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Abstract

We prove that a cubic 2-connected graph which has a 2-factor containing exactly 4 odd cycles has
a cycle double cover.
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1. Introduction

For a graplG we letv(G) denote the number of vertices@ We letE, denote the set of
edges incident with a vertax and we letNg (v) be the set of vertices which are neighbours
tov. For asubseX C V(G), or asubgraplX C G we letdX be the set of edges with one
end inX and the other iV (G)\ X and we let/; (X) be the number of edges in this set. For
1 >0 we letv;(G) be the number of vertices of degrieand we let > ;(G) (resp.,v<;(G))
be the number of vertices of degree at ldé&stsp., at modl).

A bridgein agraphis an edge whose deletion results in a graph with more components. We
say that a cubic graph ¢yclically k-edge connectéffor any separating subsét C E(G)
where|A| < k, it holds that at most one component®f A is not a tree. Asnarkis defined
to be a cubic, cyclically 4-edge connected gr&phaving girth at least 5 and chromatic
index 4; that is,y'(G) = 4. Here the chromatic index of a grafh denotedy’(G), is the
smallest number of colours which can be assigned to the edgeésothat no 2 edges of
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the same colour meet at a vertex. The smallest snark is known to be the PetersePygraph
which has 10 vertices. It is also known that there are no snarks with 12, 14, or 16 vertices,
but there are 2 snarks with 18 vertices, 6 snarks with 20 vertices, and 20 snarks with 22
vertices(se¢l,3]).

We shall refer to a subgraph all of whose degrees are evarcag. On the other hand, a
connected, 2-regular subgraph will be calledyale A collection of cycles (resp., circuits)
which covers the edges of a graph exactly twice will be calleyicde double covefresp.,
circuit double cover. A k-cycle (resp.k-circuit) double cover is a cycle (resp., circuit)
double cover with at modtcycles (resp., circuits).

For a cubic bridgeless graf®) we can partition the vertices by a set of vertigg¢possibly
empty) and a set of disjoint cycl€s We call the pairn X, C) a pseudo 2-factoof G. We
define theoddnesf G, denoteth(G), to be the minimunk such that there is a pseudo
2-factor (X, C) where|X| plus the number of odd cycles th equalsk. This definition
extends the one given by Huck and Kocg]l who proved the following:

Theorem 1.1(Huck and Kocho[8]). Let G be a cubicbridgeless graph. If G has a-
factor with at mos® odd cyclesthen G has &-circuit double cover

As a consequence of this theorem, any cubic bridgeless graph having a hamilton path (a
path traversing all vertices) has a double cover. This was also shofh im this paper,
we extend Huck and Kochol’s result by showing that for graphs with oddness at most 4,
there is a cycle double cover.

Theorem 1.2. Let G be a cubic bridgeless graph.d{G) = 4, then G has a cycle double
cover.

Suppose tha is a cubic, bridgeless graph a, C) is a pseudo 2-factor of;. We
form the graphG¢ by contracting every cycle @f so that they become vertices. We call a
bridgeless subgraph Cc G adegree-compatible subgragf G¢ if the odd vertices of
Ac are exactly the odd vertices 6f;. Givenv € V(G¢)\ X, we letC(v) € C denote the
corresponding cycle i. Any subgraph oG will be given the subscripf, and given a
subgraphie € G¢, weletlbe the subgraph @ by taking the union o€ (v), v € V(Jo)\X
together with the vertices of belonging toJ: and edges o6 corresponding to edges in
Je. We leth(J) denote the graph obtained fraiby suppressing all vertices of degree 2.
If Je is a subgraph ot5¢, then forv € V(Jg)\X we let Cp(s)(v) be the cycle im(J)
corresponding te.

For each subgraplic of G¢ we letpy ) : E(h(J)) — {1, 2} be a weighting for(J)
where

1 ifee UueV(JC)\X Ch(sy(v),

Ph((e) = { 2 otherwise

If there is a collection of cycles in(J) which covers each edge € E(h(J)) exactly
pry (e) times, then we say that(J) is C-compatible

Huck[7] proved independently the above theorem, showing not onh\Giats a double
cover, butalso showing that it has a 5-circuit double cover. His proofis long and complicated.
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Fig. 1. Splitting the edges &f away fromv.

This paper presents a more cohesive approach which utilizes splitting and expansion opera-
tions to show the following (Theorefl): for a cubic, bridgeless grafh if o(G) <4, then

either one can find a degree compatible subgpbf G such that(H) isC-compatible,

or G has a non-trivial 3-edge cut.

Note With some extra work, one can show that the theorem stated above is still true even
if we replace the conditionVf( H) is C-compatible” withy’ (h(H)) = 3. Using this, one can
strengthen Theorerh.2to yield Huck’s result.

The initial steps in the proof of Theorem2 use a “splitting” operation for vertices. Let
G be a graph and supposeV (G) and F CE,. We define a new grapi|,. r| by splitting
the edges oF away fromv and creating a new vertaX whose incident edges are those
of F.

We call this operation aplitting of F atv (see Figl). The following theorem (sef@] or
[9]) tells us when splitting is possible without creating bridges.

Theorem 1.3. Let G be a connected bridgeless graph. Supposé/ (G) wheredg (v) >4
and leteg, e1, e2 € E,. Then eitherGy.¢,e11) OF Glu:ieo,ep)] 1S CONNected and bridgeless
OF Gy;{e1,e0,e3)] NAS More components than G

The above theorem has the immediate corollary:

Corollary 1.4. Suppose Gisaconnected bridgeless graphaadv (G) wheredg (v) = 4
andeg, e1, e2 € E,. Then eitheiGyy; (¢q.e1)] OF Gu;{eo,ep}] IS CONNected and bridgeless

Let G be a cubic graph and suppoSe= vgeguieivoeavzesuvg is a 4-cycle. We create a
new cubic graph by deleting the edgasandes and suppressing the resulting vertices of
degree 2. Such a graph we denotebyp, {e1, e3}. We call the corresponding operation a
o-reduction.

Lemma 1.5. Suppose G is @-connected cubic graph and = vgegvie1voeavzesvg is a
4-cycle. Then eithe€ @y {e1, e3} or G &g {eo, e2} is 2-connected

Proof. Let G andC be as in the statement of the lemmaCitontains a chord, then the
result is clear. We suppose therefore tBatas no chords and we contract the edge€ of
so that it becomes a single vertexvhich has degree 4. L&’ be the resulting graph and
suppose has incident edgeg, f1, f2, f3. Here f; corresponds to an edge @incident
with v;. By Corollary1.4, eitherGyy. 1, 211 Of Gu:{ fo, 1)1 IS cONnected and bridgeless. This
in turn implies that eitheG &g {eo, e2} or G @y {e1, e3} is 2-connected. [
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The next lemma is a basic observation abstgductions and colourings. The proof is
left to the reader.

Lemma 1.6. Suppose G is a cubic graph and let H be a cubic graph obtained from G via
ac-reduction. Thery'(G) = 3if /' (H) = 3.

Combining Lemmagd.5and1.6we obtain:

Lemma 1.7. Suppose G is a-connected cubic graph having disjoicyclesCy, . . ., Ck.
There exist-reductions on eacl-cycleCy, ..., C; such that after performing these re-
ductions we obtain a2-connected cubic grapH . Moreover if ' (H) = 3,theny/(G) = 3.

Corollary 1.8. Suppose G is a2-connected cubic graph having disjoirt-cycles
C1,...,Cr. If G\(CpLU...UC) has at mos8 verticestheny' (G) = 3.

