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Abstract: After giving a new proof of a well-known theorem of Dirac on
critical graphs, we discuss the elegant upper bounds of Matula and
Szekeres-Wilf which follow from it. In order to improve these bounds, we
consider the following fundamental coloring problem: given an edge-cut
ðV1;V2Þ in a graph G, together with colorings of hV1i and hV2i, what is the
least number of colors in a coloring of G which ‘‘respects’’ the colorings
of hV1i and hV2i? We give a constructive optimal solution of this problem,
and use it to derive a new upper bound for the chromatic number of a graph.
As easy corollaries, we obtain several interesting bounds which also
appear to be new, as well as classical bounds of Dirac and Ore, and the
above mentioned bounds of Matula and Szekeres-Wilf. We conclude by
considering two algorithms suggested by our results. � 2004 Wiley Periodicals, Inc.
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1. INTRODUCTION

We consider only finite, undirected graphs without loops or multiple edges.

Good references for undefined terms are [3] and [11].

Given a graph G, we will use �ðGÞ;�ðGÞ; �ðGÞ; �ðGÞ and �0ðGÞ to denote

respectively the minimum vertex degree, maximum vertex degree, edge-

connectivity, chromatic number, and chromatic index of G. If X � VðGÞ, we

will use hXi to denote the subgraph of G induced by X. If V1 [ V2 is a partition of

VðGÞ with EðV1;V2Þ 6¼ ;, we call the partition an edge-cut in G and denote it by

ðV1;V2Þ. We use eðV2;V2Þ to denote jEðV1;V2Þj, the number of edges in the edge-

cut ðV1;V2Þ. We call G critical if �ðG� vÞ ¼ �ðGÞ � 1, for all v 2 VðGÞ.
In the next section (Section 2), we begin with a new and simpler proof of a

wellknown theorem of Dirac [4] on critical graphs, and then derive from it the

upper bound �ðGÞ � 1 þ max
H�G

�ðHÞ, which is due to Matula [6] and strengthens

the classical inequality of Szekeres and Wilf [10].

In the following section (Section 3), we develop a strengthening of Matula’s

bound. We begin by considering the following problem: let ðV1;V2Þ be an edge-

cut in a graph G, and suppose we are given colorings of hV1i and hV2i. What is

the minimum number of colors needed in a coloring of G which respects the

given colorings of hV1i and hV2i (that is, so each color class in hVji belongs in its

entirety to a single color class of G, and so distinct color classes in hVji occur in

distinct color classes of G, for j ¼ 1; 2)? After giving a constructive optimal

solution of this problem, we use the solution to derive an upper bound for �ðGÞ
which appears to be new. As easy corollaries of this new upper bound, we obtain

the above mentioned bounds of Matula and Szekeres-Wilf, two classical bounds

of Dirac and Ore, and several interesting upper bounds which also appear to

be new.

In the final section (Section 4), we will consider two algorithms suggested by

two of the results in Section 3. The first algorithm computes an upper bound for

�ðGÞ, with no attempt to color G. The bound it returns is never worse than

Matula’s bound and has the same time complexity. By contrast, the second

algorithm actually colors G. It uses no more colors than the bound in the first

algorithm and has the same time complexity.

2. PREVIOUS RESULTS

We first present a new proof of a wellknown theorem of Dirac [4] on critical

graphs, which seems simpler than the proofs that have appeared previously

½2; 3; 9; 11�.

Theorem 2.1. If G is critical, then �ðGÞ � �ðGÞ � 1.
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Proof. Let �ðGÞ ¼ k þ 1; and suppose that G contains an edge-cut ðV1;V2Þ
with eðV1;V2Þ � �ðGÞ � 2 ¼ k � 1. Since G is critical, hVii is k-colorable, for

i ¼ 1; 2. Properly color hV1i and hV2i independently with colors f1; 2; . . . ; kg.

