

Proof. Let L � �x1; . . . ; xn� be a median order of T. By Theorem 1, xn has
a large second neighborhood, so we need to ®nd another vertex with this pro-
perty. Consider the restriction of �T ;L� to the interval �x1; . . . ; xnÿ1�, and
denote it by �Td; Ld�. Suppose ®rst that Ld is stable, and consider an integer
q for which Sedq�Ld� � �y1; . . . ; ynÿ1� and jN�

Td�ynÿ1�j < jGSedq�Ld�j. Note that
�y1; . . . ; ynÿ1; xn� is a median order of T, and consequently ynÿ1 ! xn. Thus,

jN��ynÿ1�j � jN�Td�ynÿ1�j � 1 � jGSedq�Ld�j � N���ynÿ1�j:
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So ynÿ1 has a large second neighborhood in T. Now assume that Ld is periodic.
Since T has no dominated vertex, xn has an outneighbor xj. Note that, for every
integer q, the feed vertex of Sedq�Ld� dominates xn. So xj is not the feed vertex of
any Sedq�Ld�. Observe also that, since Ld is periodic, xj must be a bad vertex of
some Sedq�Ld�, otherwise the index of xj would always increase during the
sedimentation process. Now, ®x this value of q. Let Sedq�Ld� � �y1; . . . ; ynÿ1�.
We claim that ynÿ1 has a large second neighborhood in T: on the one hand we
have

jN��ynÿ1�j � jN�Td�ynÿ1�j � 1 � jGSedq�Ld�j � 1

and on the other hand we have ynÿ1 ! xn ! xj, so the second neighborhood of
ynÿ1 has at least jGSedq�Ld�j � 1 elements. &

It appears that the limitation of the use of median orders for the second
neighborhood conjecture are roughly the same as those of Fisher's proof. For
instance, the following statement can easily be proved using both approaches.
Here, a quasi-transitive digraph satis®es the property �x! y and y! z� )
�x! z or z! x�.
Lemma 2. Let D � �V;E� be a quasi-transitive digraph and p be a probability
distribution on V. There exists a vertex x of D such that p�N�D �x�� � p�N��D �x��.

Proof. Consider an order L on D which maximizes the sum of the
probabilities of the arcs of D \ L (here the probability of an arc is the product
of the probabilities of its two endvertices). The maximal vertex of L is the vertex
x we are looking for. &

However, the feedback method fails dramatically for digraphs in general, as
one can check in the following example: consider the circuit on four elements
a! b! c! d ! a, and the probability distribution p�a� � 3=10; p�b� � 2=10;
p�c� � 4=10 and p�d� � 1=10. Here the (weighted) median order is �a; b; c; d�,
but, alas, d does not have a large second neighborhood.

3. MEDIAN ORDERS AND SUMNER'S CONJECTURE

An oriented tree (or simply tree) is an orientation of an acyclic connected graph.
An arborescence is an oriented tree in which one vertex called the root has
indegree zero and the remaining vertices have indegree one. An outleaf (resp.
inleaf ) of a tree A is a vertex x such that d�A �x� � 0 and dÿA �x� � 1 (resp.
dÿA �x� � 0 and d�A �x� � 1). Let A be a tree, T a tournament, and L a local median
order of T. An embedding of A into T is an injective mapping f: V�A� ! V�T�
such that f �x� ! f �y� whenever x! y. A digraph D is m-unavoidable if, for
every tournament T of order m, there exists an embedding of D into T.
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Conjecture 1 (Sumner). Every tree of order n > 1 is �2nÿ 2�-unavoidable.

An embedding f of A into T is an L-embedding if, for every vertex x 2 T , the
following two conditions hold:

jN�L �x� \ f �A�j � jN�L �x�n f �A�j � 1 and jNÿL �x� \ f �A�j � jNÿL �x�n f �A�j � 1:

If f only satis®es the ®rst inequality (resp. the second inequality), we speak of
L-up-embedding (resp. L-down-embedding). A tree is L-embeddable into T (resp.
L-up-embeddable into T ) if there exists an L-embedding of A into T (resp. L-up-

embedding of A into T ). A tree A is m-well-embeddable (resp. m-well-up-
embeddable) if for every tournament T of order m and every local median order L
of T, A is L-embeddable (resp. L-up-embeddable) into T.

Theorem 3. Every arborescence of order n > 1 is �2nÿ 2�-unavoidable.