Proof. By Lemmal.7there exist-reductions on each 4-cyalg, i = 1, 2, ..., k such that
after performing these reductions we obtain a 2-connected cubic gfafimceG\(C1 U
...UCy) has at most 8 vertices, we have th@t) < 8. This means that (H) = 3, since the
smallest 2-connected cubic graph with chromatic index & is Now Lemmal.7 implies
thaty/(G) =3. O

2. Reductions and extensions

Let G be a 2-connected cubic graph having a 2-edgéb&ut= {e, f} wheree = uu/,
f =vv/, andu, v € X. We define a new graph by deletiegndf and adding new edges
¢ =uvandf’ = u’v’/, and we denote this graph ly® {e, f}. We call the corresponding
operation a Z2dge reductionf G has a 3-edge citX = {e1, e2, e3} Wheree; = u;v;, u; €
X, i = 1,2, 3, then we can define a new graph by deleting: = 1, 2, 3 and adding new
verticesu and v together with edgesu; andvv;, i = 1, 2, 3. We denote this graph by
G @ {e1, e2, e3} We call the corresponding operation &8ge reduction

Supposés has a triangld” = viejv2e2v3ezv1. We define a new cubic graph by contract-
ing (ie. identifying) T with a single vertex. Such a graph we denotetbgp A (T). We call
the corresponding operationfareduction

Letu1 andus be the endvertices of a digdahin G. By digonwe mean a pair of edges
inducing a 2-cycle. LeNg (D) = {u}, u}} (here we allow fou} = u}). We define a new
graphG @, (D) = (G\D) U {uju%}. Such an operation we callareduction

Supposev is a vertex of degree 2 which is not incident with a loop. Givég(v) =
{v1, v2} (with possiblyv; = v2) we define a new grapts &, (v) = (G\v) U {v1vz}. We
call the corresponding operationvareduction

Supposes andH are graphs. We say th@&andH arehomeomorphidf one graph can
be obtained from the other via-reductions and subdividing edges.

If Gis a graph having no components which are cycles, then we can perform successive
v-reductions orG to obtain a graph with no vertices of degree 2. This graph is seen to be



R. Haggkvist, S. McGuinness / Journal of Combinatorial Theory, Series B 93 (2005) 251—-2285

Ul o o Ul w1

U2 @ o U2 UQI
—

U3 e o U3 u3

Uy @ o U4 ’11,4I

Fig. 2. 4-edge reduction.

the unique graph homeomorphic®which has no vertices of degree 2. We denote such
a graph byr(G). We define thehomeomorph chromatic indet G, denotedy), (G), by
14,(G) = 1 (h(G)).

Let G be a cubic graph, and lete E(G) be such thag is not incident with any loops.
We define a graply @ e = h(G\e). We obtainG @ e from G via an operation which we
refer to as aredge-reductionThe following is a standard result and we refer the reader to
[6], chapter 3.

Theorem 2.1. Suppose G is a bridgeless cubic graph

(a) If G’ is obtained from G via 2- or 3-edge reductiopor via a v-, o-, or A-reduction
theny/(G") = ¥/ (G).
(b) If G’ is obtained from G via a-reduction theny/'(G") = 4if y'(G) = 4.

Corollary 2.2. Let G be a cubic graph and I&€t’ be a cubic graph obtained from G via a
sequence di-, 3-,V-, o-, or A-reductions. If/(G’) = 3,theny/(G) = 3.

Suppose we are given a 4-edge ot where we order the edges as e, e3, ¢4, and
e; = ujv;, u; € X, i = 1,2, 3,4. We define a new graph, denot€dd (e1, e2, e3, e4),
where we delete the edges i = 1, 2, 3, 4 and add the edgesu», uzua, v1v2, vavs. We
call the corresponding operation adge reductiorfsee Fig2).

Similarly, given a 5-edge cutX, if we order the edges @fX ases, e, e3, ¢4, e5 Where
ei = ujv;, u; € X, i =1,...,5, we define a new graph, denotédd (e1, e2, e3, €4, e5)
by first deletinges, .. ., e5, and then adding edgegus, v4vs, and 2 new vertices andv
together with the edgesu, v;v, i = 1, 2, 3. The corresponding operation we call adge
reduction(see Fig3).

We define an insertion operation in the following way: we subdivide an edge of aGraph
inserting a vertex, and then subdivide a new edge in the resulting graph, inserting another
vertexv. We then add an edge= uv. The combined operation is called edge-insertion
operation, which we denote iy © e. If we insert edgesy, . . ., e; successively i, then
we denote the resulting graph Iy © (e1, ..., ex), or in the case wher8is a subset of
edges to be inserted, we I8t® S denote the resulting graph.

We define a corresponding insertion operation for vertices, whereby we subdivide edges
3 times in succession, inserting vertieasuo, andugz. We then add a vertexand join it to
u1, u2, andus by edges. The operation is callegertex-insertioroperation, and we denote
the resulting graph b © v.
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Fig. 3. 5-edge reduction.

Fig. 4. Vertex expansion at

For each of the reduction operations defined above, we can define the reverse operation,
namely, arexpansioroperation. Suppogé is a cubic graph and let= uju» € E(G). Let
H be a cubic graph and lgt = viv2 € E(H). Given that the endvertices efandf are
ordered a1, uy andv1, vy, respectively, we defin€G; ui1; e) ® (H; v1; f) = (G\{e}) U
(H\{f}) U {u1v1, ugvz} and the corresponding operation we call adye expansian

Supposex € V(G). Let e, e2, e3 be an ordering of the edges incidentuonvhere
ei = uju, i = 1,2, 3. LetH be a cubic graph and lete V(H). We supposef1, f2, f3
is an ordering of the edges incident towhere f; = v;v, i = 1,2, 3. We define an
operation called aertex expansiot u whereby we delete, and add the grapli/\v
together with the edgesgv;, i = 1, 2, 3. (see Fig4). We denote the resulting graph by
(G; u; e1, e2,e3) ® (H; v; f1, f2, f3) and denote the corresponding operationuby H.
Note that a vertex expansion may yield the same graph, for exampledfeea multiple
3-edge. In the case whelrkis 3-edge colourable, we refer to the vertex expansion as being
3-chromatic

If we perform an expansion at each vertex, then we say that the resulting graph is an
expansiorof G. If in addition each vertex expansion is 3-chromatic, then we say that the
expansion is 3-chromatic.

We may define the reverse operations to 4- and 5-edge reductions as wé&labdiH
be cubic graphs. Pick 2 non-incident edge&afhich we order ag;, ex where we assume
e1 = ujuz, andez = uszu4. Here we order the endverticesaafandes asuq, 1z andus, ua,
respectively. Similarly, we pick 2 edggs, f2 in H wheref = vivp and fo = vzva. We
order the endvertices of; and f> asvi, v2 andvs, v4, respectively. We define addge
expansiorwhereby we deletes, e», f1, f2 from G U H and then add the edgesv;, i =
1, 2, 3, 4. (see Figb) We denote this graph byG; u1, us; e1, e2) ® (H; v1, v3; f1, f2).
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Fig. 7. Expanding a square.

Suppose we are given cubic graghandH as before. We letl be a vertex of5 and let
e € E(G) be an edge non-incident with We order the edges df, ase, e2, e3 where
e, =uu;, i = 1,2, 3. We lete = uaus where the vertices are ordered@sus. In a similar
way, letv € V(H) and letf € E(H), f ¢ E,. We supposefi, f2, f3 is an ordering
of the edges at where f; = vv;, i = 1,2, 3. We letf = vgqvs where the endvertices
are ordered as4, vs. We define a fedge expansioby deletingu, v, e, f from G U H
and adding the edgesy;, i = 1,...,5 (see Fig.6). We denote the resulting graph by
(G;u,ug; e1,e2,e3,e) ® (H; v, v4; f1, f2, f3, f).

