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Abstract

We prove that a cubic 2-connected graph which has a 2-factor containing exactly 4 odd cycles has
a cycle double cover.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

For a graphGwe let�(G) denote the number of vertices inG.We letEv denote the set of
edges incident with a vertexv, and we letNG(v) be the set of vertices which are neighbours
to v. For a subsetX ⊆ V (G), or a subgraphX ⊆ G we let�X be the set of edges with one
end inXand the other inV (G)\X and we letdG(X) be the number of edges in this set. For
l�0 we let�l (G) be the number of vertices of degreel, and we let�� l (G) (resp.,�� l (G))
be the number of vertices of degree at leastl(resp., at mostl).
A bridgein a graph is anedgewhosedeletion results in agraphwithmore components.We

say that a cubic graph iscyclically k-edge connectedif for any separating subsetA ⊂ E(G)

where|A| < k, it holds that at most one component ofG\A is not a tree. Asnarkis defined
to be a cubic, cyclically 4-edge connected graphG having girth at least 5 and chromatic
index 4; that is,�′(G) = 4. Here the chromatic index of a graphG, denoted�′(G), is the
smallest number of colours which can be assigned to the edges ofG so that no 2 edges of
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the same colour meet at a vertex. The smallest snark is known to be the Petersen graphP10,
which has 10 vertices. It is also known that there are no snarks with 12, 14, or 16 vertices,
but there are 2 snarks with 18 vertices, 6 snarks with 20 vertices, and 20 snarks with 22
vertices(see[1,3]).
We shall refer to a subgraph all of whose degrees are even ascircuit. On the other hand, a

connected, 2-regular subgraph will be called acycle. A collection of cycles (resp., circuits)
which covers the edges of a graph exactly twice will be called acycle double cover(resp.,
circuit double cover). A k-cycle (resp.,k-circuit) double cover is a cycle (resp., circuit)
double cover with at mostk cycles (resp., circuits).
For a cubic bridgeless graphG, we canpartition the vertices bya set of verticesX (possibly

empty) and a set of disjoint cyclesC. We call the pair(X, C) a pseudo 2-factorof G. We
define theoddnessof G, denotedo(G), to be the minimumk such that there is a pseudo
2-factor (X, C) where|X| plus the number of odd cycles inC equalsk. This definition
extends the one given by Huck and Kochol[8] who proved the following:

Theorem 1.1(Huck and Kochol[8] ). Let G be a cubic, bridgeless graph. If G has a2-
factor with at most2 odd cycles, then G has a5-circuit double cover.

As a consequence of this theorem, any cubic bridgeless graph having a hamilton path (a
path traversing all vertices) has a double cover. This was also shown in[5]. In this paper,
we extend Huck and Kochol’s result by showing that for graphs with oddness at most 4,
there is a cycle double cover.

Theorem 1.2. Let G be a cubic bridgeless graph. Ifo(G) = 4, then G has a cycle double
cover.

Suppose thatG is a cubic, bridgeless graph and(X, C) is a pseudo 2-factor ofG. We
form the graphGC by contracting every cycle ofC so that they become vertices. We call a
bridgeless subgraphAC ⊂ GC adegree-compatible subgraphof GC if the odd vertices of
AC are exactly the odd vertices ofGC . Givenv ∈ V (GC)\X, we letC(v) ∈ C denote the
corresponding cycle inG. Any subgraph ofGC will be given the subscriptC, and given a
subgraphJC ⊆ GC , we letJbe thesubgraphofGby taking theunionofC(v), v ∈ V (JC)\X
together with the vertices ofX belonging toJC and edges ofG corresponding to edges in
JC . We leth(J ) denote the graph obtained fromJ by suppressing all vertices of degree 2.
If JC is a subgraph ofGC , then forv ∈ V (JC)\X we letCh(J )(v) be the cycle inh(J )
corresponding tov.
For each subgraphJC of GC we letph(J ) : E(h(J )) → {1,2} be a weighting forh(J )

where

ph(J )(e) =
{
1 if e ∈ ⋃

v∈V (JC)\X Ch(J )(v),
2 otherwise.

If there is a collection of cycles inh(J ) which covers each edgee ∈ E(h(J )) exactly
ph(J )(e) times, then we say thath(J ) is C-compatible.
Huck[7] proved independently the above theorem, showing not only thatGhas a double

cover, but also showing that it hasa5-circuit double cover.His proof is longandcomplicated.
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Fig. 1. Splitting the edges ofF away fromv.

This paper presents a more cohesive approach which utilizes splitting and expansion opera-
tions to show the following (Theorem6.1): for a cubic, bridgeless graphG, if o(G)�4, then
either one can find a degree compatible subgraphHC ofGC such thath(H) isC-compatible,
orG has a non-trivial 3-edge cut.

Note:With some extra work, one can show that the theorem stated above is still true even
if we replace the condition “h(H) isC-compatible” with�′(h(H)) = 3. Using this, one can
strengthen Theorem1.2to yield Huck’s result.
The initial steps in the proof of Theorem1.2use a “splitting” operation for vertices. Let

G be a graph and supposev∈V (G) andF⊂Ev. We define a new graphG[v;F ] by splitting
the edges ofF away fromv and creating a new vertexv′ whose incident edges are those
of F .
We call this operation asplittingof F atv (see Fig.1). The following theorem (see[4] or

[9]) tells us when splitting is possible without creating bridges.

Theorem 1.3. Let G be a connected bridgeless graph. Supposev ∈ V (G)wheredG(v)�4
and lete0, e1, e2 ∈ Ev. Then eitherG[v;{e0,e1}] or G[v;{e0,e2}] is connected and bridgeless
or G[v;{e1,e2,e3}] has more components than G.

The above theorem has the immediate corollary:

Corollary 1.4. Suppose G is a connected bridgeless graph andv ∈ V (G)wheredG(v) = 4
ande0, e1, e2 ∈ Ev. Then eitherG[v;{e0,e1}] or G[v;{e0,e2}] is connected and bridgeless.

LetG be a cubic graph and supposeC = v0e0v1e1v2e2v3e3v0 is a 4-cycle. We create a
new cubic graph by deleting the edgese1 ande3 and suppressing the resulting vertices of
degree 2. Such a graph we denote byG⊕ {e1, e3}. We call the corresponding operation a
-reduction.

Lemma 1.5. Suppose G is a2-connected cubic graph andC = v0e0v1e1v2e2v3e3v0 is a
4-cycle. Then eitherG⊕ {e1, e3} or G⊕ {e0, e2} is 2-connected.

Proof. Let G andC be as in the statement of the lemma. IfC contains a chord, then the
result is clear. We suppose therefore thatC has no chords and we contract the edges ofC
so that it becomes a single vertexv which has degree 4. LetG′ be the resulting graph and
supposev has incident edgesf0, f1, f2, f3. Herefi corresponds to an edge inG incident
with vi . By Corollary1.4, eitherG[v;{f0,f3}] orG[v;{f0,f1}] is connected and bridgeless. This
in turn implies that eitherG⊕ {e0, e2} orG⊕ {e1, e3} is 2-connected. �
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The next lemma is a basic observation about-reductions and colourings. The proof is
left to the reader.

Lemma 1.6. Suppose G is a cubic graph and let H be a cubic graph obtained from G via
a -reduction. Then�′(G) = 3 if �′(H) = 3.

Combining Lemmas1.5and1.6we obtain:

Lemma 1.7. Suppose G is a2-connected cubic graph having disjoint4-cyclesC1, . . . , Ck.
There exist -reductions on each4-cycleC1, . . . , Ck such that after performing these re-
ductions,we obtain a2-connected cubic graphH .Moreover, if �′(H) = 3, then�′(G) = 3.

Corollary 1.8. Suppose G is a2-connected cubic graph having disjoint4-cycles
C1, . . . , Ck. If G\(C1 ∪ . . . ∪ Ck) has at most8 vertices, then�′(G) = 3.

Proof. By Lemma1.7there exist -reductions on each 4-cycleCi, i = 1,2, . . . , k such that
after performing these reductions we obtain a 2-connected cubic graphH . SinceG\(C1 ∪
. . .∪Ck) has atmost 8 vertices, we have that�(H)�8. Thismeans that�′(H) = 3, since the
smallest 2-connected cubic graph with chromatic index 4 isP10. Now Lemma1.7 implies
that�′(G) = 3. �

2. Reductions and extensions

Let G be a 2-connected cubic graph having a 2-edge cut�X = {e, f } wheree = uu′,
f = vv′, andu, v ∈ X. We define a new graph by deletingeandf and adding new edges
e′ = uv andf ′ = u′v′, and we denote this graph byG⊕ {e, f }. We call the corresponding
operation a 2-edge reduction. If Ghas a 3-edge cut�X = {e1, e2, e3}whereei = uivi, ui ∈
X, i = 1,2,3, then we can define a new graph by deletingei, i = 1,2,3 and adding new
verticesu andv together with edgesuui andvvi, i = 1,2,3. We denote this graph by
G⊕ {e1, e2, e3}We call the corresponding operation a 3-edge reduction.
SupposeGhas a triangleT = v1e1v2e2v3e3v1.We define a new cubic graph by contract-

ing (ie. identifying)Twith a single vertex. Such a graph we denote byG⊕� (T ). We call
the corresponding operation a�-reduction.
Let u1 andu2 be the endvertices of a digonD in G. By digonwe mean a pair of edges

inducing a 2-cycle. LetNG(D) = {u′
1, u

′
2} (here we allow foru′

1 = u′
2). We define a new

graphG⊕◦ (D) = (G\D) ∪ {u′
1u

′
2}. Such an operation we call a◦-reduction.