If all edges in EðV1;V2Þ have their endvertices colored differently, we would

have a k-coloring of G, a contradiction. But, if some edge e 2 EðV1;V2Þ has both

endvertices colored say 1, then since eðV1;V2Þ � k � 1, there is a color c 2
f2; 3; . . . ; kg such that no edge in EðV1;V2Þ has endvertices colored 1 and c.

Exchange colors 1 and c on hV1i, thereby coloring the endvertices of e differently,

without creating additional edges in EðV1;V2Þ with endvertices colored the same.

Iterating this procedure as long as there remain edges in EðV1;V2Þ with end-

vertices colored the same, we eventually color G with k-colors, a contradiction.

&

As an immediate corollary, we have

Corollary 2.1. If G is critical, then �ðGÞ � �ðGÞ � 1.

Theorem 2.1 can also be used to derive a nice upper bound for �ðGÞ, which

does not seem to be as well known as it should. This noteworthy result is due to

Matula [6].

Theorem 2.2. For any graph G, �ðGÞ � 1 þ max
H�G

�ðHÞ.

Proof. By removing a finite number of vertices, if necessary, we obtain a

critical subgraph Gc � G with �ðGcÞ ¼ �ðGÞ. Applying Theorem 2.1, we have

�ðGÞ ¼ �ðGcÞ � 1 þ �ðGcÞ � 1 þ max
H�G

�ðHÞ.

The above proof of Theorem 2.2 does not, however, suggest an efficient way

to color G with 1 þ max
H�G

�ðHÞ colors. In [7], Matula gave an interesting

and elaborate algorithm to accomplish this. We also note that our proof of

Theorem 2.1 can easily be adapted to give a direct proof of Theorem 2.2, leading

to a simple algorithm to color G with 1 þ max
H�G

�ðGÞ colors.

An immediate corollary of Theorem B is the classical bound of Szekeres and

Wilf [10].

Corollary 2.2. For any graph G, �ðGÞ � 1 þ max
H�G

�ðHÞ.

Of course, Corollary 2.2 could be obtained from Corollary 2.1 in exactly the

way Theorem 2.2 was obtained from Theorem 2.1.

Later, we will construct a family of graphs showing that the difference in the

bounds in Theorem 2.2 and Corollary 2.2 (namely, dðGÞ¼: max
H�G

�ðHÞ � max
H�G

�ðHÞ) can be arbitrarily large. However, the relative differences dðGÞ=max
H�G

�ðHÞ
within this family approach 0 as max

H�G
�ðHÞ increases. We do not yet know if a

positive relative difference as max
H�G

�ðHÞ approaches infinity is attainable.

Regarding the complexity of the bounds in Theorem 2.2 and Corollary 2.2,

it is wellknown that max
H�G

�ðHÞ (the degeneracy of G) can be computed by
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the interative removal of a vertex of minimum degree. Thus, the bound in

Corollary 2.2 takes OðjV j2Þ time. On the other hand, Matula [8] has shown that

max
H�G

�ðHÞ can be computed by the interative removal of at most jVðGÞj � 1

minimum edge-cuts. Matula has also shown a minimum edge-cut can be found

in OðjVjjEjÞ time [1, p. 273ff], and thus the time complexity of the bound in

Theorem 2.2 is OðjVj2jEjÞ.

3. OPTIMAL RESPECTING COLORINGS AND APPLICATIONS

Let ðV1;V2Þ be an edge-cut in a graph G, and suppose a kj-coloring of hVji is

given for j ¼ 1; 2. Let k ¼ maxfk1; k2g. A coloring of G is called a respecting

coloring of G (relative to the given colorings of hV1i and hV2i) if each color class

in hVji belongs in its entirety to a single color class of G, and if distinct color

classes in hVji occur in distinct color classes of G, for j ¼ 1; 2.