We can define a-expansionn the following way: letG be a cubic graph and lef =
uiup € E(G) andey = usug € E(G) where the endvertices ef ande, are ordered
asu1, up andus, ug, respectively. We subdivide; by 2 verticesw; andws, so that the
vertices lie in order 1, w1, wo, uz. Next, we subdivided, by the verticeavs andw, so
that the vertices lie in orders, ws, wy, u4.. We then add the edges ws andwowgs. It is
permissable that; = e» but wiw, andwsws4 must be edges in the subdivided graph. We
denote the resulting graph 6y ®q (e1, e2; u1, uz; us, us). See Fig7s.
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Some simple observations are given in the proposition below whose proof is straightfor-
ward and left as an exercise for the reader.

Proposition 2.3. Let G and H be cubic graphs

(@) If u € V(G) and G’ is the result of a vertex expansion — H, then y'(G') =
max{y'(G), y' (H)}.

(b) SupposeG’ = (G; uz,us; e1, e2) ® (H;v1,v3; f1, f2). If ¥ (G) = ¥/ (H) = 3, and
there exist propeB-edge colourings1, c2 : E(G) — {1, 2, 3} such thatci(e1) =
c1(ez) andca(er) # c2(e2), theny'(G') = 3.

(c) Suppos&’ = (G; u, us; e1, 2, e3, €) ® (H; v, va; f1, f2, f3, ). 1 /(G) = y/(H) =
3 and there exist propeB-edge colourings:1, c2,¢3 : E(G) — {1, 2, 3} such that
ci(e) =ci(e;), i =1,2,3,theny/'(G') = 3.

(d) Suppos&s’ = G ®q (e1, e2; u1, uz; uz, ug). If ¥'(G) = 3,theny’(G) = 3.

Example 2.4. Supposee = uu’' € E(P19) WhereN(u) = {u',u1,u2} and Nu') =
{u,us, us}. Let Pg = P1o® e, and letf1 = ujus € E(Pg) and f> = ususq € E(Pg). We
have thaty’(Ps) = 3 and moreoverPg has 2 proper 3-edge colourings ¢ : E(Pg) —
{1, 2, 3} whereci(f1) = c1(f2) andcz(f1) # c2(f2).

Suppose now thatiaivoazvz is a path of length 2 inPig. Let E,,, = {a1, b1, b2},
E,, = {a1, ap, b3}, andE,; = {ap, ba, bs} whereby = uqv1, by = upv1, b3 = uzva, bg =
u4v3, bs = usvz. The graphG’ = P1o ® {b1, b2, b3, ba, bs} has 2 component§; and
G, whereG, is Pg. The graphG is obtained fromPyg by deleting the verticesy, vz, v3
and adding a verted together with the edgesu1, uuz, uuz anduqus. There exist proper
3-edge colouringss, c2, c3 : E(G) — {1, 2, 3} such that; (uu;) = c¢j(ugqus),i = 1,2,3
(see Fig8).

A sequence of-expansions is said to bdisjoint if each expansion preserves the 4-
cycles created in the previousexpansions. Given that we perform any number of disjoint
o-expansions orPig the resulting graph is either 3-edge colourable or is a 3-chromatic
expansion ofP1p. We have something slightly more general:

Theorem 2.5.LetQ = P1p® (eq, ..., ex). Then either/ (P1o ® S) = 3for some ordered
subsetS C {e1, ..., er} or Qis an expansion aPyg.

The above theorem follows from results in Sectioiit implies the following result:

Theorem 2.6. Let P}, be a3-chromatic expansion aPyo wherev(P[,) <16.Let Q be a
cubic graph obtained fron®; , via a sequence of disjointexpansions. Then eithgf(Q) =
3or Q is a3-chromatic expansion af.

Proof. To minimize the burden of details, we shall only prove the case whRgye= Pio,
the proof for the general scenario being the same in spirit. The @aplalso obtained by
inserting edges int@19. Now by Theoren®.5, we have that either we obtain a grapgh
with ¥'(Q") = 3 via a subsequence of edge insertions (in which gag®) = 3), orQ is
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Fig. 8. Edge-reduction oR1g and 5-edge reduction aPyo.

an expansiom — A,, v € V(P1p) of Pyo. In the former case, we could obtain a 3-edge
colourable graph via a subsequence-ekpansions, which would imply (Q) = 3. In the
latter case, eacA, would be obtained by performing disjoitfexpansions on a multiple
3-edge, and thug'(A,) = 3. This shows that such an expansion would be 3-chromatic.
This completes the proof.lJ

Given thatPyg is the only snark with 16 or fewer verticesfis a graph with 18 vertices
which is not a snark, then eithgt(G) = 3 or G is a 3-chromatic expansion &#.

Proposition 2.7. Let G be a2-connected cubic graph with G) <16.Then either/ (G) =
3 or G is a3-chromatic expansion aPg. Moreover if v(G) = 18,and G is not a shark
then the above conclusion is still valid

Let H; be a cubic graph and lat € V(Hj). Letes, e, e3 be an ordering of the edges
incident tou wheree; = u;u, i = 1, 2, 3. Let Hp be a cubic graph and lete V (H). We
supposefi, f2, f3is an ordering of the edges incidentitavhere f; = v;v, i = 1,2, 3.
We suppos&! andC? are collections of cycles iif; and Ha, respectively, where each
ei(resp., f;) is covered twice by cycles iG*(resp.,C?). We define a splicing operation
where the cycles of! andC? are “spliced” together to form a collection of cyclésof
H = (Hi; u; e1, €2, e3) ® (Hp; v; f1, f2, f3). Let C}, €3, C3 be the cycles o€! which
contain the pairs of edgési, ez}, {e1, e3}, {e2, e3}, respectively, and lef'3, C3, C2 be the
cycles ofC? which contain the pairs of edgégi, f2}, {f1. f3}, {f2. fa}, respectively. Let
h; be the edge,v; € E(H), i =1, 2,3. and let

C1 = (CH\u) U (C3\v) U {h, ha},
C2 = (C3\u) U (C3\v) U {h1, h3},
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C3 = (C3\u) U (C3\v) U {h2, h3}.

LetC = (Ch\{C]. c3, cihu (c2\{c]21, C3, czg}) U {C1, C2, C3}. We callC a collection of
cycles obtained bgplicingtogetherC* andC<.

3. 3-colourable subgraphs

A circuit which is a vertex-disjoint collection of cycles which partitions the vertices of
the graph is called a factor. It is well-known that every bridgeless cubic graph contains a
perfect matching and hence also a 2-factor (ee. 79).

SupposeG is a 2-connected, cubic, 3-edge colourable graph, an@ ket a circuit of
G. GivenG has a 3-edge colouring with colours2 3, we letC;; be the 2-factor induced
by the edges having colour®rj wherei, j = 1,2, 3. Letlej =C;vC, i,j=123,
where 7’ denotes symmetric difference. No®, ., i, j = 1,2, 3 are 3 circuits which
cover all the edges of twice, except for the edges @& which are covered once. To
summarize:

Lemma 3.1. Let G be a cubi@-edge colourable graph and let C be a circuit of G. Then
there are3 circuits which cover the edges of C onead the edges af (G)\ E(C) twice

We also have a specific variation of this lemma which we will need:

Lemma 3.2. Let P, be a3-chromatic expansion aPyg given byv — A,, v € V(P1o).
LetC’ be a disjoint collection of cycles dt;, wherg with the exception of possibly one
cycleg each cycle of” is contained in somd, . ThenP;, contains a collection of cycled’
which cover the edges bf ... E(C’) once and the other edges Bf, twice.