Supposev is a vertex of degree 2 which is not incident with a loop. GivenNG(v) =
{v1, v2} (with possiblyv1 = v2) we define a new graphG⊕∨ (v) = (G\v) ∪ {v1v2}. We
call the corresponding operation a∨-reduction.
SupposeG andH are graphs. We say thatG andH arehomeomorphicif one graph can

be obtained from the other via∨-reductions and subdividing edges.
If G is a graph having no components which are cycles, then we can perform successive

∨-reductions onG to obtain a graph with no vertices of degree 2. This graph is seen to be
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Fig. 2. 4-edge reduction.

the unique graph homeomorphic toG which has no vertices of degree 2. We denote such
a graph byh(G). We define thehomeomorph chromatic indexof G, denoted�′

h(G), by
�′
h(G) = �′(h(G)).
LetG be a cubic graph, and lete ∈ E(G) be such thate is not incident with any loops.

We define a graphG⊕ e = h(G\e). We obtainG⊕ e fromG via an operation which we
refer to as anedge-reduction. The following is a standard result and we refer the reader to
[6], chapter 3.

Theorem 2.1. Suppose G is a bridgeless cubic graph.

(a) If G′ is obtained from G via a2- or 3-edge reduction, or via a∨-, ◦-, or �-reduction,
then�′(G′) = �′(G).

(b) If G′ is obtained from G via a-reduction, then�′(G′) = 4 if �′(G) = 4.

Corollary 2.2. Let G be a cubic graph and letG′ be a cubic graph obtained from G via a
sequence of2-, 3-,∨-, ◦-, or �-reductions. If�′(G′) = 3, then�′(G) = 3.

Suppose we are given a 4-edge cut�X where we order the edges ase1, e2, e3, e4, and
ei = uivi, ui ∈ X, i = 1,2,3,4. We define a new graph, denotedG ⊕ (e1, e2, e3, e4),
where we delete the edgesei, i = 1,2,3,4 and add the edgesu1u2, u3u4, v1v2, v3v4. We
call the corresponding operation a 4-edge reduction(see Fig.2).
Similarly, given a 5-edge cut�X, if we order the edges of�X ase1, e2, e3, e4, e5 where

ei = uivi, ui ∈ X, i = 1, . . . ,5, we define a new graph, denotedG⊕ (e1, e2, e3, e4, e5)

by first deletinge1, . . . , e5, and then adding edgesu4u5, v4v5, and 2 new verticesu andv
together with the edgesuiu, viv, i = 1,2,3. The corresponding operation we call a 5-edge
reduction(see Fig.3).
We define an insertion operation in the following way: we subdivide an edge of a graphG

inserting a vertexu, and then subdivide a new edge in the resulting graph, inserting another
vertexv. We then add an edgee = uv. The combined operation is called anedge-insertion
operation, which we denote byG� e. If we insert edgese1, . . . , ek successively inG, then
we denote the resulting graph byG � (e1, . . . , ek), or in the case whereS is a subset of
edges to be inserted, we letG� S denote the resulting graph.
We define a corresponding insertion operation for vertices, whereby we subdivide edges

3 times in succession, inserting verticesu1, u2, andu3.We then add a vertexv and join it to
u1, u2, andu3 by edges. The operation is called avertex-insertionoperation, and we denote
the resulting graph byG� v.
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Fig. 3. 5-edge reduction.

Fig. 4. Vertex expansion atu.

For each of the reduction operations defined above, we can define the reverse operation,
namely, anexpansionoperation. SupposeG is a cubic graph and lete = u1u2 ∈ E(G). Let
H be a cubic graph and letf = v1v2 ∈ E(H). Given that the endvertices ofe and f are
ordered asu1, u2 andv1, v2, respectively, we define(G; u1; e)⊗ (H ; v1; f ) = (G\{e}) ∪
(H\{f }) ∪ {u1v1, u2v2} and the corresponding operation we call a 2-edge expansion.
Supposeu ∈ V (G). Let e1, e2, e3 be an ordering of the edges incident tou where

ei = uiu, i = 1,2,3. LetH be a cubic graph and letv ∈ V (H). We supposef1, f2, f3
is an ordering of the edges incident tov wherefi = viv, i = 1,2,3. We define an
operation called avertex expansionat u whereby we deleteu, and add the graphH\v
together with the edgesuivi, i = 1,2,3. (see Fig.4). We denote the resulting graph by
(G; u; e1, e2, e3)⊗ (H ; v; f1, f2, f3) and denote the corresponding operation byu → H .
Note that a vertex expansion may yield the same graph, for example whenH is a multiple
3-edge. In the case whereH is 3-edge colourable, we refer to the vertex expansion as being
3-chromatic.
If we perform an expansion at each vertex, then we say that the resulting graph is an

expansionof G. If in addition each vertex expansion is 3-chromatic, then we say that the
expansion is 3-chromatic.
We may define the reverse operations to 4- and 5-edge reductions as well. LetG andH

be cubic graphs. Pick 2 non-incident edges ofGwhich we order ase1, e2 where we assume
e1 = u1u2, ande2 = u3u4. Here we order the endvertices ofe1 ande2 asu1, u2 andu3, u4,
respectively. Similarly, we pick 2 edgesf1, f2 in H wheref = v1v2 andf2 = v3v4. We
order the endvertices off1 andf2 asv1, v2 andv3, v4, respectively. We define a 4-edge
expansionwhereby we deletee1, e2, f1, f2 fromG ∪H and then add the edgesuivi, i =
1,2,3,4. (see Fig.5) We denote this graph by(G; u1, u3; e1, e2)⊗ (H ; v1, v3; f1, f2).
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Fig. 5. 4-edge expansion.

Fig. 6. 5-edge expansion.

Fig. 7. Expanding a square.

Suppose we are given cubic graphsG andH as before. We letu be a vertex ofG and let
e ∈ E(G) be an edge non-incident withu. We order the edges ofEu ase1, e2, e3 where
ei = uui, i = 1,2,3.We lete = u4u5 where the vertices are ordered asu4, u5. In a similar
way, letv ∈ V (H) and letf ∈ E(H), f /∈ Ev. We supposef1, f2, f3 is an ordering
of the edges atv wherefi = vvi, i = 1,2,3. We letf = v4v5 where the endvertices
are ordered asv4, v5. We define a 5-edge expansionby deletingu, v, e, f from G ∪ H
and adding the edgesuvi, i = 1, . . . ,5 (see Fig.6). We denote the resulting graph by
(G; u, u4; e1, e2, e3, e)⊗ (H ; v, v4; f1, f2, f3, f ).
We can define a-expansionin the following way: letG be a cubic graph and lete1 =

u1u2 ∈ E(G) ande2 = u3u4 ∈ E(G) where the endvertices ofe1 ande2 are ordered
asu1, u2 andu3, u4, respectively. We subdividee1 by 2 verticesw1 andw2, so that the
vertices lie in orderu1, w1, w2, u2. Next, we subdividede2 by the verticesw3 andw4 so
that the vertices lie in orderu3, w3, w4, u4.. We then add the edgesw1w3 andw2w4. It is
permissable thate1 = e2 butw1w2 andw3w4 must be edges in the subdivided graph. We
denote the resulting graph byG⊗ (e1, e2; u1, u2; u3, u4). See Fig.7.
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Some simple observations are given in the proposition below whose proof is straightfor-
ward and left as an exercise for the reader.

Proposition 2.3. Let G and H be cubic graphs.

(a) If u ∈ V (G) andG′ is the result of a vertex expansionu → H , then �′(G′) =
max{�′(G), �′(H)}.

(b) SupposeG′ = (G; u1, u3; e1, e2) ⊗ (H ; v1, v3; f1, f2). If �′(G) = �′(H) = 3, and
there exist proper3-edge colouringsc1, c2 : E(G) → {1,2,3} such thatc1(e1) =
c1(e2) andc2(e1) �= c2(e2), then�′(G′) = 3.

(c) SupposeG′ = (G; u, u4; e1, e2, e3, e)⊗ (H ; v, v4; f1, f2, f3, f ). If �′(G) = �′(H) =
3 and there exist proper3-edge colouringsc1, c2, c3 : E(G) → {1,2,3} such that
ci(e) = ci(ei), i = 1,2,3, then�′(G′) = 3.

(d) SupposeG′ = G⊗ (e1, e2; u1, u2; u3, u4). If �′(G) = 3, then�′(G′) = 3.

Example 2.4. Supposee = uu′ ∈ E(P10) whereN(u) = {u′, u1, u2} andN(u′) =
{u, u3, u4}. Let P8 = P10⊕ e, and letf1 = u1u2 ∈ E(P8) andf2 = u3u4 ∈ E(P8). We
have that�′(P8) = 3 and moreover,P8 has 2 proper 3-edge colouringsc1, c2 : E(P8) →
{1,2,3} wherec1(f1) = c1(f2) andc2(f1) �= c2(f2).
Suppose now thatv1a1v2a2v3 is a path of length 2 inP10. Let Ev1 = {a1, b1, b2},

Ev2 = {a1, a2, b3}, andEv3 = {a2, b4, b5} whereb1 = u1v1, b2 = u2v1, b3 = u3v2, b4 =
u4v3, b5 = u5v3. The graphG′ = P10 ⊗ {b1, b2, b3, b4, b5} has 2 componentsG′

1 and
G′
2, whereG

′
1 is P8. The graphG

′
1 is obtained fromP10 by deleting the verticesv1, v2, v3

and adding a vertexu together with the edgesuu1, uu2, uu3 andu4u5. There exist proper
3-edge colouringsc1, c2, c3 : E(G) → {1,2,3} such thatci(uui) = ci(u4u5), i = 1,2,3
(see Fig.8).

A sequence of -expansions is said to bedisjoint if each expansion preserves the 4-
cycles created in the previous-expansions. Given that we perform any number of disjoint
-expansions onP10 the resulting graph is either 3-edge colourable or is a 3-chromatic
expansion ofP10. We have something slightly more general:

Theorem 2.5. LetQ = P10� (e1, . . . , ek).Then either�′(P10� S) = 3 for some ordered
subsetS ⊆ {e1, . . . , ek} or Q is an expansion ofP10.

The above theorem follows from results in Section7. It implies the following result:

Theorem 2.6. LetP ′
10 be a3-chromatic expansion ofP10 where�(P ′

10)�16.Let Q be a
cubic graph obtained fromP ′

10 via a sequence of disjoint-expansions. Then either�′(Q) =
3 or Q is a3-chromatic expansion ofP10.