Our first goal in this section is to give an easy formula for the minimum

number of colors in a respecting coloring of G (relative to the given colorings of

hV1i and hV2i), as well as a simple method to obtain such a coloring. Let Ij denote

the set of vertices in Vj incident to the edges in EðV1;V2Þ and set

m ¼ maxfjI1j; jI2jg. Assume that �j colors occur in Ij in the k-coloring of hVji,
and without loss of generality let these colors be f1; 2; . . . ; �jg, for j ¼ 1; 2. Form

the bipartite graph B by taking VðBÞ ¼ fx1; x2; . . . ; x�1
g [ fy1; y2; . . . ; y�2

g, and

letting ðxi; yjÞ 2 EðBÞ precisely if there is an edge ðv1; v2Þ 2 EðV1;V2Þ with v1

colored i in hV1i, and v2 colored j in hV2i. The complementary bipartite graph B

is defined (on the same vertex partition sets as B) by ðxi; yjÞ 2 EðBÞ if and only if

ðxi; yjÞ 62 EðBÞ. Let M denote a maximum matching in B. If ðxi; yjÞ 2 M, we will

say informally that color (class) i in hV1i and color(class) j in hV2i are matched

under M.

We then have the following key result.

Theorem 3.1. G has a respecting coloring (relative to the given colorings of

hV1i and hV2i) with maxfk; �1 þ �2 � jMjg colors, and no fewer.

Proof. Without loss of generality, suppose the colors occuring in I1 which

are matched under M are 1; 2; . . . ; jMj, the remaining colors occuring in I1 are

jMj þ 1; . . . ; �1, and the colors in hV1i not occuring in I1 are �1 þ 1; . . . ; k1.

Label (relabel if necessary) the colors in hV2i as follows. The colors in I2 which

are matched under M are labeled with the color to which there are matched in I1,

the �2 � jMj colors occuring in I2 which are unmatched under M are labeled

�1 þ 1; . . . ; �1 þ �2 � jMj, and the colors in hV2i not occuring in I2 are labeled

with the smallest available (that is, unused so far in hV2i) color in f1; 2; . . . ; kg.

It is easily seen that this gives a respecting coloring of G using just

maxfk; �1 þ �2 � jMjg colors.

On the other hand, coloring B so that fx1; . . . ; x�1
g are colored differently and

fy1; . . . ; y�2
g are colored differently clearly requires at least �1þ �2 � jMj colors.
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Thus, the number of colors in a respecting coloring of G (relative to the given

colorings of hV1i and hV2i) cannot be lower then the bound in Theorem 3.1. &

In Section 4, we describe a coloring algorithm based on Theorem 3.1. In order

to measure the goodness of this algorithm, we derive from Theorem 3.1 an upper

bound for �ðGÞ (Theorem 3.2), which appears not to have been noted previously.

We then obtain, as easy corollaries of Theorem 3.2, several classical bounds for

�ðGÞ, as well as some interesting new ones. Taken together, the bounds on �ðGÞ
which follow easily from Theorem 3.2 will indicate the quality of Theorem 3.1

and the coloring algorithm based on it.

Before proving Theorem 3.2, we need several preliminary results. For any

graph H, let eH denote jEðHÞj.
Lemma 3.1. If �1 � �2, then

ð�1 � 1Þð�2 � jMjÞ � eB � �2 � ð�1 � 1Þ eB
�1

� ð�1 � 1Þ eðV1;V2Þ
�1

:

Proof. The last inequality is trivial, since eB � eðV1;V2Þ. The second

inequality is equivalent to eB � �1�2; which is also clear. The first inequality is

equivalent to eB ¼ �1�2 � eB � ð�1 � 1ÞjMj. If jMj ¼ 0, then eB ¼ 0 and the

inequality holds. Otherwise, the inequality is equivalent to �1 � 1 � e
B

jMj . But

�0ðBÞ ¼ 4ðBÞ since B is bipartite, and thus �1 � 1 � 4ðBÞ ¼ �0ðBÞ � e
B

jMj : &

Lemma 3.2. If �1 � �2, then �1 þ �2 � jMj � �1 þ eðV1;V2Þ
�1

.