Proof. For eachv € V(Pyo) let A}, be the subgraph aP;, induced by the edges ifo
corresponding to those if,. We shall assume thé&t contains one cycl&’ which is not
containedinany,, v € V(P1p). Inthe case where no such cycle exists, the proofis similar.
We first observe that given any cy&lan Py, there is a collection of cycles iP o covering

C once, and the other edges Bfg twice. LetK be the cycle ofP;g corresponding to the
cycleK’. LetD be a collection of cycles aP1g which coverK once and the other edges of
P1ptwice. For any cycle’ e ', if C’ intersectsA/, then the intersection corresponds to a
cycleinA,. Moreover, the intersection of the cycles®fwith A/ corresponds to a disjoint
collection of cycles ilMA,, which we denote by,. SinceA, is 3-edge colourable, Lemma
3.1limplies that there is a collection of cyclég, in A, covering the cycles af, once and
the other edges of, twice. One can now splice together the collecti@nhs v € V (P19)
with D to obtain the desired collection of cycl&s of P;,. [

Example 3.3. Let G be the cubic graph consisting bindependent vertices joined to a
cycle C of length 3. If v(G) <16 (that is,r <4), then according to Propositich7 we
have that eithey/'(G) = 3 or G is a 3-chromatic expansion @. It follows by Lemmas
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3.1and3.2that there is a collection of cycles @& coveringC once and the other edges
twice.

Suppose thab is a cubic graph with a pseudo 2-factef, C) and suppose that there are
two bridgeless subgraplit andH, whereG = H1U Hp, E(H1) NE(H2) = Jcee E(C),
and eachH; i = 1, 2 has a collection of cycleB; which cover all the edges df; twice
except the edges af which are covered once. The collecti@h= D1 U D> is a cycle
double cover ofs. Our strategy for the proof of the main theorem is, when possible, to find
two such subgraph&; and H,. We note that ify, (H1) = y),(H2) = 3, then Lemma3.1
implies that the desired cycle collectiofrs andD; exist.

Lemma 3.4. Let (X, C) be a pseud@-factor of a cubic2-connected graph G. Suppose
there is a degree-compatible subgrapiy of G- such thath(H) is C-compatible and
1,(H) = 3.Then G has a cycle double cover comprised of cycles feircuits.

Proof. SupposeH, is a subgraph as specified in the Lemma. By LenBiathere is a
collection of cycle<y belonging to 3 circuits which cover the edgesCofnce, and the
edges ofH\ Ucec E(C) twice. LetH' = (G\E(H) U X) U Uyeypoyx C). In H’
there is a 2-facto€’ corresponding t€. Each cycleC’ € C’ is such thak(C’) is an even
cycle. Consequently;, (H') = 3. Thus, we can find 2 perfect matchings and P, in
h(H') whereP1 U P> = |Jpieer E(R(C")). Fori = 1,2 h(H')\ P; is a disjoint union of
cycles. LetCi,, be the corresponding collection of cyclesAi. ThenCy = C},, U Cﬁ,, isa
collection of cycles belonging to 2 circuits which cover the edge$ ohce and the other
edges ofH’ twice. It follows thatCy U Cp- is the desired cycle double cover@f [

Let G be a 2-connected cubic graph and(l€t C) be a pseudo 2-factor. We suppose that,
apart from loopsG ¢ is a 2-connected graph and has 4 odd vertigesy, v3, v4. We wish
to show that there exists a subgraph containings, vz, v4 which is one of the subgraphs
illustrated in Fig.9. In H} there is a cycle containing all 4 vertices. % and H3 there is
a cycle containing exactly 3 of the vertices .. ., v4 which are denoted;, , v;,, andv;,.
There are 2 internally disjoint paths from the fourth venigxo the cycle. InHé‘, we have 2
disjoint cycles each containing exactly 2 of the vertiegs . ., v4. In Hg’ there are exactly
2 cycles meeting at one vertex, each cycle containing 2 of the veitices., v4. In Hg,
there are 2 cycles meeting at 2 vertices (labellegandv,4) where each cycle contains 2
vertices ofvy, ..., va.

Lemma 3.5. Let G be &2-connected loopless multigraph andiet vy, v, v4 bed vertices
of G. The graph G has a subgraph H containing v, v3, v4 where H is one of the graphs
specified in Fig.9. In (f), the verticesv1z and v24 form a 2-separating set in G which
separates each pair of verticesandv;, i, j = 1,2, 3, 4.

Proof. If there is a cycle inG containinguv, v, v3, v4, then we have the subgrapH'g’L in
Fig. 9. We may therefore assume that no such cycle exists. Suppose instead that there is a
cycle C containing exactly 3 of the vertices, say, v;,, vi;, where the remaining vertex
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Fig. 9. Bridgeless subgraphs containing vy, v3, va.

v, lies outside ofC. By Mengers theoreriR, p. 46] there are 2 internally vertex-disjoint
paths fromw;, to C which meet only av;,. In this case, we have the two possibilitiElg
and Hg illustrated in Fig.9. We suppose now th& has no cycle containing 3 or 4 of the
verticesv;, i = 1, 2, 3, 4. SinceG is 2-connected, there is a cydlecontainingv; andv,
(but notwz or vg). The cycleC is the union of 2 paths, sa§y and P> from v1 to vo. Since
G is 2-connected, there are 2 internally disjoint patgsand P4 from v3 to C which meet
only atvs. Since it is assumed th& has no cycle containing 3 or more of the vertices
vi, i = 1,2, 3,4, we may assume thds meetsC along P; at a vertexviz # vy, vo.
Similarly, P4 meetsC along P, at a vertexvp4 # v1, v2. Let H = C U P3 U P4. We have
thatvs ¢ V (H), for otherwise there would be a cycle containingvs, andv, (given that
v3 ¢ V(C)). Again, by the 2-connectedness®f there are 2 internally disjoint pati
and Ps from v4 to H which meet only ab4. Depending on wher®s and Pg intersectH,
the graphG must contain one of the subgrapHé, Hg or Hg as illustrated in Fig9. In
the case thdk contains neitheHé" norHCS, it must be the case that the vertiagg andvo4
form a 2-separating set for each pair of vertioge;, i, j =1,2,3,4. O

Lemma 3.6. Let G be a multigraph. There exists a fordstC G such thatdp(v) =
dg(v) (mod 2, Yv € V(G).

Proof. By induction on the number of edges£lfG) = 0, then the lemma holds trivially.
Suppose the lemma holds for all multigraphs having fewer thaedges 2 > 0), and
supposes(G) = m. If G contains no cycles, then it is itself a forest and we can choose
F = G.We suppose therefore tHatontains acycl€. LetG’' = G\ E(C). By assumption,
there is a forest” € G’ such that/r (v) = dg/(v) (mod 2, Yv € V(G’). This means that
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Fig. 10. Non-isomorphic, non-homeomorphic forests with 4 or 6 odd vertices.

dg(v) = dp(v) (mod 2Vv € V(G). Thus the lemma holds for all graphs withedges,
and the proof follows by induction. ]

There are exactly 11 non-isomorphic, non-homeomorphic forests having 4 or 6 odd
vertices. These are illustrated in Fi.