Proof. To minimize the burden of details, we shall only prove the case whereP ′
10 = P10,

the proof for the general scenario being the same in spirit. The graphQ is also obtained by
inserting edges intoP10. Now by Theorem2.5, we have that either we obtain a graphQ′
with �′(Q′) = 3 via a subsequence of edge insertions (in which case�′(Q) = 3), orQ is
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Fig. 8. Edge-reduction onP10 and 5-edge reduction onP10.

an expansionv → Av, v ∈ V (P10) of P10. In the former case, we could obtain a 3-edge
colourable graph via a subsequence of-expansions, which would imply�′(Q) = 3. In the
latter case, eachAv would be obtained by performing disjoint-expansions on a multiple
3-edge, and thus�′(Av) = 3. This shows that such an expansion would be 3-chromatic.
This completes the proof.�
Given thatP10 is the only snark with 16 or fewer vertices, ifG is a graph with 18 vertices

which is not a snark, then either�′(G) = 3 orG is a 3-chromatic expansion ofP10.

Proposition 2.7. Let G be a2-connected cubic graph with�(G)�16.Then either�′(G) =
3 or G is a3-chromatic expansion ofP10. Moreover, if �(G) = 18,and G is not a snark,
then the above conclusion is still valid.

Let H1 be a cubic graph and letu ∈ V (H1). Let e1, e2, e3 be an ordering of the edges
incident touwhereei = uiu, i = 1,2,3. LetH2 be a cubic graph and letv ∈ V (H2). We
supposef1, f2, f3 is an ordering of the edges incident tov wherefi = viv, i = 1,2,3.
We supposeC1 andC2 are collections of cycles inH1 andH2, respectively, where each
ei(resp.,fi) is covered twice by cycles inC1(resp.,C2). We define a splicing operation
where the cycles ofC1 andC2 are “spliced” together to form a collection of cyclesC of
H = (H1; u; e1, e2, e3) ⊗ (H2; v; f1, f2, f3). Let C11, C12, C13 be the cycles ofC1 which
contain the pairs of edges{e1, e2}, {e1, e3}, {e2, e3}, respectively, and letC22, C22, C23 be the
cycles ofC2 which contain the pairs of edges{f1, f2}, {f1, f3}, {f2, f3}, respectively. Let
hi be the edgeuivi ∈ E(H), i = 1,2,3. and let

C1 = (C11\u) ∪ (C21\v) ∪ {h1, h2},
C2 = (C12\u) ∪ (C22\v) ∪ {h1, h3},
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C3 = (C13\u) ∪ (C23\v) ∪ {h2, h3}.
Let C = (C1\{C11, C12, C13})∪ (C2\{C21, C22, C23})∪ {C1, C2, C3}. We callC a collection of
cycles obtained bysplicingtogetherC1 andC2.

3. 3-colourable subgraphs

A circuit which is a vertex-disjoint collection of cycles which partitions the vertices of
the graph is called a 2-factor. It is well-known that every bridgeless cubic graph contains a
perfect matching and hence also a 2-factor (see[2, p. 79]).
SupposeG is a 2-connected, cubic, 3-edge colourable graph, and letC be a circuit of

G. GivenG has a 3-edge colouring with colours 1,2,3, we letCij be the 2-factor induced
by the edges having coloursi or j wherei, j = 1,2,3. LetC′

ij = Cij%C, i, j = 1,2,3,
where ‘%’ denotes symmetric difference. NowC′

ij , i, j = 1,2,3 are 3 circuits which
cover all the edges ofG twice, except for the edges ofC which are covered once. To
summarize:

Lemma 3.1. Let G be a cubic3-edge colourable graph and let C be a circuit of G. Then
there are3 circuits which cover the edges of C once, and the edges ofE(G)\E(C) twice.

We also have a specific variation of this lemma which we will need:

Lemma 3.2. LetP ′
10 be a3-chromatic expansion ofP10 given byv → Av, v ∈ V (P10).

Let C′ be a disjoint collection of cycles ofP ′
10 where, with the exception of possibly one

cycle, each cycle ofC′ is contained in someAv.ThenP ′
10 contains a collection of cyclesD′

which cover the edges of
⋃
C′∈C′ E(C′) once and the other edges ofP ′

10 twice.

Proof. For eachv ∈ V (P10) let A′
v be the subgraph ofP

′
10 induced by the edges inP10

corresponding to those inAv. We shall assume thatC′ contains one cycleK ′ which is not
contained in anyAv, v ∈ V (P10). In the casewhere no such cycle exists, the proof is similar.
We first observe that given any cycleC in P10, there is a collection of cycles inP10 covering
C once, and the other edges ofP10 twice. LetK be the cycle ofP10 corresponding to the
cycleK ′. LetD be a collection of cycles ofP10 which coverK once and the other edges of
P10 twice. For any cycleC′ ∈ C′, if C′ intersectsA′

v, then the intersection corresponds to a
cycle inAv. Moreover, the intersection of the cycles ofC′ withA′

v corresponds to a disjoint
collection of cycles inAv which we denote byCv. SinceAv is 3-edge colourable, Lemma
3.1implies that there is a collection of cyclesDv in Av covering the cycles ofCv once and
the other edges ofAv twice. One can now splice together the collectionsDv, v ∈ V (P10)
with D to obtain the desired collection of cyclesD′ of P ′

10. �

Example 3.3. Let G be the cubic graph consisting oft independent vertices joined to a
cycleC of length 3t . If �(G)�16 (that is,t�4), then according to Proposition2.7 we
have that either�′(G) = 3 orG is a 3-chromatic expansion ofP10. It follows by Lemmas
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3.1 and3.2 that there is a collection of cycles inG coveringC once and the other edges
twice.

Suppose thatG is a cubic graph with a pseudo 2-factor(X, C) and suppose that there are
two bridgeless subgraphsH1 andH2 whereG = H1∪H2,E(H1)∩E(H2) = ⋃

C∈C E(C),
and eachHi i = 1,2 has a collection of cyclesDi which cover all the edges ofHi twice
except the edges ofC which are covered once. The collectionD = D1 ∪ D2 is a cycle
double cover ofG. Our strategy for the proof of the main theorem is, when possible, to find
two such subgraphsH1 andH2. We note that if�′

h(H1) = �′
h(H2) = 3, then Lemma3.1

implies that the desired cycle collectionsD1 andD2 exist.

Lemma 3.4. Let (X, C) be a pseudo2-factor of a cubic2-connected graph G. Suppose
there is a degree-compatible subgraphHC of GC such thath(H) is C-compatible, and
�′
h(H) = 3.Then G has a cycle double cover comprised of cycles from5 circuits.

Proof. SupposeHC is a subgraph as specified in the Lemma. By Lemma3.1 there is a
collection of cyclesCH belonging to 3 circuits which cover the edges ofC once, and the
edges ofH\ ⋃

C∈C E(C) twice. LetH ′ = (G\E(H) ∪ X) ∪ ⋃
v∈V (HC)\X C(v). In H

′
there is a 2-factorC′ corresponding toC. Each cycleC′ ∈ C′ is such thath(C′) is an even
cycle. Consequently,�′

h(H
′) = 3. Thus, we can find 2 perfect matchingsP1 andP2 in

h(H ′) whereP1 ∪ P2 = ⋃
C′∈C′ E(h(C′)). For i = 1,2 h(H ′)\Pi is a disjoint union of

cycles. LetCi
H ′ be the corresponding collection of cycles inH ′. ThenCH ′ = C1

H ′ ∪ C2
H ′ is a

collection of cycles belonging to 2 circuits which cover the edges ofC′ once and the other
edges ofH ′ twice. It follows thatCH ∪ CH ′ is the desired cycle double cover ofG. �
LetGbe a 2-connected cubic graph and let(X, C) be a pseudo 2-factor.We suppose that,

apart from loops,GC is a 2-connected graph and has 4 odd verticesv1, v2, v3, v4. We wish
to show that there exists a subgraph containingv1, v2, v3, v4 which is one of the subgraphs
illustrated in Fig.9. InH 1

C there is a cycle containing all 4 vertices. InH
2
C andH

3
C there is

a cycle containing exactly 3 of the verticesv1, . . . , v4 which are denotedvi1, vi2, andvi3.
There are 2 internally disjoint paths from the fourth vertexvi4 to the cycle. InH

4
C , we have 2

disjoint cycles each containing exactly 2 of the verticesv1, . . . , v4. InH 5
C there are exactly

2 cycles meeting at one vertex, each cycle containing 2 of the verticesv1, . . . , v4. In H 6
C ,

there are 2 cycles meeting at 2 vertices (labelledv13 andv24) where each cycle contains 2
vertices ofv1, . . . , v4.

Lemma 3.5. Let G be a2-connected loopless multigraph and letv1, v2, v3, v4 be4vertices
of G. The graph G has a subgraph H containingv1, v2, v3, v4 where H is one of the graphs
specified in Fig.9. In (f), the verticesv13 and v24 form a 2-separating set in G which
separates each pair of verticesvi andvj , i, j = 1,2,3,4.