Proof. If �1 ¼ �2 ¼ 1, the inequality holds since eðV1;V2Þ � 1. Otherwise,

dividing through by �1 � 1 > 0 in Lemma 3.1 gives �1 þ �2 � jMj � �1þ
eðV1;V2Þ

�1
, as asserted. &

In the sequel, we will set � ¼ maxf�1; �2g.

Lemma 3.3. If � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðV1;V2Þ

p
then �1 þ �2 � jMj � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðV1;V2Þ

p
:

Proof. The desired inequality is equivalent to jMj � �1 þ �2 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðV1;V2Þ

p
:

But �j � � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðV1;V2Þ

p
for j ¼ 1; 2: So �1 þ �2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðV1;V2Þ

p
� 0 � jMj.

&

We are now in a position to prove the following.

Theorem 3.2. Let ðV1;V2Þ be an edge-cut in a graph G. Suppose hVji is kj-

colored, for j ¼ 1; 2, and let k and � be as above. Then for any x � � , we have

�ðGÞ � max k; xþ eðV1;V2Þ
x

n o
:

Proof. By Theorem 3.1, it suffices to show

�1 þ �2 � jMj � min
x��

xþ eðV1;V2Þ
x

n o
:
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But a consideration of the function xþ eðV1;V2Þ
x

shows

min
x��

xþ eðV1;V2Þ
x

n o
¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðV1;V2Þ

p
; if � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðV1;V2Þ

p
� þ eðV1;V2Þ

�
; if � >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðV1;V2Þ

p
(

Lemmas 3.2 and 3.3 now give �1 þ �2 � jMj � min
x� �

xþ eðV1;V2Þ
x

n o
, as required.

&

From Theorem 3.2, we can easily derive an interesting and apparently new

upper bound for �ðGÞ. This bound will be the basis for the first algorithm in

Section 4. Recall that m ¼ maxfjI1j; jI2jg.

Corollary 3.1. Let ðV1;V2Þ be an edge-cut in a graph G. Then

�ðGÞ � max �ðhV1iÞ; �ðhV2iÞ;mþ eðV1;V2Þ
m

n o
:

Proof. In any �ðhVjiÞ-coloring of hVji, the number of colors �j used in Ij
cannot exceed jIjj � m. Thus, m � maxf�1; �2g ¼ �. Theorem 3.2 now gives the

desired bound. &

Corollary 3.1 is occasionally much better than Theorem 2.2. Consider the

graph G formed from the disjoint union of graphs G1; . . . ;G4 by adding all

possible edges between Gi and Giþ1, for i ¼ 1; 2; 3, where G1 ¼ G4 ¼ K2n, and

G2 ¼ G3 ¼ Kn. Theorem 2.2 gives only �ðGÞ � 3nþ 1, while Corollary 3.1

(starting with edge-cut V1 ¼ VðG1 [ G2Þ and V2 ¼ VðG3 [ V4Þ) gives

�ðGÞ � maxf�ðK2n þ KnÞ; nþ n2

n
g ¼ 2nþ 1, the chromatic number of G. Of

course, the initial edge-cut ðV1;V2Þ is not a minimum edge-cut in G, and finding

such favorable edge-cuts is almost surely an intractable problem.