Let G be a 2-connected cubic graph and(€t C) be a pseudo 2-factor of. We suppose
thatG is 2-connected and has 4 odd vertiegsv,, v3, v4. There is a bridgeless subgraph
H/ C GcasinLemma.5 The graptG, = G¢\E(H/) has 4 or 6 odd vertices (depending
on H/) and hence by Lemm&.6there is a foresf, C G, homeomorphic to one of the
forests given in FiglOwheredg: (v) = dG/c (v) (mod 2 Vv € V(Ge). LetHe = H, U F.
ThenHg is a degree-compatib(ie subgraph(f.

For a multigraphM, we have a list of 9 conditions:

(3.1.1) v3(M) = 4 andv>5(M) = 0.

(3.1.2) va(M) = 4,v5(M) = 0,v(M) = 1, andv>7(M) = 0.

(3.1.3) va(M) =3,v5(M) =1,v>6(M) = 0.

(3.1.4) va(M) = 3,vs(M) = 1,v6(M) = 1,v=7(M) = 0.

(3.1.5) va(M) = 3,vs(M) = 0,ve(M) = 0,v7(M) = 1,v>8(M) =0.

(3.1.6) v3(M) = 2, v5(M) = 2,v>6(M) = 0.

(3.1.7) v3(M) = 4, v5(M) = 0, vg(M) = 2,v=7(M) = 0.

(3.1.8) va(M) = 4, v5(M) = 0, ve(M) = 0, v7(M) = 0, vg(M) = 1, andv o(M) = 0.
(3.1.9) va(M) = 4,v5(M) = 0,ve(M) = 1,v7(M) =0,vg(M) = 1, andv>9(M) = 0.

By considering all the possible subgraphs, the subg#éplsatisfies at least one of the 9
conditions listed above. The table below indicates for each combination of a forest from
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Fig. 10 and a subgraph from Fi@ the subset of conditions which apply . In each
case, at least one of these conditions must hold.

v} |HZ |H} |H} |HZ |HS
F1 |(3.1.1) 8%%;(311)8%%?%%%
o BT
> 53.1.13 311 23.1.13 3.1.1)(3.11
3.1.2 g%% 3.1.2 3%223 g%s
F3 |(3.1.1) 3.1.2)(3.1.3)(3.1.3 .
3.1.3 3.1.4) Not possible
3.14
3.1.6
Fa (3.1.1)
Fs 3.11
3.1.2
Fs 3.1.2
3.1.3
F7 53.1.2;
3.1.8
Fg 23.1.5;
3.1.8
Fo 3.14
3.1.6
3.1.7
F1o %%%
3.1.4
3.1.7
F11 E%%%

4. Cycle covers

In this section, we prove some results on cycle coverings@.bé a cubic graph and
let p : E(G) — {0, 1, 2} be a non-negative edge weighting@fLet C be a collection of
cycles inG. For each edge € E(G) we letm¢(e) be the number of cycles iticontaining
e. We say that is acycle p-covefor (G, p) if mc(e) = p(e), Ve € E(G).

A weighting p : E(G) — Z" is eulerianif Vv € V(G), 3 g, p(e) = 0(mod?2.
For a weighted graphG, p) with eulerian weightingp we define asubdivision operation
where we subdivide an edggwith a vertexu and give the subdivided edges weigiito).
Suppose we are given a weighted grggh p) and we perform a subdivision operation
twice in succession, where we subdivide with vertioemndv. We then add an edgeof
weight 2 betweemu andv. The resulting graph i& © (e), and we denote the resulting
(eulerian) weighting by o c).
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Suppose we perform a subdivision operation 3 times, where we subdivide with vertices
u, uz, andusz. We add a vertex and join it tou1, uz, andus with edges of weight 2. The
resulting graph i€ © (v) and we denote the corresponding weightingy,.We say that
(G O (e), po))(resp.,(G O (v), pow))) preservesycle coverings if, giveG, p) has a
cyclep-cover, thenG © (e), po(e)) has a cyclepg)-cover (resp.(G © (v), pow)) has a
cycle pov)-cover. Similarly, we say that an insertion operation preserves 3-edge colourings
if, given G is 3-edge colourable, the graph resulting frGnafter the insertion operation is
also 3-edge colourable.

We define thalistancebetween two edges andes in a connected grap@ to be the
number of edges in the shortest path contairingnde; minus 1. This distance we denote
by distg (eg, e1).

Theorem 4.1. Let (G, p) be a weighted cubic graph whege: E(G) — {1,2} and p is
eulerian

(i) LetG' = G © (e) and p’ = pe() Where e has endvertices in edggsande; in G.
If distg (eg, e1) <2,then(G’, p’) preserves cycle coveringsnd G’ preservess-edge
colourings. Consequentlyf eg and e1 belong to a5-cycle then (G’, p’) preserves
cycle coveringsand G’ preserves-edge colourings

(i) LetG’ = GO (v)andp’ = pe() Wherev has neighbours inserted in the edgeses,
andez in G. If eg, e1, ande; belong to a cycle of length at mdsin G, then(G’, p’)
preserves cycle coveringsnd G’ preserves-edge colourings

Proof. (i) Let (G', p’) andeg, e1 be as in (i). Supposgist; (eg, e1) = 0; that is,eq = e1.
Let C € C be a cycle containingp. Theneis a chord ofC in G’ and we can replacg by
2 cyclesCy, C2 C C U {e} whereC, andC2 covere twice andC once. It then follows that
C' = (C\{C}))U{C1, Cy}isacyclep’-cover of(G', p’). We also see thd& can be obtained
from G’ via ano-reduction. Thug/(G) = y/(G’) andG’ preserves 3-edge colourings.

Suppose thadistg (eg, e1) = 1; that is,eg ande; are incident with a common vertex.
Let Co, C1 € C be cycles wher&g containseg andCy containses. If e; € E(Cp), thene
is a chord ofCo and we may adopt the previous argument. So we may assugé (Cop)
and likewise,e1 ¢ E(C1). Let H = h(Co U C1). We have thay/(H) = 3, asCov/C1
corresponds to a 2-factor with even cycleginMoreover, we see thatis a chord of some
cycle inCoy/C1, and consequentlfd’ = h(Co U C1 U {e}) is also 3-edge colourable. By
Lemmag3.1there is a collection of cycle8y: in H' which coversCosyC1 once, and the
other edges off’ twice. LetD be the collection of cycles afp U C1 U {e} corresponding
toCys. ThenC’' = (C\{Co, C1}) U D is seen to be a cyclg’-cover for(G’, p’). We note
thatG can be obtained fror&’ via aA- reduction and consequentf(G) = ¥'(G’). Thus
G’ preserves 3-edge colourings.

We suppose now thalist; (eg, e1) = 2. LetCo, C1 € C whereeg € E(Cp) ande; €
E(C1). We may assume thap ¢ E(C1), e1 ¢ E(Cp), and there is an edge: € E(G)
lying on a path of length 3 betweep ande;. We will consider 2 cases:

Casel: E(Co) N E(Cy) = Q.

Let Co1 € C be a cycle containingp:. We may assumey, e1 ¢ E(Co1), for otherwise
we can jump ahead to the second case H et #(CoU C1U Cp1). We have thay' (H) = 3



266 R. Haggkvist, S. McGuinness / Journal of Combinatorial Theory, Series B 93 (2005) 251-277

and moreoveris a chord of a cycle in the 2-factor bf CoxyC157Co1. We can now apply
the previous argument to obtain a cyglecover forG'.

Case2: E(Cp) N E(Cy) # @.