Proof. If there is a cycle inG containingv1, v2, v3, v4, then we have the subgraphH 1
C in

Fig. 9. We may therefore assume that no such cycle exists. Suppose instead that there is a
cycleC containing exactly 3 of the vertices, sayvi1, vi2, vi3, where the remaining vertex



262 R. Häggkvist, S. McGuinness / Journal of Combinatorial Theory, Series B 93 (2005) 251–277

Fig. 9. Bridgeless subgraphs containingv1, v2, v3, v4.

vi4 lies outside ofC. By Mengers theorem[2, p. 46], there are 2 internally vertex-disjoint
paths fromvi4 to C which meet only atvi4. In this case, we have the two possibilitiesH

2
C

andH 3
C illustrated in Fig.9. We suppose now thatG has no cycle containing 3 or 4 of the

verticesvi, i = 1,2,3,4. SinceG is 2-connected, there is a cycleC containingv1 andv2
(but notv3 or v4). The cycleC is the union of 2 paths, sayP1 andP2 from v1 to v2. Since
G is 2-connected, there are 2 internally disjoint pathsP3 andP4 from v3 toCwhich meet
only at v3. Since it is assumed thatG has no cycle containing 3 or more of the vertices
vi, i = 1,2,3,4, we may assume thatP3 meetsC alongP1 at a vertexv13 �= v1, v2.
Similarly, P4 meetsC alongP2 at a vertexv24 �= v1, v2. LetH = C ∪ P3 ∪ P4. We have
thatv4 /∈ V (H), for otherwise there would be a cycle containingv1, v3, andv4 (given that
v3 /∈ V (C)). Again, by the 2-connectedness ofG, there are 2 internally disjoint pathsP5
andP6 from v4 to H which meet only atv4. Depending on whereP5 andP6 intersectH,
the graphGmust contain one of the subgraphsH 4

C , H
5
C or H

6
C as illustrated in Fig.9. In

the case thatG contains neitherH 4
C norH

5
C , it must be the case that the verticesv13 andv24

form a 2-separating set for each pair of verticesvi, vj , i, j = 1,2,3,4. �

Lemma 3.6. Let G be a multigraph. There exists a forestF ⊆ G such thatdF (v) =
dG(v) (mod 2), ∀v ∈ V (G).

Proof. By induction on the number of edges. Ifε(G) = 0, then the lemma holds trivially.
Suppose the lemma holds for all multigraphs having fewer thanm edges (m > 0), and
supposeε(G) = m. If G contains no cycles, then it is itself a forest and we can choose
F = G.We suppose therefore thatGcontains a cycleC. LetG′ = G\E(C). By assumption,
there is a forestF ⊆ G′ such thatdF (v) = dG′(v) (mod 2), ∀v ∈ V (G′). This means that
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Fig. 10. Non-isomorphic, non-homeomorphic forests with 4 or 6 odd vertices.

dG(v) = dF (v) (mod 2)∀v ∈ V (G). Thus the lemma holds for all graphs withm edges,
and the proof follows by induction.�
There are exactly 11 non-isomorphic, non-homeomorphic forests having 4 or 6 odd

vertices. These are illustrated in Fig.10.
LetGbe a 2-connected cubic graph and let(X, C) be a pseudo 2-factor ofG.We suppose

thatGC is 2-connected and has 4 odd verticesv1, v2, v3, v4. There is a bridgeless subgraph
H ′

C ⊆ GC as in Lemma3.5. The graphG′
C = GC\E(H ′

C) has 4 or 6 odd vertices (depending
onH ′

C) and hence by Lemma3.6 there is a forestF
′
C ⊆ G′

C homeomorphic to one of the
forests given in Fig.10wheredF ′

C (v) = dG′
C (v) (mod 2) ∀v ∈ V (GC). LetHC = H ′

C ∪F ′
C .

ThenHC is a degree-compatible subgraph ofGC .
For a multigraphM, we have a list of 9 conditions:

(3.1.1) �3(M) = 4 and��5(M) = 0.
(3.1.2) �3(M) = 4, �5(M) = 0, �6(M) = 1, and��7(M) = 0.
(3.1.3) �3(M) = 3, �5(M) = 1, ��6(M) = 0.
(3.1.4) �3(M) = 3, �5(M) = 1, �6(M) = 1, ��7(M) = 0.
(3.1.5) �3(M) = 3, �5(M) = 0, �6(M) = 0, �7(M) = 1, ��8(M) = 0.
(3.1.6) �3(M) = 2, �5(M) = 2, ��6(M) = 0.
(3.1.7) �3(M) = 4, �5(M) = 0, �6(M) = 2, ��7(M) = 0.
(3.1.8) �3(M) = 4, �5(M) = 0, �6(M) = 0, �7(M) = 0, �8(M) = 1, and��9(M) = 0.
(3.1.9) �3(M) = 4, �5(M) = 0, �6(M) = 1, �7(M) = 0, �8(M) = 1, and��9(M) = 0.

By considering all the possible subgraphs, the subgraphHC satisfies at least one of the 9
conditions listed above. The table below indicates for each combination of a forest from
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Fig. 10 and a subgraph from Fig.9 the subset of conditions which apply toHC . In each
case, at least one of these conditions must hold.

H 1
C H 2

C H 3
C H 4

C H 5
C H 6

C
F1 (3.1.1) (3.1.1) (3.1.1) (3.1.1) (3.1.1)

(3.1.3) (3.1.2) (3.1.2)
(3.1.7)

F2 (3.1.1) (3.1.1) (3.1.1) (3.1.1) (3.1.1)
(3.1.2) (3.1.2) (3.1.2) (3.1.2) (3.1.2)

(3.1.5) (3.1.8) (3.1.9)

F3 (3.1.1) (3.1.2) (3.1.3) (3.1.3)
(3.1.3) (3.1.4) Not possible
(3.1.4)
(3.1.6)

F4 (3.1.1)

F5 (3.1.1)
(3.1.2)

F6 (3.1.2)
(3.1.3)

F7 (3.1.2)
(3.1.8)

F8 (3.1.5)
(3.1.8)

F9 (3.1.4)
(3.1.6)
(3.1.7)

F10 (3.1.2)
(3.1.3)
(3.1.4)
(3.1.7)

F11 (3.1.2)
(3.1.7)

4. Cycle covers

In this section, we prove some results on cycle coverings. LetG be a cubic graph and
let p : E(G) → {0,1,2} be a non-negative edge weighting ofG. Let C be a collection of
cycles inG. For each edgee ∈ E(G) we letmC(e) be the number of cycles inC containing
e. We say thatC is acycle p-coverfor (G, p) if mC(e) = p(e), ∀e ∈ E(G).
A weightingp : E(G) → Z+ is eulerian if ∀v ∈ V (G),

∑
e∈Ev p(e) = 0 (mod 2).

For a weighted graph(G, p) with eulerian weightingp we define asubdivision operation
where we subdivide an edgee0 with a vertexuand give the subdivided edges weightp(e0).
Suppose we are given a weighted graph(G, p) and we perform a subdivision operation
twice in succession, where we subdivide with verticesu andv. We then add an edgee of
weight 2 betweenu andv. The resulting graph isG � (e), and we denote the resulting
(eulerian) weighting byp�(e).
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Suppose we perform a subdivision operation 3 times, where we subdivide with vertices
u1, u2, andu3. We add a vertexv and join it tou1, u2, andu3 with edges of weight 2. The
resulting graph isG� (v) and we denote the corresponding weighting byp�(v).We say that
(G� (e), p�(e))(resp.,(G� (v), p�(v))) preservescycle coverings if, given(G, p) has a
cyclep-cover, then(G� (e), p�(e)) has a cyclep�(e)-cover (resp.,(G� (v), p�(v)) has a
cyclep�(v)-cover. Similarly, we say that an insertion operation preserves 3-edge colourings
if, givenG is 3-edge colourable, the graph resulting fromG after the insertion operation is
also 3-edge colourable.
We define thedistancebetween two edgese0 ande1 in a connected graphG to be the

number of edges in the shortest path containingeo ande1 minus 1. This distance we denote
by distG(e0, e1).

Theorem 4.1. Let (G, p) be a weighted cubic graph wherep : E(G) → {1,2} and p is
eulerian.

(i) LetG′ = G � (e) andp′ = p�(e) where e has endvertices in edgese0 ande1 in G.
If distG(e0, e1)�2, then(G′, p′) preserves cycle coverings, andG′ preserves3-edge
colourings. Consequently, if e0 and e1 belong to a5-cycle, then (G′, p′) preserves
cycle coverings, andG′ preserves3-edge colourings.

(ii) LetG′ = G� (v) andp′ = p�(e) wherev has neighbours inserted in the edgese0, e1,
ande2 in G. If e0, e1, ande2 belong to a cycle of length at most5 in G, then(G′, p′)
preserves cycle coverings, andG′ preserves3-edge colourings.

Proof. (i) Let (G′, p′) ande0, e1 be as in (i). SupposedistG(e0, e1) = 0; that is,e0 = e1.
LetC ∈ C be a cycle containinge0. Thene is a chord ofC in G′ and we can replaceC by
2 cyclesC1, C2 ⊂ C ∪ {e} whereC1 andC2 covere twice andC once. It then follows that
C′ = (C\{C})∪{C1, C2} is a cyclep′-cover of(G′, p′). We also see thatG can be obtained
fromG′ via an◦-reduction. Thus�′(G) = �′(G′) andG′ preserves 3-edge colourings.
Suppose thatdistG(e0, e1) = 1; that is,e0 ande1 are incident with a common vertex.

Let C0, C1 ∈ C be cycles whereC0 containse0 andC1 containse1. If e1 ∈ E(C0), thene
is a chord ofC0 and we may adopt the previous argument. So we may assumee1 /∈ E(C0)
and likewise,e1 /∈ E(C1). Let H = h(C0 ∪ C1). We have that�′(H) = 3, asC0%C1
corresponds to a 2-factor with even cycles inH . Moreover, we see thate is a chord of some
cycle inC0%C1, and consequentlyH ′ = h(C0 ∪ C1 ∪ {e}) is also 3-edge colourable. By
Lemma3.1 there is a collection of cyclesCH ′ in H ′ which coversC0%C1 once, and the
other edges ofH ′ twice. LetD be the collection of cycles ofC0 ∪ C1 ∪ {e} corresponding
to CH ′ . ThenC′ = (C\{C0, C1}) ∪ D is seen to be a cyclep′-cover for(G′, p′). We note
thatG can be obtained fromG′ via a�- reduction and consequently�′(G) = �′(G′). Thus
G′ preserves 3-edge colourings.
We suppose now thatdistG(e0, e1) = 2. LetC0, C1 ∈ C wheree0 ∈ E(C0) ande1 ∈

E(C1). We may assume thate0 /∈ E(C1), e1 /∈ E(C0), and there is an edgee01 ∈ E(G)
lying on a path of length 3 betweene0 ande1. We will consider 2 cases:

Case1:E(C0) ∩ E(C1) = Ø.
Let C01 ∈ C be a cycle containinge01. We may assumee0, e1 /∈ E(C01), for otherwise

we can jump ahead to the second case. LetH = h(C0∪C1∪C01).We have that�′(H) = 3
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and moreover,e is a chord of a cycle in the 2-factor ofH C0%C1%C01. We can now apply
the previous argument to obtain a cyclep′-cover forG′.