However, Corollary 3.1 can be arbitrarily better than Theorem 2.2 even when

we limit the edge-cuts used to minimum edge-cuts. Consider the graph G formed

as follows: let n be a multiple of 4. Start with the disjoint union of G1; . . . ;G4,

where G1 ¼ G4 is any ðn2 � n=4Þ-regular graph on 2ðn� 1Þ2 þ n=2 vertices, and

G2 ¼ G3 ¼ Kn. Join each vertex in G1 to half the vertices in G2 in such a way that

each vertex in G2 is also joined to exactly half the vertices in G1. Make a similar

join between G3 and G4. Finally, add all possible edges between G2 and G3. The

resulting graph G is ðn2 þ n=4Þ-regular. It is easily verified that Corollary 2.2

gives only �ðGÞ � 1 þ ðn2 þ n=4Þ, while Theorem 2.2 (starting with the mini-

mum edge-cut V1 ¼ VðG1 [ G2Þ and V2 ¼ VðG3 [ G4Þ) gives �ðGÞ � 1 þ n2.

But Corollary 3.1 (starting with the same minimum edge-cut ðV1;V2Þ) gives

�ðGÞ � 1 þ n2 � n=4.

On the other hand, since
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðV1;V2Þ

p
� m � eðV1;V2Þ and f ðxÞ ¼ xþ eðV1;V2Þ

x

is increasing between
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðV1;V2Þ

p
and eðV1;V2Þ, it follows that mþ eðV1;V2Þ

m
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� f ðeðV1;V2ÞÞ ¼ 1 þ eðV1;V2Þ: Thus, the following result of Ore is an immediate

consequence of Corollary 3.1.

Corollary 3.2 (Ore [9]). Let ðV1;V2Þ be an edge-cut in a graph G. Then,

�ðGÞ � maxf�ðhV1iÞ; �ðhV2iÞ; 1 þ eðV1;V2Þg.

We can, in turn, obtain Theorem 2.1 as an easy consequence of Corollary 3.2.

Corollary 3.3. (Dirac [4]). If G is critical, then �ðGÞ � �ðGÞ � 1.

Proof. Suppose a critical graph G contains an edge-cut ðV1;V2Þ with

eðV1;V2Þ � �ðGÞ � 2. Since G is critical, we have �ðhVjiÞ � �ðGÞ � 1, for

j ¼ 1; 2. So by Corollary 3.2, we have �ðGÞ � maxf�ðhV1iÞ; �ðhV2iÞ;
1 þ eðV1;V2Þg � �ðGÞ � 1, a contradiction. &

As we saw above, Theorem 2.2 (Matula) and Corollary 2.2 (Szekeres and Wilf)

both follow easily from Corollary 3.3.

Another immediate consequence of Corollary 3.2 is the following result, first

noted by Dirac [4].

Corollary 3.4. Let ðV1;V2Þ be an edge-cut in a graph G. Suppose hV1i and hV2i
are k-colorable. If eðV1;V2Þ � k � 1; then �ðGÞ � k.

Corollary 3.4 has a simple generalization, which appears not to have been

noted before.

Corollary 3.5. Let ðV1;V2Þ be an edge-cut in a graph G. If hV1i and hV2i are k-
colorable, then �ðGÞ � k þ eðV1;V2Þ

k
.

Proof. Simply take x ¼ k � � in Theorem 3.2.

There is also a direct proof of Corollary 3.5, which actually proves somewhat

more than Corollary 3.5 when k-colorings of hV1i and hV2i are given. It is based

on a proof idea of Paul Kainen [11, p. 211].

Alternate Proof of Corollary 3.5. Let Vj;1 [ � � � [ Vj;k be a k-coloring of hVji,
for j ¼ 1; 2. Define a bipartite graph H by VðHÞ ¼ fx1; . . . ; xkg[ fy1; . . . ; ykg,
with ðxi; yjÞ 2 EðHÞ iff EðV1;i;V2;jÞ 6¼ ;: Let H denote the complement bipartite

graph on the same vertex partition sets. We find eH ¼ k2 � eH ¼ kðk � eH
k Þ. Thus,

any vertex cover of H contains at least k � eH
k . vertices, since each vertex of

H covers at most k edges. By the Koenig-Egervary Theorem [11, p. 112], a

maximum matching M in H satisfies jMj � k � eH
k . So �ðGÞ � 2k � jMj � 2k�

ðk � eH
k Þ ¼ k þ eH

k � k þ eðV1;V2Þ
k

. &

The above proof shows �ðGÞ � k þ eH
k (and thus �ðGÞ � k, if eH � k � 1Þ if

we are given k-colorings of hV1i and hV2i. Since eH � eðV1;V2Þ, this strengthens
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Corollaries 3.4 and 3.5 when colorings of hV1i and hV2i are given. (These

stronger bounds also follow immediately from Theorem 3.1 and Lemma 3.1.