Proof. We prove by induction on n the following stronger statement: every
arborescence A of order n > 1 is �2nÿ 2�-well-up-embeddable. This is true if
A is an arc. If n > 2, consider a tournament T on 2nÿ 2 vertices and L �
�x1; . . . ; x2nÿ2� a local median order of T. Denote by �T 0;L0� the restriction of
(T, L) to �x1; x2nÿ4�. Let x be an outleaf of A, y the inneighbor of x and denote by
A0 the arborescence Anfxg. By the induction hypothesis, there is an L0-up-
embedding f of A0 into T 0. Denote by xi the vertex f �y�. We have

jN�L �xi� \ f �A0�j � jN�L0 �xi� \ f �A0�j � jN�L0 �xi�n f �A0�j � 1 � jN�L �xi�n f �A0�j ÿ 1:

In particular, jN�L �xi� \ f �A0�j < jN�L �xi�n f �A0�j. The feedback property
applied to the interval �xi; x2nÿ2� of L ensures that at least one vertex xj of
N�L �xi�n f �A0� belongs to N��xi�. Extend now f by letting f �x� � xj. It is routine
to check that this extension of f is an L-up-embedding of A into T (indeed, we add
two new vertices to the top of L0 whereas f �A0� only increases by one vertex).

&

Observe that, for arborescences, the same proof gives a little more than
Summer's conjecture: in every tournament of order 2nÿ 2, there is a particular
vertex x and an acyclic subdigraph D for which every arborescence on n vertices
is contained in D and rooted at x. Consider for this any back vertex x of a local
median order L and take D � L \ T .

Theorem 4. Every tree of order n > 1 is �4nÿ 6�-unavoidable.

Proof. We prove, again by induction on n, that every tree A of order n > 1 is
�4nÿ 6�-well-embeddable. This is true when A is an arc. If n > 2, consider T a
tournament on 4nÿ 6 vertices and L � �x1; . . . ; x4nÿ6� a local median order of T.
Denote by �T 0; L0� the restriction of (T, L) to �x3; x4nÿ8�. Let x be an outleaf, if any,
of A. Let y be the inneighbor of x and denote by A0 the tree Anfxg. By the
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induction hypothesis, there is an L0-embedding f of A0 into T 0. Denote the vertex
f (y) by xi. Note that jN�L0 �xi� \ f �A0�j � jN�L0 �xi�n f �A0�j � 1, and the vertices
x4nÿ7; x4nÿ6 ensure that N�L �xi� \ f �A0�j < jN�L �xi�n f �A0�j. The feedback property
applied to the interval �xi; x4nÿ6� of L provides at least one vertex xj in
�N�L �xi�n f �A0�� \ N��xi�. Now extend f by letting f �x� � xj. It is routine to
check that this extension of f is an L-embedding of A into T, indeed we add two
new vertices to both ends of L0. A similar argument works for an inleaf of A.

&

Observe again that, given a tournament T of order 4nÿ 6, there exists an
acyclic digraph D of T and a particular vertex x of T such that for every tree A of
order n with a ®xed vertex v, there is an embedding f of A into D such that
f �v� � x. Unfortunately, we do not see how the proof of Theorem 4 could
naturally be improved to give the bound 2nÿ 2. Indeed, 4n is really a critical
value for this problem, and it is easy to understand: we have, a priori, no way to
decide if a given vertex of T will be considered as an outleaf or as an inleaf in the
inductive construction of the tree A. So, to be sure that we will complete the tree,
we need to have available twice as many vertices as necessary. This is also the
reason why the asymptotic bound obtained by HaÈggkvist and Thomason was 4n.
However, this is by no means the end of the road. We prove in the following
section that the bound can be reduced to 7n/2. But this entails case analysis and
counting arguments.

4. BEYOND 4n, A BOUND IN 7n/2

To obtain a better bound, we need a construction of trees which is a little bit more
elaborate than just adding one leaf at a time. Indeed, the operations involved here
use paths of length 3. To describe this method, let us introduce some notation: let
A be an oriented tree and a1; . . . ; ak an oriented path. When we write
A [ a1; . . . ; ak, it is implicitly assumed that the sole vertex of intersection of A

and a1; . . . ; ak is a1, and hence that, the resulting digraph is always a tree. Note
that since the choice of a1 in A is free, the tree in not unique.

Lemma 3. If A is m-well-up-embeddable, then A [ a! b is �m� 2�-well-up-

embeddable. If A is m-well-embeddable, then A [ a! b is �m� 4�-well-
embeddable.

The proof of Lemma 3 is contained in the proofs of Theorems 3 and 4.

Lemma 4. Let A0 be a tree of order n and A � A0 [ a! b! c. If A0 is m-well-

embeddable with m � 10nÿ12
3

, then A is �m� 6�-well-embeddable.