Case2:E(C0) ∩ E(C1) �= Ø.
ConsiderH = h(C0 ∪ C1). Supposee = xy. We shall assume thatC is a cycle cover

having a maximum number of cycles. LetCh0 andC
h
1 be the cycles ofH corresponding

to C0 andC1, respectively. We have that�′(H) = 3 andCh0%C
h
1 is a 2-factor (with even

cycles). Ife is a chord of some cycle inC0%C1, then we proceed as before. So we may
assume thate lies between 2 cycles ofCh0%C

h
1 . Colour the edges of the cycles ofC

h
0%C

h
1

alternatively with colours green and blue in such a way that the edges containinge0 ande1
are given the same colour, say green. Colour the remaining edges ofH red. LetDhgr andD

h
br

be the circuits induced by the green–red and blue–red edges, respectively. LetDh
gr andDh

br

be the set of cycles inDhgr andD
h
br , respectively. We letDgr andDbr be the sets of cycles

inG corresponding toDhgr andD
h
br , respectively. Similarly, we letD′

gr andD
′
br be the sets

of cycles inG′ corresponding toDgr andDbr , and we letD′
gr andD

′
br be the circuits ofG

′

corresponding toDgr andDbr . If |Dh
gr | > 1, or |Dh

br | > 1, then(C\{C0, C1})∪ Dgr ∪ Dbr
would be a cyclep-cover of(G, p) with more cycles thanC, contradicting the maximality
of C. Thus bothDgr andDbr are cycles. This means thate is a chord ofD′

gr in G
′, and

we can splitD′
gr ∪ {e} into 2 cyclesD1gr andD2gr where{D1gr ,D2gr} coverD′

gr once ande
twice. LetC′ = (C\{C0, C1}) ∪ {D1gr ,D2gr ,D′

br}. ThenC′ is a cyclep′-cover for(G′, p′).
To show thatG′ preserves 3-edge colourings, we first note that a cubic graph is 3-edge

colourable iff it has three 2-factors which form a double cycle cover. Suppose�′(G) = 3,
and letC be a double cover consisting of cycles from three 2-factors. We may assumeC0
andC1 are disjoint (as in case 1) orC0 andC1 are the same cycle. LetD be the 4-cycle in
G′ containingeande01. LetC′ = (C\{C0, C1, C01})∪ {(C0 ∪C1)%D, C01%D}. NowC′
is seen to be a cyclep′-cover ofG′, andC′ is a union of three 2-factors. Thus�′(G′) = 3.
This shows thatG′ preserves 3-edge colourings. This proves (i).
To prove (ii) we note that one can obtain(G′, p′) by performing an edge insertion op-

eration twice, each time inserting an edge which is a chord of a 5-cycle. The proof then
follows by (i). �

Lemma 4.2. Let(G, p)be a weighted cubic graph wherep : E(G) → {1,2} is an eulerian
weighting. Let C be a chordless cycle of G wherep(e) = 1, e ∈ E(C). Suppose that G is
the union of subgraphsHi, i = 1, . . . , t t�4 which intersect along C. Fori = 1, . . . , t
let pi be the weighting p restricted toHi .

(a) If dHi (C) = 3 ∀i and each(Hi, pi) has a cyclepi-cover, then (G, p) has a cycle
p-cover.

(b) Supposet = 2 anddH1(C)�5, anddH2(C)�3. If for i = 1,2 each(Hi, pi) has a
cyclepi-cover, then(G, p) has a cycle p-cover. Moreover, if �′

h(H1) = �′
h(H2) = 3,

then�′(G) = 3.

Proof. We shall first prove (a). Fori = 1, . . . , t letH ′
i be the graph obtained fromHi by

contractingC into a single vertex, and we letp′
i be a weighting ofH

′
i wherep

′
i is the same

aspi restricted toHi\E(C). Given each(Hi, pi) has a cyclepi-cover, we have that each
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(H ′
i , p

′
i ) has a cyclep

′
i-cover, sayD′

i . We form a cubic graphH ′ from G by contracting
each graphHi\C into a single vertex, so thatH ′ consists ofC together witht independent
vertices joined toC. Let q ′ be a weighting ofH ′ whereq ′(e) = 1, ∀e ∈ E(C) and
q ′(e) = 2, ∀e /∈ E(C). According to Example2, (H ′, q ′) has a cycleq ′-cover, sayD′. We
can now splice together the cycle collectionsD′

i , i = 1, . . . , t with D′ to obtain a cycle
collectionD which is a cyclep-cover forG.
To prove (b) letH ′

1 be the cubic graph obtained fromG by contractingH2\C into single
vertexu1, and if necessary, performing a∨-reduction onu1 if it has degree 2. We define a
weightingp′

1 onH
′
1 wherep

′
1(e) = p1(e) ∀e ∈ E(H1) andp1(e) = 2 for all other edges.

LetH ′
2 be the graph obtained fromH2 by contractingC into a single vertexu2, performing

a∨-reduction onu2 if it has degree 2.We define a weightingp′
2 onH

′
2 wherep

′
2 is the same

p2 restricted toH2\E(C). One obtains(H ′
1, p

′
1) from H1 by either inserting a vertex of

degree 3 inC, or inserting a chord inC.Assuming(H1, p1) has a cyclep1-cover, we observe
thatdH1(C)�5, and thus Theorem4.1(ii) implies that(H ′

1, p
′
1) has a cyclep

′
1-cover, say

D′
1. Assuming(H2, p2) has a cyclep2-cover, we have that(H

′
2, p

′
2) has a cyclep

′
2-cover,

sayD′
2. We now splice togetherD′

1 andD
′
2 to obtain a cyclep-cover for(G, p).

If we assume thatH1 andH2 are 3-edge colourable, thenH ′
1 is 3-edge colourable (by

Theorem4.1(ii)) andH ′
2 is 3-edge colourable. SinceG is obtained fromH1 andH2, either

via a (3-chromatic) vertex expansionu → H ′
2 or via a 2-edge expansion, the graphG is

3-edge colourable.�

5. K-joins

For a positive integerk > 0, we define ak-joinof 2 graphsGandHwhere we joinGand
H by takingk verticesg1, g2, . . . , gk in G andk verticesh1, h2, . . . , hk in H and identify
each pair of verticesgi, hi, i = 1,2, . . . , k with single vertices. We denote the resulting
graph by(G; g1, . . . , gk) ∨k (H ;h1, . . . , hk). We define the 0-join ofG andH to be the
disjoint union ofG andH, and denote this graph byG ∨0 H . A k-join is said to beodd
(resp.,even) if dG(gi) anddH (hi) are odd (resp., even) for alli. Here, we use the symbol
∨ok (resp.,∨ek) in place of∨k to denote an odd (resp., even)k-join.
If dG(gi) is even (resp., odd) for alli anddH (hi) is odd (resp., even) for alli, then the

k-join is said to beeven–odd(resp.,odd–even).We use the symbol∨eok (resp.,∨oek ) in place
of ∨k to denote an even–odd (resp., odd–even)k-join.
For two families of graphsG andH where each graph has at leastk vertices, we define

G ∨k H to be the set ofk-joins of graphs inG with graphs inH. We defineG ∨ok H (resp.,
G ∨ek H) to be the set of odd (resp., even)k-joins of graphs fromG andH. In a similar
fashion, we defineG ∨oek H andG ∨eok H.
We define(G)1k = G, and for i = 2,3, . . . we define(G)ik = (G)i−1k ∨k G. We let

(G)k = ⋃
i�1(G)ik, and define(G)i,ek (resp.,(G)i,ok ) in a similar fashion, replacing the

symbol∨k with the symbol∨ek (resp.,∨ok) in the previous definition.
For collections of graphsG1, . . . ,Gn we define a sequence ofk-joins G1 ∨k · · · ∨k Gn

recursively by

G1 ∨k · · · ∨k Gn = (G1 ∨k · · · ∨k Gn−1) ∨k Gn.
We defineG1 ∨ok · · · ∨ok Gn andG1 ∨ek · · · ∨ek Gn similarly.
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Let F2 be the family of graphs consisting of graphs which are the edge-disjoint union
of a cycle and a path, the path going between 2 vertices on the cycle. Each such graph has
exactly 2 odd vertices (having degree 3). LetF4 be the family of bridgeless graphs with
exactly 4 odd verticesv1, v2, v3, v4, being the union of a graph containingv1, . . . , v4 as in
Fig. 9, and a tree homeomorphic to one in Fig.10. LetF∗

2 = ⋃
i�1(F2)i,o1 . Each graph

F ∈ F∗
2 is a block chain whose blocks belong toF2. Moreover, eachF ∈ F∗

2 has exactly
2 odd vertices (having degree 3), one in each of its endblocks. Let

F∗
4 = F4 ∪ (F4 ∨o1 F∗

2 ) ∪ (F4 ∨o1 F∗
2 ∨o1 F∗

2 ) ∪ (F4 ∨o1 F∗
2 ∨o1 F∗

2 ∨o1 F∗
2 )

∪ (F4 ∨o1 F∗
2 ∨o1 F∗

2 ∨o1 F∗
2 ∨o1 F∗

2 ).

Each member ofF∗
4 consists of a graphG ∈ F4 with block chains fromF∗

2 joined via an
odd 1-join to some or none of the odd vertices ofG.

Lemma 5.1. Let G be a2-edge connected graph having exactly2 odd verticesv1 andv2.
Then G contains a subgraphH ∈ F∗

2 whose odd vertices are exactlyv1 andv2.