ConsiderH = h(Co U C1). Suppose = xy. We shall assume thatis a cycle cover
having a maximum number of cycles. Lég and Cf be the cycles oH corresponding
to Cp andCy, respectively. We have that(H) = 3 andCé’vC{‘ is a 2-factor (with even
cycles). Ifeis a chord of some cycle i(TovCL then we proceed as before. So we may
assume thag lies between 2 cycles af vch Colour the edges of the cycles(dgvc1
alternatively with colours green and blue in such a way that the edges contajrange;
are given the same colour, say green. Colour the remaining edge®df LetD" andD"

be the circuits induced by the green-red and blue-red edges, respectlv@'g laethbr
be the set of cycles |D" anle’;r, respectively. We leD,, andD;, be the sets of cycles

in G corresponding td)i}r andDZr, respectively. Similarly, we IeD’gr andD,, be the sets
of cycles inG’ corresponding t®,, andDj,, and we IetD;,, andD;r be the circuits of5’
corresponding td, andDy,. If [Df,| > 1, or|Dy,| > 1, then(C\{Co. C1}) U Dy, U Dy,
would be a cyclg-cover of (G, p) with more cycles tha@, contradicting the maximality
of C. Thus bothD,, and D, are cycles. This means thais a chord ofDg, in G', and
we can spIitD U {e} into 2 cyclesD1 andD2 where{Dg,, } coverD’ once ance
twice. LetC’ = (C\{Co, C1}) U {Dg,, g,, } ThenC’is a cyclep -cover for(G/ p).

To show thatG’ preserves 3-edge colourlngs we first note that a cubic graph is 3-edge
colourable iff it has three 2-factors which form a double cycle cover. Supgose = 3,
and letC be a double cover consisting of cycles from three 2-factors. We may assyme
and(C1 are disjoint (as in case 1) @y andC1 are the same cycle. L& be the 4-cycle in
G’ containinge andeps. LetC’ = (C\{Co, C1, Co1}) U {(CoU C1)\v D, Co157D}. NowC’
is seen to be a cyclg’-cover of G’, and(C’ is a union of three 2-factors. Thy§G’) = 3.
This shows thaG’ preserves 3-edge colourings. This proves (i).

To prove (ii) we note that one can obtdi@’, p’) by performing an edge insertion op-
eration twice, each time inserting an edge which is a chord of a 5-cycle. The proof then
follows by (i). O

Lemma 4.2. Let(G, p) be aweighted cubic graphwhepe: E(G) — {1, 2} isan eulerian
weighting. Let C be a chordless cycle of G whgfe) = 1, ¢ € E(C). Suppose that G is
the union of subgraph&;, i = 1,...,¢t t<4whichintersectalongC. For=1,...,¢
let p; be the weighting p restricted t8;.

(@) If dy,(C) = 3 Vi and each(H;, p;) has a cyclep;-cover, then (G, p) has a cycle
p-cover

(b) Suppose = 2 anddpy, (C) <5, anddn,(C)<3.If for i = 1,2 each(H;, p;) has a
cycle p;-cover, then(G, p) has a cycle p-cover. Moreovef y, (H1) = y,(H2) = 3,
theny/ (G) = 3.

Proof. We shall first prove (a). Far= 1 .t let H/ be the graph obtained froi; by
contractingC into a single vertex, and we I@t; be a welghtlng of/ wherep; is the same
as p; restricted toH;\ E(C). Given each H;, p;) has a cyclep;-cover, we have that each
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(H!, p!) has a cyclep;-cover, sayD.. We form a cubic graptt’ from G by contracting
each graphH;\C into a single vertex, so thal’ consists ofC together witht independent
vertices joined toC. Let ¢’ be a weighting ofH’ whereq’(¢) = 1, Ve € E(C) and
q'(e) =2, Ve ¢ E(C).According to Exampl®, (H’, ¢’) has a cycle’-cover, sayD’. We
can now splice together the cycle collectidds i = 1,...,r with D’ to obtain a cycle
collectionD which is a cyclep-cover forG.

To prove (b) letH; be the cubic graph obtained frofhby contractingH>\C into single
vertexui, and if necessary, performingvareduction o if it has degree 2. We define a
weighting p] on H; wherep’(e) = pi(e) Ve € E(H1) andpi(e) = 2 for all other edges.
Let H; be the graph obtained frod, by contractingC into a single vertex, performing
av-reduction onu; if it has degree 2. We define a weightipgon H, wherepy, is the same
p2 restricted toH2\ E(C). One obtaing H1, p}) from Hy by either inserting a vertex of
degree 3irC, or inserting a chord i’. Assuming(Hy, p1) has a cycleg;-cover, we observe
thatdy, (C) <5, and thus Theored.1 (i) implies that(H;, p;) has a cyclep}-cover, say
D] . Assuming(H>, p2) has a cyclepp-cover, we have thatH,, p5) has a cyclep,-cover,
sayD,. We now splice togethe®; and D, to obtain a cyclg-cover for(G, p).

If we assume that/; and H> are 3-edge colourable, thei is 3-edge colourable (by
Theoremd.1(ii)) and H, is 3-edge colourable. Sin€&is obtained fromH; and H>, either
via a (3-chromatic) vertex expansian— H, or via a 2-edge expansion, the gra@hs
3-edge colourable. ]

5. K-joins

For a positive integet > 0, we define &-join of 2 graph<G andH where we joinG and
H by takingk verticesgs, g2, . .., gk in G andk verticeshs, h», ..., ki in H and identify
each pair of verticeg;, h;, i = 1,2, ..., k with single vertices. We denote the resulting
graph by(G; g1, ..., g) Vk (H; h1, ..., ht). We define the 0-join o6 andH to be the
disjoint union of G andH, and denote this graph by vo H. A k-join is said to beodd
(resp..even if dg(g;) anddy (h;) are odd (resp., even) for dll Here, we use the symbol
V¢ (resp.,v¢) in place ofv, to denote an odd (resp., evdajoin.

If dg(gi) is even (resp., odd) for allanddp (h;) is odd (resp., even) for all then the
k-join is said to beeven—oddresp.,odd—even We use the symbol;? (resp.,v¢) in place
of v to denote an even—odd (resp., odd—evejain.

For two families of graphg and# where each graph has at lestertices, we define
G Vi H to be the set ok-joins of graphs irg with graphs in#. We defineG v{ H (resp.,
G v{ H) to be the set of odd (resp., eveijoins of graphs fron; and#. In a similar
fashion, we defing vi¢ H andG v{’ H.

We define(G); = G, and fori = 2,3,... we define(G); = (G); ! vi G. We let
D = Ui>1(g);;, and define(g)};’e (resp.,(g)j;’”) in a similar fashion, replacing the
symbolv; with the symbolvy (resp.,v{) in the previous definition.

For collections of graph§i, ..., G, we define a sequence kfioins Gy Vi - -+ Vi G,
recursively by

G1 Vi Vi Gy = (G1 Ve - Vi Gu—1) Vi Gn.
We defineGy v§ --- v G, andGy Vi - - - Vi G, similarly.
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Let 7> be the family of graphs consisting of graphs which are the edge-disjoint union
of a cycle and a path, the path going between 2 vertices on the cycle. Each such graph has
exactly 2 odd vertices (having degree 3). IZ&t be the family of bridgeless graphs with
exactly 4 odd verticess, v, v3, v4, being the union of a graph containing, . .., v4 asin
Fig. 9, and a tree homeomorphic to one in Fi§). Let 75 = Ui>1(]-"2)il’o. Each graph
F € F5 is a block chain whose blocks belong#. Moreover, eacli” € F5 has exactly
2 odd vertices (having degree 3), one in each of its endblocks. Let

Fi = FaU (FaVviF5)U(FaVviF5 Vi Fo) U (FaVv]Fr ViFs; Vi Fs)
U (Fa Vi F5 Vi F5 Vv Fa Vi F3).
Each member of; consists of a grapty € F4 with block chains fromF; joined via an
odd 1-join to some or none of the odd vertice<of

Lemma 5.1. Let G be a2-edge connected graph having exa@lgdd vertices; andv.
Then G contains a subgraphi € 73 whose odd vertices are exactly andvs.