Proof. Let L � �x1; . . . ; xm�6� be a local median order of a tournament T.
Denote by L0 and T 0 the restrictions of L and T to the interval �x3; xm�2�. By the
hypothesis of the lemma, there exists an L0-embedding f of A0 into T 0; let
xi � f �a�. By the feedback property and since f is an L0-embedding, at least one
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vertex xj of �xi�1; xm�4�n f �A0� is an outneighbor of xi; we choose such an xj with
maximal index. Again, note that xj has an outneighbor xk (also chosen with
maximal index) in �xj�1; xm�6�n f �A0�. We now extend f by setting f �b� � xj and
f �c� � xk; for convenience, we still call this extension f. We claim that f is an
L-embedding of A into T. One part of the proof is routine: since we added four
vertices to the top of L0, f is clearly L-up-embedding. The critical point is to
prove that f is also an L-down-embedding. Assume, by way of contradiction, that
this is not the case, so there exists a vertex xl such that

j�x1; xl� \ f �A�j > j�x1; xl�n f �A�j � 1:

Recall that we added the vertices x1 and x2 to L0, and by construction these
vertices do not belong to f (A). For this reason we have necessarily that l � 3.
Note also that since m � 2nÿ 1 (because A0 is m-well-embeddable), we have
l � m� 2. Thus:

j�x3; xl� \ f �A�j � j�x3; xl�n f �A�j � 4:

However, since f is an L0-embedding of A0 into T 0, we have:

j�x3; xl� \ f �A0�j � j�x3; xl�n f �A0�j � 1:

These two inequalities imply that k � l and:

j�x3; xl� \ f �A0�j � j�x3; xl�n f �A0�j: �2�

Set

A1 � �x3; xi� \ f �A0�; D1 � �x3; xi�n f �A0�
A2 � �xi�1; xj� \ f �A0�; D2 � �xi�1; xj�n f �A0�
A3 � �xj�1; xl� \ f �A0�; D3 � �xj�1; xl�n f �A0�
A4 � �xl�1; xm�2� \ f �A0�; D4 � �xl�1; xm�2�n f �A0�:

We write also ai � jAij and di � jDij for i 2 f1; 2; 3; 4g. In T, by the maxi-
mality of j and k, the vertex xi is dominated by D3 [ D4 [ fxm�3; xm�4g and xj is
dominated by D4 [ fxm�3; xm�4; xm�5; xm�6g.

In Tj�xi;xm�4�, the feedback property ensures that d��xi� � dÿ�xi�. It follows that:

d3 � d4 � 2 � a2 � a3 � a4 � d2: �3�

Since in Tj�xj;xm�6�, we have d��xj� � dÿ�xj�,

d4 � 4 � a3 � a4 � d3: �4�
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By Inequality 2, we have

d1 � d2 � d3 � a1 � a2 � a3: �5�

And since m � 10nÿ12
3

, we have

10�a1 � a2 � a3 � a4� ÿ 12

3
� a1 � a2 � a3 � a4 � d1 � d2 � d3 � d4:

That is,

7

3
�a1 � a2 � a3 � a4� � d1 � d2 � d3 � d4 � 4: �6�

Inequalities 5 and 6 yield

4

3
�a1 � a2 � a3� � 7

3
a4 � d4 � 4: �7�

Inequality 3 and twice inequality 4 yield

3d4 � 10 � a2 � 3a3 � 3a4 � d2 � d3: �8�

Combining Inequalities 5 and 8, it follows that

3d4 � 40 � a1 � 2a2 � 4a3 � 3a4: �9�

Finally, Inequality 7 multiplied by 3 and Inequality 9 give that 3a1 � 2a2�
4a4 � 2. This is a contradiction since a1 > 0. &

This lemma and Lemma 3 yield the following corollaries:

Corollary 1. Let A0 be a tree of order n and A � A0 [ a! b! c! d. If A0 is
m-well-embeddable with m � 10nÿ14

3
then A is �m� 10�-well-embeddable.

Corollary 2. Let A0 be a tree of order n and A � A0 [ a! b! c d. If A0 is

m-well-embeddable with m � 10nÿ12
3

then A is �m� 10�-well-embeddable.

Corollary 3. Let A0 be a tree of order n and A � A0 [ a! b c d. If A0 is
m-well-embeddable with m � 10nÿ14

3
then A is �m� 10�-well-embeddable.

Up to this point, we are able to add all the paths of length three, except the
alternating path. For this particular path, we have the following result.

Lemma 5. Let A0 be a tree of order n and A � A0 [ a! b c! d. If A0 is

m-well-embeddable with m � 3n then A is �m� 10�-well-embeddable.
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Proof. Let L � �x1; . . . ; xm�10� be a local median order of a tournament T.
Denote by T 0 and L0 the restrictions of T and L to �x5; xm�4�. There exists an
L0-embedding f of A0 into T 0. Let f �a� � xi. Denote by h the greatest index in
f5; . . . ;m� 4g, if it exists, such that j�x5; xh� \ f �A0�j � j�x5; xh�n f �A0�j. By the
feedback property and since f is an L0-embedding, there exists xj in �xi; xm�6�,
chosen with maximal index, such that xi ! xj and xj =2 f �A0�. Suppose ®rst that
j > h or h does not exist. Setting f �b� � xj, still f is an Lj�x5;xm�6�-embedding of
A0 [ a! b into Tj�x5;xm�6�. Then by applying Lemma 3 twice, one can extend f to
an L-embedding of A into T.