Proof. Supposev1 andv2 belong to the same blockB of G. Then there is a cycleC in B
containingv1 andv2. LetG′ = G\E(C). Thenv1 andv2 are exactly the odd vertices of
G′. They must belong to the same component inG′, and consequently, there must be a path
P in G′ between them. LetH = C ∪ P . ThenH ∈ F2 (henceH ∈ F∗

2 ) and moreover,v1
andv2 are exactly the odd vertices ofH .
Suppose now thatv1 andv2 belong to different blocks ofG. Then there is a block chain

B0 · · ·Bk wherev1 ∈ V (B0), v2 ∈ V (Bk), andv1, v2 /∈ V (Bi) for 0 < i < k. Let
V (Bi) ∩ V (Bi+1) = {ui+1}, i = 0, . . . , k − 1, and letu0 = v1, anduk+1 = v2. Since
dB0(u0) is odd, it follows thatdB0(u1) is odd and thusdBi−1(ui), anddBi (ui) are odd for
i = 1, . . . , k. Since eachBi, i = 0, . . . , k is 2-connected (and is not a single edge), there
are subgraphsHi ⊆ Bi, i = 0, . . . , k whereHi ∈ F2 andui andui+1 are exactly the odd
vertices ofHi . LetH = H0 ∪ · · · ∪ Hk. ThenH ∈ F∗

2 , andv1 andv2 are exactly the odd
vertices ofH .

LetG be a 2-connected cubic graph and let(X, C) be a pseudo 2-factor ofG.

Proposition 5.2. LetHC = (H1)C ∪ (H2)C be a loopless subgraph ofGC where(H1)C
intersects(H2)C at exactly one vertexv.

(i) If h(H1) andh(H2) areC-compatible, d(H1)C (v)�5, andd(H2)C (v)�3, thenh(H) is
C-compatible. Moreover, if �′

h(H1) = �′
h(H2) = 3, then�′

h(H) = 3.
(ii) If HC ∈ F∗

2 , then�′
h(H) = 3.

Proof. To prove (i) we first note thatH1 intersectsH2 along the cycleC = C(v)which has
no chords inH1∪H2 (sinceHC is assumed to be loopless).Wesuppose thath(H1)andh(H2)
areC-compatible,d(H1)C (v)�5, andd(H2)C (v)�3.Wehave that(h(Hi), ph(Hi)) has a cycle
ph(Hi)-cover fori = 1,2, anddH1(C)�5, anddH2(C)�3. Now Lemma4.2b) implies that
(h(H), ph(H)) has a cycleph(H)-cover, and consequentlyh(H) isC-compatible. Moreover,
if �′

h(H1) = �′
h(H2) = 3, then�′

h(H) = 3.
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To prove (ii) suppose thatHC ∈ F∗
2 . If HC ∈ F2, then we can reduceh(H) to a multiple

3-edge via◦-, �-, and -reductions. In this case,�′
h(H) = 3. We suppose therefore that

HC ∈ F∗
2\F2. ThenHC = (H1)C ∪ (H2)C where(H1)C, (H2)C ∈ F∗

2 and(H1)C intersects
(H2)C at exactly one vertex, sayv, whered(Hi)C (v) = 3, i = 1,2. We may assume that
�′(h(H1)) = �′(h(H2)) = 3. It now follows from (i) that�′

h(H) = 3.

6. Proof of the main theorem

In this section, we give a proof of Theorem1.2. Let G be a 2-connected cubic graph
with o(G)�4 and let(X, C) be a pseudo 2-factor ofGwhere|X| plus the number of odd
cycles inC is at most 4. LetGC be the graph obtained fromG by contracting the cycles
of C.

Theorem 6.1. Either the graphGC contains a degree-compatible subgraphHC such that
h(H) is C-compatible, or it contains a non-trivial3-edge cut.

Proof. If o(G) = 0, then�′(G) = 3 and result holds takingHC = GC . If o(G) = 2,
then by Lemma5.1 there is a degree compatible subgraphHC of GC belonging toF∗

2 . By
Proposition5.2 (ii), �′

h(H) = 3, and consequentlyh(H) is C-compatible. Thus we may
assume thato(G) = 4, andv1, v2, v3, v4 are the odd vertices ofGC .

Case1: SupposeGC has a blockBC containing all 4 of the odd verticesv1, v2, v3, v4.
The verticesv1, . . . , v4 are easily seen to be the odd vertices ofBC .According to Lemmas

3.5 and3.6, there is a (loopless) subgraphHC ⊆ BC whereHC ∈ F4 and v1, . . . , v4
are exactly the odd vertices ofHC . For v ∈ V (HC)\X let C′(v) be the cycle inh(H)
corresponding toC(v) (ie.Ch(H)(v)).
For each 2- or 3-cycleC′(v), v ∈ V (HC)\X, we perform◦- and�-reductions, respec-

tively. Next we perform -reductions on all 4-cyclesC′(v), and this we do in such a way
that the resulting (cubic) graphh(H)′ is bridgeless (this is possible by Lemma1.7). Here,
is an overview of the notation to be used in the ensuing proof.

GC : graph obtained fromG by contracting cycles ofC.
HC : degree compatible subgraph ofBC belonging toF4.
H: subgraph inG corresponding toHC .
h(H): cubic graph homeomorphic toH .
h(H)′: bridgeless graph obtained fromh(H) via ◦-,�-, and -reductions.
C(v): cycle inC corresponding tov ∈ V (GC)\X.
C′(v): cycle inh(H) corresponding toC(v).
G′

C : the graphGC\E(HC).
G′: subgraph inG corresponding toG′

C .

Weknow that exactly oneof the conditions (3.1.1)–(3.1.9) holds forHC .Weshall examine
two subcases:

Case1.1: SupposeHC satisfies one of (3.1.1)–(3.1.8).
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We have that�(h(H)′)�16. If �′(h(H)′) = 3, then�′(h(H)) = 3 (by Lemma1.7and
Corollary2.2). It then follows from Lemma3.1 thath(H) is C-compatible. Thus we may
assume that�′(h(H)′) = �′(h(H)) = 4. Since�(h(H)′)�16, Proposition2.7 implies that
h(H)′ is a 3-chromatic expansion ofP10 and consequentlyh(H) is a 3-chromatic expansion
of P10. Let v → Av, v ∈ P10 be a representation of this expansion. For eachAv, v ∈ P10
letA′

v be the subgraph ofh(H) induced by the edges corresponding to those inAv. If HC
satisfies one of (3.1.1)–(3.1.3), (3.1.5), or (3.1.8), then all but at most one of the cycles
C′(v), v ∈ V (HC) belongs to someA′

v, v ∈ V (P10). In this case, Lemma3.2implies that
there is a collection of cycles inh(H) covering each of the cyclesC′(v), v ∈ V (HC) once,
and the other edges ofh(H) twice. This means thath(H) is C-compatible.
We suppose thatHC satisfies exactly one of (3.1.4), (3.1.6), or (3.1.7) and exactly 2 of the

cyclesC′(v), v ∈ V (HC) sayC′(u1) andC′(u2), do not belong to anyA′
v.Wemay assume

thatC′(u1) intersects exactly 5 of the subgraphsA′
v andC

′(u2) intersects the other 5A′
v ’s ;

that is, they correspond to 2 vertex-disjoint 5-cycles ofP10. Thush(H)\E(C′(u1)∪C′(u2))
has at least 5 components. However, since we are given thatHC is the union of 2 graphs,
one from each of Figs.9 and10, andHC satisfies one of (3.1.4), (3.1.6), or (3.1.7), one sees
thath(H)\(C′(u1) ∪ C′(u2)) can have at most 4 components. This yields a contradiction,
and this concludes the proof for case 1.1.

Case1.2: SupposeBC contains no degree-compatible subgraph inF4 which satisfies one
of (3.1.1)–(3.1.8).

By TheoremA.1 in the Appendix A, eitherBC contains a degree-compatible subgraph
HC which isC-compatible, orG has a non-trivial 3-edge cut which separates a vertex ofX
or odd cycle ofC in B from the other vertices of X or odd cycles inC in B. In this case, the
theorem is seen to hold.

Case2: Suppose no block ofGC containsv1, v2, v3, v4.
We shall divide this case into 2 subcases:
Case2.1: There is a blockBC ⊆ GC having 4 odd vertices.
We may assume thatBC has odd verticesu1, u2, u3, u4. For eachui which is odd inGC

we may assumeui = vi . If ui is not odd inGC , we may assume there is a block chain
(Bi)C = (Bi0)C ∪ . . . ∪ (Biri )C whereui ∈ V ((Bi0)C), vi ∈ V ((Biri )C) andui andvi are
exactly the odd vertices of the chain. LetG1C be the subgraph obtained fromGC where for
eachi = 1, . . . ,4 we delete all the vertices of(Bi)C exceptui . Now u1, . . . , u4 are seen
to be the odd vertices ofG1C which belong to the blockBC . If G1 has a non-trivial 3-edge
cut which separates a vertex or odd cycle corresponding to one of the verticesu1, . . . , u4,
then such a cut will also be a non-trivial 3-edge cut ofG. So we may assume that no such
cuts exist inG1. Now according to TheoremA.1, there is a degree-compatible subgraph
JC for whichh(J ) is C-compatible and one of two things hold: eitherJC ∈ F4 and one of
(3.1.1)–(3.1.8) holds, or every odd degree vertex ofJC has degree three.
According to Lemma5.1 the chain(Bi)C contains a subgraph(Hi)C ∈ F∗

2 whose odd
vertices are exactlyui and vi . If ui = vi , then we let(Hi)C = ui = vi . Let HC =
JC ∪ ⋃

i (Hi)C . We have thatHC ∈ F∗
4 .