Since
ffiffiffiffiffi
eB

p � � � k and eB ¼ eH , we have � þ eB
� � k þ eB

k ¼ k þ eH
k . But then

�ðGÞ� maxfk; �1þ �2 � jMjg� max k; � þ eB
�

� �
� max k; k þ eH

k

� �
¼ k þ eH

k .)

4. ALGORITHMIC IMPLICATIONS OF OUR RESULTS

We now present two algorithms based on the above results. The first algorithm,

based on Corollary 3.1, computes an upper bound for �ðGÞ with no attempt to

color G. The bound it returns is never worse than the bound in Theorem 2.2, and

is just as easy to compute. By contrast, the second algorithm, which is based on

Theorem 3.1, actually colors G using no more colors than the bound returned by

the first algorithm (often far less) and essentially no more time than the first

algorithm. In both of these algorithms, we do not try to find edge-cuts ðV1;V2Þ
which optimize the bounds in Corollary 3.1 or Theorem 3.1, since finding such

optimal cuts is almost certainly intractable. Instead, merely selecting minimum

edge-cuts at every step will yield the good algorithmic results described above.

The first algorithm is easy to describe. Iteratively select and remove a

minimum edge-cut ðV1;V2Þ in any remaining component, until all the edges have

been removed. As we obtain each such cut ðV1;V2Þ we compute the value

mþ eðV1;V2Þ
m

. At the end, we return the maximum of these values over all the cuts.

It is easy to see this algorithm is correct. If �ðhV1iÞ; �ðhV2iÞ< �ðGÞ, then

Corollary 3.1 gives �ðGÞ � mþ eðV1;V2Þ
m

. Otherwise, �ðGÞ ¼ �ðhVjiÞ, for j ¼ 1 or

2, and the correctness follows by induction on jVj, since jVjj < jVðGÞj.
Like Theorem 2.2, the above algorithm simply finds jVj � 1 minimum edge

cuts, and so its time complexity is exactly the same as Theorem 2.2, namely

OðjVj2jEjÞ.
Finally, the bound returned by this algorithm is never worse than the bound in

Theorem 2.2. If mþ eðV1;V2Þ
m

is returned, then ðV1;V2Þ is a minimum edge-cut for

some induced subgraph H0 of G, and so eðV1;V2Þ ¼ �ðH0Þ. But as noted above,

mþ eðV1;V2Þ
m

� 1 þ eðV1;V2Þ ¼ 1 þ �ðH0Þ � 1 þ max
H � G�ðHÞ:

Our second algorithm is based on Theorem 3.1, and actually colors G using no

more colors than the bound in the first algorithm. Like the first algorithm, it first

iteratively removes minimum edge-cuts until no edges remain (this takes

OðjVj2jEjÞ time). The vertices (now independent) are all colored 1. The minimum

edge-cuts are then restored in reverse order to their removal (a stack will facilitate

this). As each cut ðV1;V2Þ-say from subgraph H-is restored, we give H the

optimal coloring which respects the inherited colorings of hV1i and hV2i. Since

there are just jVj � 1 cuts to restore, and finding an optimal respecting coloring

takes OðjV j
1
2jEjÞ time (essentially to find the maximum matching M in B [1,

p. 469]), this rebuilding-coloring phase takes just OðjVj
3
2jEjÞ time. Thus the entire

algorithm uses no more time asymptotically than is needed to compute the bound

in Theorem 2.2.
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