Suppose now that j � h. We prove that xi dominates two vertices of
�xi; xh�n f �A0�. Set A1 � �x5; xi� \ f �A0� and D1 � �x5; xi�n f �A0�; A2 � �xi�1; xh� \
f �A0� and D2 � �xi�1; xh�n f �A0�; A3 � �xh�1; xm�4� \ f �A0� and D3 �
�xh�1; xm�4�n f �A0�. We also let ai � jAij and di � jDij for i � 1; 2; 3.

Suppose for contradiction that jN��xi� \ D2j � 1. Using the feedback property
of xi in �xi; xm�6�, we obtain (since D3 [ fxm�5; xm�6g � Nÿ�xi��:

d2 � d3 � a2 � a3: �10�

By de®nition of h, we have

d1 � d2 � a1 � a2: �11�

Since m � 3n, we have

2�a1 � a2 � a3� � d1 � d2 � d3: �12�

Inequalities 11 and 12 yield

a1 � a2 � 2a3 � d3: �13�

Then, combining Inequalities 10 and 13 gives

a1 � d2 � a3 � 0:

And this is a contradiction since A1 contains at least xi. Now, pick two vertices
xj and xk in N��xi� \ D2. Without loss of generality we may suppose that xj ! xk.
If xj  xm�8, then let f �b� � xj and f �c� � xm�8. One can easily check that f is
an Lj�x3;xm�8�-embedding of A0 [ a! b c into Tj�x3;xm�8�. Thus, by Lemma 3, one
can extend f into an L-embedding of A. If xj ! xm�8, we set f �b� � xk; f �c� � xj

and f �d� � xm�8. Again, f is an L-embedding of A into T. &

Note that an analogous proof gives an improvement of the bound of Corollary
2: m � 3n in place of m � 10nÿ12

3
. To achieve the proof, we term star with center x

a tree T with a particular vertex x such that every vertex of T distinct from x is a
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leaf. The class of trees T 3 is de®ned inductively as follows: the singleton is in T 3.
If A is in T 3 and P is a path of length 3, then A [ P is in T 3.

Lemma 6. Let A be a tree of T 3. If the order of A is 3n� 1, then A is �10n� 1�-
well-embeddable.

Proof. By induction on n. If n � 0, the statement is obviously true. If n � 1,
this is a consequence of Theorem 4. So, assume that the conclusion holds for
n � 1. Let A0 2 T 3 be a tree of order 3n� 1, P a path of length 3, and denote
by A the tree A0 [ P. By the induction hypothesis, A0 is �10n� 1�-well-
embeddable. Thus, by Lemma 5 and Corollaries 1, 2, and 3, A is �10n� 11�-well-
embeddable. &

Theorem 5. Every tree of order n > 0 is 7nÿ5
2

ÿ �
-unavoidable.

Proof. Let A be a tree of order n and A1 be a maximal subtree of A which
belong to T 3. Denote the order of A1 by n1, by Lemma 6, A1 is 10n1ÿ7

3

ÿ �
-well-

embeddable. The forest AnA1 is the union of l isolated vertices and p stars
Si�1 � i � p�, with respective centers xi. Note that each xi is connected to A1 by
an arc. Let A2 be the subtree induced by A on V�A1� [ fx1; . . . ; xpg. By Lemma 3,
A2 is 10n1ÿ7

3
� 4p

ÿ �
-well-embeddable and AnA2 is the union of k � p� l isolated

vertices. Let I be the set of vertices of AnA2 which are inleaves of A; we set
i � jIj. By directional duality, we may suppose that i � k=2. Let A3 be the subtree
of A induced by the vertices of V�A2� [ I. By Lemma 3, A3 is 10n1ÿ7

3
� 4�p� i�ÿ �

-
well-embeddable. Moreover, AnA3 is a subset of the outleaves of A. Thus
by Lemma 3, A is 10n1ÿ7

3
� 4�p� i� � 2�k ÿ i�ÿ �

-well-up-embeddable. Since
i � k=2; k � p and k � p � nÿ n1, we have:

4� p� i� � 2�k ÿ i� � 4p� 2k � 2i � 4p� 3k � 7

2
�nÿ n1�:

These inequalities together yield

10n1 ÿ 7

3
� 4�p� i� � 2�k ÿ i� � 10ni ÿ 7

3
� 7

2
�nÿ n1�

� 21nÿ n1 ÿ 14

6
� 7nÿ 5

2
:

So, the tree A is 7nÿ5
2

ÿ �
-unavoidable. &

We gratefully thank J.A. Bondy for his help during the preparation of this
paper.
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