By assumption,ui, i = 1, . . . ,4 cannot all be odd inGC . We may therefore assume
that at least one of theui ’s, sayu1, is not odd inGC . Suppose first thatdJC (ui)�5, for
i = 1, . . . ,4. For eachi whereui �= vi we haveh(Bi) is C-compatible since�′

h(Bi) = 3
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by Proposition5.2(ii). It follows from repeated application of Proposition5.2(i) thath(H)
is C-compatible. As such we can assume thatJC has odd vertices of degree at least 7. This
means thatJC must satisfy one of (3.1.1)–(3.1.8), and in particular, it must satisfy (3.1.5).
ThusJC has one vertex of degree 7, and 3 vertices of degree 3. If for somei, ui = vi , and
dJC (ui) = 7, thenh(H) is C-compatible by Proposition5.2(i). Thus we may assume that
dJC (ui) = 7 for someui �= vi , and this we can assume this holds foru1 (anddJC (ui) =
3, i = 2,3,4).
LetJ1 be thegraphobtained fromJ∪H1wherewecontractH1\C(u1) into a single vertex

w1. We can reduce each 2-, 3-, and 4-cycleCh(J )(v) ⊆ h(J1) via ◦-, �-, or -reductions
so that the resulting cubic graph, which we denote byh(J1)

′ is 2-connected. We see that
h(J1)

′ has 14 vertices, and thus according to Proposition2.7either�′(h(J1)′) = 3 orh(J1)′
is a 3-chromatic expansion ofP10. Now Theorem2.6 implies that either�′

h(J1) = 3 or
h(J1) is a 3-chromatic expansion ofP10. Sinceh(J ∪ H1) is a 3-chromatic expansion of
h(J1), it follows that�′

h(J ∪H1) = 3 orh(J ∪H1) is a 3-chromatic expansion ofP10. Since
�′
h(Hi) = 3 if ui �= vi , it follows that�′

h(H) = 3 orh(H) is a 3-chromatic expansion ofP10
given byv → Av, v ∈ V (P10)where wemay assume that all cyclesC′(v), v ∈ V (HC)\X
belong to someAv, except for possiblyC′(u1). Thus, Lemma3.2 implies thath(H) is
C-compatible and this completes the proof of Case 2.1.

Case2.2: Suppose each block ofGC has at most 2 odd vertices.
If each block ofGC has at most 2 odd vertices, then it is seen thatGC contains 2 disjoint

block chains(B0)C and(B1)C (not having any common blocks) where the endblocks of
the block chains each contain exactly one odd vertex ofGC . We may assumev1, v2 and
v3, v4 belong to the endblocks of(B0)C and (B1)C , respectively. By Lemma5.1, there
exists subgraphs(H0)C ⊆ (B0)C and (H1)C ⊆ (B1)C where(H0)C, (H1)C ∈ F∗

2 and
moreover,v1, v2 andv3, v4 are exactly the odd vertices of(H0)C and(H1)C , respectively.
Let HC = (H0)C ∪ (H1)C . The graphHC belongs to eitherF∗

2 ∨0 F∗
2 , F∗

2 ∨e1 F∗
2 , or

F∗
2 ∨oe1 F∗

2 . If HC ∈ F∗
2 ∨0 F∗

2 , then�′(h(H)) = 3 (according to Proposition5.2 (ii))
In this caseh(H) is C-compatible. Thus we may assume that eitherHC ∈ F∗

2 ∨e1 F∗
2 or

HC ∈ F∗
2 ∨oe1 F∗

2 , and(H0)C and(H1)C intersect at a vertexu.
Let (Hu)C be the subgraph ofHC which is the union of the blocks ofHC which con-

tain u. Let h(Hu)′ be the graph obtained fromh(Hu) by reducing all 2-, 3-, or 4-cycles
Ch(Hu)(v) ⊆ h(Hu) via ◦-, �-, or -reductions (where as usual, bridgelessness is pre-
served). The resulting graph has at most 16 vertices, and according to Proposition2.7either
�′(h(Hu)′) = 3 orh(Hu)′ is a 3-chromatic expansion ofP10. It then follows from Theorem
2.6 that either�′

h(Hu) = 3 or h(Hu) is a 3-chromatic expansion ofP10. If �′
h(Hu) = 3,

then by Lemma4.2(b) we have�′
h(H) = 3. In this case,h(H) is C-compatible. On the

other hand, ifh(Hu) is a 3-chromatic expansion ofP10, thenh(H) is a 3-chromatic expan-
sion ofP10 where we may assume that the expansion has a representationv → Av, v ∈
V (P10) such that all cyclesCh(H)(v), v ∈ V (HC) belong to someAv except for possi-
bly Ch(H)(u). Lemma3.2 implies thath(H) is C-compatible. This completes the proof of
case 2.2. �

Proof of Theorem 1.2.We suppose again thatG is a 2-connected, cubic graph and let
(X, C) be a pseudo 2-factor ofG where|X| plus the number of odd cycles inC is at most
4. We may assume that the theorem holds for any graph with fewer vertices thanG.
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Fig. 11. A vineP1, . . . , Pk .

Suppose thatGhasanon-trivial 3-edgecut.ThenGcanbeexpressedasavertexexpansion
G = (G1; u; e1, e2, e3)⊗ (G2; v; f1, f2, f3) where�(Gi) < �(G), i = 1,2. Fori = 1,2
let (Xi, Ci ) be the pseudo 2-factor ofGi obtained fromG in the natural way. Then|Xi | plus
the number of odd cycles inCi is at most 4. Thuso(Gi)�o(G), and hence by assumption,
G1 andG2 each admit double cycle coversD1 andD2, respectively. Now one can construct
a cycle double coverD via splicingD1 andD2 together.
If we now assume thatG has no non-trivial 3-edge cuts, then Theorem6.1 implies that

GC has a bridgeless degree compatible subgraphHC for whichh(H) is C-compatible. By
Lemma3.4, we can construct a cycle double cover forG. This completes the proof of the
theorem. �

7. Vines

LetP be a pathv0v1 · · · vn and letP1, . . . , Pk be a collection of paths which intersectP
at exactly their terminal vertices, where for eachi, Pi has terminal verticesvt(i) andvh(i)
andt (i) < h(i). If the pathsPi, i = 1, . . . , k are internally vertex-disjoint and satisfy,

(i) t (1) = 0, h(k) = n.
(ii) t (i) < t(i + 1)�h(i) < h(i + 1), i = 1, . . . , k − 1.
(iii) h(i) < t(i + 2), i = 1, . . . , k − 2

then we say thatP1, . . . , Pk form avinealongP . Note that a vine may consist of just one
path. We say that verticesu andv arejoined by a vineif there exists a pathP from u to v
and a vine alongP (see Fig.11).
Let G be a graph and letH be a subgraph. LetP be a path fromu to v in H and let

P1, . . . , Pk be a vine alongPwhere eachPi intersectsH only at its terminal vertices. Then
we say thatP1, . . . , Pk is anH-vine. In this case, we say that there is anH-vine fromu to
v in H .
Let P1, . . . , Pk be a vine alongP = v0v1 · · · vn as above. We shall now define what we

call thecircuit of the vineCP1,...,Pk . If k = 1, letCP1,...,Pk = P ∪ P1. If k = 2l + 1, l�1,
then let

CP1,...,Pk = P1 ∪ P [vh(1), vt (3)] ∪ · · · ∪ P2i−1 ∪ P [vh(2i−1), vt (2i+1)] · · ·
∪ P2l+1 ∪ P [v0, vt (2)] ∪ P2 ∪ · · · ∪ P [vh(2i), vt (2i+2)]
∪ P2i+2 ∪ · · · ∪ P [vh(2l), vn].
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If k = 2l, l�1, then let
CP1,...,Pk = P1 ∪ P [vh(1), vt (3)] ∪ · · · ∪ P2i−1 ∪ P [vh(2i−1), vt (2i+1)] · · · ∪ P2l−1

∪ P [vh(2l−1), v2l] ∪ P [v0, vt (2)] ∪ P2 ∪ · · · ∪ P [vh(2i), vt (2i+2)]
∪ P2i+2 ∪ · · · ∪ P [vh(2l−2), v2l] ∪ P2l .

LetG be a connected cubic graph containing a subgraphH which is homeomorphic to
a cubic graphH̃ . For each edgẽe ∈ E(H̃ ), let [ẽ]H be the corresponding path inH , and
for any subgraph̃I ⊆ H̃ , we let[I ]H be the corresponding subgraph inH . We leave the
verification of the following theorem to the reader.

Theorem 7.1. Suppose for any two edgesẽ, f̃ ∈ E(H̃ ) it holds that if there is an H-vine
from a vertex of[ẽ]H to a vertex of[f̃ ]H , thenẽ and f̃ are incident inH̃ . Then the graph
G is an expansion ofH .

Theorem 7.2. Let G be a connected, cubic graph and let H be a subgraph homeomorphic
to H̃ � P10. Supposẽe, f̃ ∈ E(H̃ ) are two non-incident edges. If there is an H-vine from
a vertexv0 ∈ [ẽ]H to a vertexvn ∈ [f̃ ]H . Then for some such vineP1, . . . , Pk it holds that
�′
h(H ∪ P1 ∪ · · · ∪ Pk) = 3.

Proof. Suppose that there are non-incident edgesẽ, f̃ ∈ E(H̃ ) for which there is anH-vine
from a vertex of[ẽ]H to a vertex of[f̃ ]H . Pick such a vine having a fewest number of paths,
sayP1, . . . , Pk, and assume that it is anH-vine along a pathP ⊆ H from a vertexv0 ∈ [ẽ]H
to a vertexvn ∈ [f̃ ]H . Given thatH̃ � P10, H̃ has a 2-factor̃C1 andC̃2 being two 5-cycles
whereẽ ∈ E(C̃1) andf̃ ∈ C̃2. If the vine consists of only one pathP1, thenh(H ∪ P1)
has a 2-factor consisting of two 6-cycles,[C̃i]H , i = 1,2. In this case,�′(H ∪ P1) = 3.
We suppose therefore that the vine has more than one path. Since we choseP1, . . . , Pk to
have as few paths as possible, we have that the distance betweenẽ andf̃ in H̃ equals 2,
and moreover, there is a pathuẽvg̃wf̃ z in H̃ such thatP ⊆ [uẽvg̃wf̃ z]H .
Let Ci = [C̃i]H , i = 1,2. Now (C1 ∪ C2)%CP1···Pk is a cycle inG, which is also a

hamilton cycle inh(H ∪P1∪ · · · ∪Pk). thus we have that�′
h(H ∪P1∪ · · · ∪Pk) = 3. �

From the above, we obtain the following corollary.