Proof. Supposey; andv; belong to the same blod’ of G. Then there is a cycl€ in B
containingv; andvs. Let G’ = G\E(C). Thenvi andv; are exactly the odd vertices of
G’. They must belong to the same componeninand consequently, there must be a path
Pin G’ between them. Lelf = C U P. ThenH € F, (henceH e F3) and moreovery;
andv2 are exactly the odd vertices &f.

Suppose now that; andv; belong to different blocks of;. Then there is a block chain
Bo--- By wherevy € V(Bg), v2 € V(By), andvy,v2 ¢ V(B;) for0 < i < k. Let

V(B;)) N V(Biy+1) = {ui+1}, i = 0,...,k —1, and letug = vy, andug1 = v2. Since
dp,(uo) is odd, it follows that/p,(11) is odd and thugp, ,(u;), anddp, (u;) are odd for
i=1...,k.SinceeactB;, i =0,..., kis 2-connected (and is not a single edge), there
are subgraph#; € B;, i =0, ...,k whereH; € F, andu; andu; 1 are exactly the odd

vertices ofH;. Let H = Hy U --- U Hy. ThenH € F4, andv; andv; are exactly the odd
vertices ofH .

Let G be a 2-connected cubic graph and(&t C) be a pseudo 2-factor @.

Proposition 5.2. Let He = (Hy)¢ U (H2)¢c be a loopless subgraph @f: where(Hi)¢
intersects Hy)¢ at exactly one vertex.

(i) If h(Hy) andh(H>) are C-compatibledyy. (v) <5, anddm,), (v) <3, thenh(H) is
C-compatible. Moreoveif y, (H1) = ), (Hz2) = 3,theny, (H) = 3.
(i) If Ho € F5,theny, (H) = 3.

Proof. To prove (i) we first note thatf; intersects, along the cycle” = C(v) which has
no chords i1 U Ho (sinceH, is assumed to be loopless). We supposethdt) andh (H2)
areC-compatibled p,),. (v) <5, andd(p,) . (v) < 3. We have thath (H;), pim;)) has acycle
Ph(Hy-coverfori = 1, 2, anddy, (C) <5, anddy, (C) < 3. Now Lemmad.2b) implies that
(h(H), prcay) has a cycley,gy-cover, and consequently H) is C-compatible. Moreover,
if 1, (H1) = 1, (H2) = 3, theny;,(H) = 3.
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To prove (ii) suppose thaic € 5. If He € 7>, then we can redude(H) to a multiple
3-edge viao-, A-, ando-reductions. In this casey,, (H) = 3. We suppose therefore that
He € F5\F2. ThenHe = (Hy)¢ U (H)c wWhere(Hy)c, (Hp)c € F5 and(Hy)c intersects
(H)c at exactly one vertex, say, whered g, (v) = 3, i = 1, 2. We may assume that
¥ (h(H1)) = 1 (h(H2)) = 3. It now follows from (i) thaty, (H) = 3.

6. Proof of the main theorem

In this section, we give a proof of Theorebi2 Let G be a 2-connected cubic graph
with o(G) <4 and let(X, C) be a pseudo 2-factor @& where|X| plus the number of odd
cycles inC is at most 4. LeiG¢ be the graph obtained fro@ by contracting the cycles
of C.

Theorem 6.1. Either the graphG ¢ contains a degree-compatible subgrafp such that
h(H) is C-compatible or it contains a non-triviaB3-edge cut.

Proof. If o(G) = 0, theny/(G) = 3 and result holds takinglc = Ge¢. If 0o(G) = 2,
then by Lemmd.1there is a degree compatible subgrdfhof G¢ belonging taF;. By
Proposition5.2 (ii), x,(H) = 3, and consequently(H) is C-compatible. Thus we may
assume that(G) = 4, andvy, vo, v3, v4 are the odd vertices d@ .

Casel: Supposé&; ¢ has a blockB¢ containing all 4 of the odd vertices, vy, vz, va.

The vertices, . . ., vg4 are easily seen to be the odd verticeBgfAccording to Lemmas
3.5and 3.6, there is a (loopless) subgrapgfy € Bc where He € F4 andvy, ..., va
are exactly the odd vertices éfc. Forv € V(He)\X let C’(v) be the cycle ini(H)
corresponding t@ (v) (ie. Cpm)(v)).

For each 2- or 3-cycl€’(v), v € V(He)\X, we performo- and A-reductions, respec-
tively. Next we performe-reductions on all 4-cycle€’(v), and this we do in such a way
that the resulting (cubic) grapi(H)’ is bridgeless (this is possible by Lemrb&). Here,
is an overview of the notation to be used in the ensuing proof.

Gc: graph obtained fron® by contracting cycles af.

Hc: degree compatible subgraph®¢ belonging taF,.

H: subgraph irG corresponding td,.

h(H): cubic graph homeomorphic th.

h(H)': bridgeless graph obtained froliH) via o-, A-, andz-reductions.
C(v): cycle inC corresponding te € V(G¢)\X.

C’(v): cycle inkh(H) corresponding t@ (v).

G the graphG¢\ E (He).

G': subgraph irG corresponding t@ ..

We know that exactly one of the conditions (3.1.1)—(3.1.9) hold&faiWe shall examine
two subcases:
Casel.l: Supposéi; satisfies one of (3.1.1)—(3.1.8).
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We have thav(h(H)") <16. If y/(h(H)") = 3, theny/(h(H)) = 3 (by Lemmal.7 and
Corollary2.2). It then follows from Lemm&.1thati(H) is C-compatible. Thus we may
assume that'(h(H)") = y'(h(H)) = 4. Sincev(h(H)') <16, Propositior2.7 implies that
h(H)'is a 3-chromatic expansion & and consequently(H) is a 3-chromatic expansion
of P1o. Letv — A,, v € P1obe arepresentation of this expansion. For eagchv € Pig
let A/ be the subgraph df(H) induced by the edges corresponding to thosa,jinif He
satisfies one of (3.1.1)—(3.1.3), (3.1.5), or (3.1.8), then all but at most one of the cycles
C'(v), v € V(Hc) belongs to soméd’,, v € V(P10). In this case, Lemma.2implies that
there is a collection of cycles i H) covering each of the cycles (v), v € V(H¢) once,
and the other edges af H) twice. This means thai(H) is C-compatible.

We suppose thdil satisfies exactly one of (3.1.4), (3.1.6), or (3.1.7) and exactly 2 of the
cyclesC’(v), v € V(He) sayC’(u1) andC’(u2), do not belong to anyt). We may assume
thatC’(u1) intersects exactly 5 of the subgraphisandC’(u2) intersects the other&)’s ;
thatis, they correspond to 2 vertex-disjoint 5-cycle®qf Thush (H)\E(C’'(u1) UC’ (u2))
has at least 5 components. However, since we are giverHthat the union of 2 graphs,
one from each of Fig® and10, andH satisfies one of (3.1.4), (3.1.6), or (3.1.7), one sees
thath (H)\(C'(u1) U C’'(u2)) can have at most 4 components. This yields a contradiction,
and this concludes the proof for case 1.1.