Corollary 7.3. Let G be a connected cubic graph and let H be a subgraph homeomorphic
to P10. Then either G is an expansion ofP10, or there is an H-vineP1, . . . , Pk such that
�′
h(H ∪ P1 ∪ · · · ∪ Pk) = 3.

We also see that Theorem2.5 is a consequence of the above result.

Appendix A.

LetG be a 2-connected cubic graph witho(G) = 4 and let(X, C) be a pseudo 2-factor
of Gwhere|X| plus the number of odd cycles inC equals 4. LetGC be the graph obtained
fromG by contracting the cycles ofC.
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Theorem A.1. Suppose that the odd vertices ofGC are contained in a blockBC . Then one
of the three statements holds:

(i) GC contains a degree-compatible subgraphHC satisfying one of(3.1.1)–(3.1.8)for
whichh(H) is C-compatible.

(ii) GC contains a degree-compatible subgraphHC where each odd degree vertex has
degree three and for whichh(H) is C-compatible.

(iii) G contains a non-trivial3-edge cut which separates a vertex of X or an odd cycle ofC
from the other vertices of X and odd cycles ofC.

Proof. The odd vertices ofGC are easily seen to be exactly the odd vertices ofBC . Since
BC is a block with more than one edge, Lemmas3.5and3.6imply that it contains a degree
compatible subgraphHC ∈ F4 (which is also degree-compatible inGC) satisfying one of
(3.1.1)–(3.1.9). IfHC satisfies one of (3.1.1)–(3.1.8), then following the proof of Theorem
6.1, case 1.1, the graphh(H) would beC-compatible. In this case, (i) holds. So we may
assume thatHC satisfies (3.1.9), andmoreover,GC contains no degree compatible subgraph
in F4 which satisfies one of (3.1.1)–(3.1.8). We shall assume thatv1, . . . , v4 are exactly
the odd vertices ofGC . We shall letC′(v), h(H)′,G′

C , andG
′ be as defined in the proof of

Theorem6.1.
We shall first show thath(H) is a 3-chromatic expansion ofP10.We have that�(h(H)′) =

18. If �′(h(H)′) = 3, then�′
h(H) = 3 (by Lemma1.7 and Corollary2.2). It would then

follow from Lemma3.1 thath(H) is C-compatible. This being the case, we may assume
that�′(h(H)′) = �′

h(H) = 4. According to[3], there are only 3 different cubic graphs of
order 18 having girth at least 5 and chromatic index�′ = 4. Two such graphs are obtained
by performing a 4-edge expansion with the graphsP8 andP10. The third graph is obtained
by performing a vertex expansion at one vertexu of P10, whereu → P10.
SinceHC ∈ F4, we have thatHC = H ′

C ∪ F ′
C whereH

′
C is homeomorphic to one

of the graphs in Fig.9 andF ′
C is homeomorphic to a forest in Fig.10. From the table

in Section3, we see that there is only one possibility forH ′
C andF

′
C ; the graphF

′
C is

homeomorphic toF2, andH ′
C is homeomorphic toH

6
C . Given that we are assuming that

GC has no degree-compatible subgraphs inF4 satisfying one of (3.1.1)–(3.1.8), we have
that the verticesv13 andv24 (as specified by Lemma3.5) form a 2-separating set forGC
which separates each pair of verticesvi andvj , i �= j . Let u1 = v13 andu2 = v24. The
graphH ′

C consists of 4 internally vertex-disjoint pathsP
1
C , P

2
C , P

3
C , P

4
C betweenu1 andu2,

wherevi ∈ V (P iC), i = 1, . . . ,4. The graphF ′
C is homeomorphic toF2 and consists of 4

internally vertex-disjoint paths originating atu1 and terminating atvi . One of these paths
containsu2, and we may assume that this path terminates atv4. For i = 1,2,3, we denote
the path terminating atvi by QiC , and we denote the path terminating atv4 by P

5
C ∪ Q4C

whereP 5C is the portion of the path betweenu1 andu2, andQ
4
C is the portion of the path

betweenu2 andv4 (see Fig.12).
The cyclesC′(u1) andC′(u2) are vertex-disjoint cycles ofh(B)′ having lengths 8 and 6,

respectively. Supposeh(H)′ is a 4-edge expansion ofP8 with P10. LetA = {f1, f2, f3, f4}
be the 4-edge cut formed via this expansion. Thenh(B)′\{f1, f2, f3, f4} has exactly 2
componentsK1 andK2 having 10 and 8 vertices, respectively. Suppose first that neither



R. Häggkvist, S. McGuinness / Journal of Combinatorial Theory, Series B 93 (2005) 251–277275

Fig. 12. The graphHC .

Fig. 13. The graphh(H)′.

C′(u1) norC′(u2) contain edges ofA. Then either both cycles belong to one component,
or they belong to separate components. The former is impossible considering that each
component has at most 10 vertices. The latter is also seen to be impossible since there are
5 edge-disjoint paths betweenu1 andu2 in HC , and hence no 4-edge cut inh(H)′ can
separateC′(u1) andC′(u2). We conclude that at least one of the cycles contains edges ofA

(see Fig.13).
SupposeC′(u1) contains no edges ofA, butC′(u2) does. ThenC′(u1) ⊆ K1; for other-

wise, ifC′(u1) ⊆ K2, then it would follow thatC′(u2) ⊆ K1. Given thatC′(u2) contains
at least 2 edges ofA, one sees upon examination ofHC thatK1 would contain at least 3
of the verticesvi, i = 1, . . . ,4 and hence�(K1)�8 + 3 = 11 vertices. This yields a
contradiction.Wemay therefore assume thatC′(u1) contains edges ofA, and hence it must
have at least 2 such edges.
SupposeC′(u2) contains no edges ofA. GivenC′(u1) contains at least 2 edges ofA, one

sees by inspectingHC that for at least 2 of the verticesvi, i = 1, . . . ,4, no edge ofA is
incident withvi . Thus the component(K1 or K2) containingC′(u2) would have at least
6+ 5= 11 vertices. This yields a contradiction. We may therefore assume thatC′(u1) and
C′(u2) both contain edges ofA, and hence they contain 2 edges apiece.
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Fig. 14.

We now have that no edge ofA is incident with the verticesvi, i = 1, . . . ,4 and hence
the neighbours ofvi in h(H) belong to the same component (K1 orK2) asvi . Thus, neither
K1 norK2 can contain 3 or more or the verticesvi , and each component contains 2 vertices
apiece. Supposevi andvj belong toK2. Given thatK2 is in theP8 part of the 4-edge
expansion and no edge ofA is incident withvi or vj , it follows thatdistK2(vi, vj )�2.
However, upon inspection ofHC , one sees that fori �= j , disth(H)′(vi, vj )�3. Here we
reach a final contradiction. We conclude thath(H)′ cannot be a 4-edge expansion ofP8
with P10. Similar arguments also demonstrate thath(H)′ is not a vertex-expansion ofP10
where for a vertexu ∈ V (P10) we expand the vertex viau → P10.
From the above, Proposition2.7 implies thath(H)′ must be a 3-chromatic expansion of

P10. Henceh(H) is also a 3-chromatic expansion ofP10, and we letv → Av, v ∈ V (P10)
be a representation of this expansion. For eachv, letA′

v be the subgraph ofh(H) induced
by those edges ofh(H) coinciding with those inAv. If one of the cyclesC(ui), i = 1,2
belongs to someA′

v, then all but one of the cyclesC(v), v ∈ V (BC)\X belong toA′
v ’s,

and as was demonstrated before,h(H) is C-compatible in this case. Thus, we may assume
that neitherC(u1) norC(u2) are contained in anyA′

v. Thus each cycle intersects exactly 5
of the subgraphsA′

v.
SupposePC is a path inGC andu is one of its endvertices. We define astem-vertexof P

in the following way: ifu ∈ X, then it is a stem vertex. Otherwise, we define a vertex of
C(u) to be a stem-vertex if it is a separating vertex ofP.
For i = 1,2 andj = 1, . . . ,5 let sji denote the stem-vertex ofP

j onC(ui). For j =
1,2,3 let tj1 denote the stem-vertex ofQ

j onC(u1) and lett42 denote the stem-vertex ofQ
4

lying onC(u2). LetP 1,1 denote the portion ofP 1 lying betweenC(v1) andv1. Letx andy
denote the stem-vertices lying on either side ofs11 andt

1
1, and letC1[x, y] denote the portion

ofC1 betweenxandywhich containss11 andt
1
1 (seeFig.14). LetJ = C1[s11, t11]∪P 1,1∪Q1.

One can show that{x, y, s12} is a 3-separating set ofHwhich separatesH into two subgraphs
H1 andH2 (so thatH1 ∩ H2 = {x, y, s12}) whereC1[x, y] ∪ P 1 ∪ Q1 ⊆ H1. If there is
a H-vine inG from a vertex inJ to a vertex inH2, then we could modifyHC to obtain
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a degree-compatible graph ofGC for which h(H) is 3-edge colourable and henceC-
compatible (we leave the verification of this to the reader). In addition, each odd degree
vertex in such a subgraph has degree three, in which case (ii) holds. We may thus assume
that no suchH-vine exists. Letx′ be the vertex ofC1[x, y] closest tox, wherex′ is joined
to a vertex inJ by anH-vine inG. We definey′ analogously fory. Let s1′2 be the vertex
of P 1 closest tos12 which is joined by anH-vine to a vertex inJ . Now {x′, y′, s11

′ } is a
3-separating set inG. Consequently,G contains a non-trivial 3-edge cut which separates
the odd cycle or vertex inG corresponding tov1 from the odd cycles or vertices inG corre-
sponding tov2, v3, andv4. In this case, (iii) is seen to hold. This concludes the proof of the
theorem. �
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