Casel.2: Supposé. contains no degree-compatible subgrapfjrwhich satisfies one
of (3.1.1)—(3.1.8).

By TheoremA.1 in the Appendix A, eitheB¢ contains a degree-compatible subgraph
H¢ which isC-compatible, oG has a non-trivial 3-edge cut which separates a vertex of
or odd cycle ofC in B from the other vertices of X or odd cyclesdnin B. In this case, the
theorem is seen to hold.

Case2: Suppose no block af¢ containsv, vz, v3, va.

We shall divide this case into 2 subcases:

Case2.1: There is a bloclBe € G¢ having 4 odd vertices.

We may assume thd has odd verticess, uz, us, ug. For eachs; which is odd inG¢
we may assume; = v;. If u; is not odd inG¢, we may assume there is a block chain
(Bi)c = (Bio)c U ... U(Biy)c Whereu; € V((Bio)c), vi € V((Bir;)c) andu; andv; are
exactly the odd vertices of the chain. L@g be the subgraph obtained fratiy where for
eachi = 1,...,4 we delete all the vertices B;)c exceptu;. Now uy, ..., ugq are seen
to be the odd vertices (ﬂ}z which belong to the bloclB.. If G1 has a non-trivial 3-edge
cut which separates a vertex or odd cycle corresponding to one of the vartices, ua,
then such a cut will also be a non-trivial 3-edge cuGofSo we may assume that no such
cuts exist inG1. Now according to Theorer.1, there is a degree-compatible subgraph
Je for which i (J) is C-compatible and one of two things hold: eithgr € F4 and one of
(3.1.1)—(3.1.8) holds, or every odd degree verteXohas degree three.

According to Lemméb.1the chain(B;)¢ contains a subgraptH;)c € 7, whose odd

vertices are exactly; andv;. If u; = v;, then we let(H;)¢ = u; = v;. Let Hp =
Je U, (Hi)c. We have thatc € F.
By assumptiony;, i = 1,...,4 cannot all be odd irG-. We may therefore assume

that at least one of the;’s, sayus, is not odd inG¢. Suppose first thaf;, (u;) <5, for
i =1,...,4. For each whereu; # v; we haveh(B;) is C-compatible since, (B;) = 3
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by Propositiorb.2 (ii). It follows from repeated application of Propositiérii) thati (H)

is C-compatible. As such we can assume thahas odd vertices of degree at least 7. This
means thafl; must satisfy one of (3.1.1)—(3.1.8), and in particular, it must satisfy (3.1.5).
ThusJe has one vertex of degree 7, and 3 vertices of degree 3. If for some= v;, and
dj.(u;) = 7, thenh(H) is C-compatible by PropositioB.Z(i). Thus we may assume that
dj.(u;j) = 7 for someu; # v;, and this we can assume this holds dgr(andd;, (u;) =
3,i=234).

Let J; be the graph obtained froshu H; where we contradt;\ C (u1) into a single vertex
w1. We can reduce each 2-, 3-, and 4-cy€lg ) (v) < h(Jy) via o-, A-, or o-reductions
so that the resulting cubic graph, which we denote:bys)’ is 2-connected. We see that
h(J1)" has 14 vertices, and thus according to ProposBi@ithery’ (h(J1)") = 3 0orh(J1)’
is a 3-chromatic expansion dfo. Now Theorem?.6 implies that either, (J1) = 3 or
h(J1) is a 3-chromatic expansion @fg. Sinceh(J U Hi) is a 3-chromatic expansion of
h(Jy), itfollows thaty) (J U H1) = 3 orh(J U Hy) is a 3-chromatic expansion #fo. Since
1, (H;) = 3ifu; # v;, itfollows thaty), (H) = 3 orh(H) is a 3-chromatic expansion #fo
givenbyv — A,, v € V(P10) where we may assume that all cyct&sv), v € V(He)\X
belong to somed,, except for possibl\C’(x1). Thus, LemmaB.2 implies thath(H) is
C-compatible and this completes the proof of Case 2.1.

Case2.2: Suppose each block 6% has at most 2 odd vertices.

If each block ofG¢ has at most 2 odd vertices, then it is seen thatcontains 2 disjoint
block chains(Bg)¢ and (B1)¢ (nhot having any common blocks) where the endblocks of
the block chains each contain exactly one odd verte&@f We may assumer, v2 and
v3, v4 belong to the endblocks dafBg)c and (B1)¢, respectively. By Lemm&.1, there
exists subgraphéHo)c S (Bo)¢ and (Hi)¢ S (B1)¢c Where(Ho)c, (Hi)¢ € F; and
moreoverys, vz anduvs, vq are exactly the odd vertices 0flp)c and(H1)¢, respectively.
Let Hc = (Hp)c U (Hy)c. The graphH¢ belongs to eithetF; vo F5, F5 Vi F5, or
F5 V4 F5. If Ho € F5 vo F3, theny/ (h(H)) = 3 (according to PropositioB.2 (ii))

In this casen(H) is C-compatible. Thus we may assume that eithgr ¢ 75 v{ F5 or
He e F5 Vi F5, and(Ho)¢c and(Hy)c intersect at a vertex.

Let (H,)c be the subgraph oflz which is the union of the blocks afiz which con-
tainu. Let h(H,)' be the graph obtained from(H,) by reducing all 2-, 3-, or 4-cycles
Cu(n,(v) € h(H,) via o-, A-, or o-reductions (where as usual, bridgelessness is pre-
served). The resulting graph has at most 16 vertices, and according to Progd3igaher
¥ (h(H,)) = 30orh(H,) is a 3-chromatic expansion #f. It then follows from Theorem
2.6 that eithery), (H,) = 3 orh(H,) is a 3-chromatic expansion @ho. If y, (H,) = 3,
then by Lemmat.2b) we havey), (H) = 3. In this caseh(H) is C-compatible. On the
other hand, ifi(H,) is a 3-chromatic expansion &, thenia(H) is a 3-chromatic expan-
sion of P1g where we may assume that the expansion has a representatiod,,, v €
V (P10) such that all cycle€,m)(v), v € V(Hc) belong to somed, except for possi-
bly Cx)(u). Lemma3.2implies thath (H) is C-compatible. This completes the proof of
case 2.2. [

Proof of Theorem 1.2.We suppose again th& is a 2-connected, cubic graph and let
(X, C) be a pseudo 2-factor @ where|X| plus the number of odd cycles ¢his at most
4. We may assume that the theorem holds for any graph with fewer vertice§than
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Fig. 11. AvinePq, ..., Py.

Suppose thdk has a non-trivial 3-edge cut. Th&tan be expressed as a vertex expansion
G = (G1; u; e1, e2,e3) ® (Go; v; f1, f2, f3) wherev(G;) < v(G), i =1,2. Fori =1,2
let (X;, C;) be the pseudo 2-factor 6f; obtained fronts in the natural way. ThepX;| plus
the number of odd cycles 6 is at most 4. Thus(G;) <o(G), and hence by assumption,
G1 andG; each admit double cycle covey andD;, respectively. Now one can construct
a cycle double covep via splicingD; andD; together.

If we now assume thas has no non-trivial 3-edge cuts, then Theorérimplies that
G¢ has a bridgeless degree compatible subgiEpfior which h(H) is C-compatible. By
Lemma3.4, we can construct a cycle double cover €arThis completes the proof of the
theorem. O

7. Vines

Let P be a pathugvy - - - v, and letPy, ..., P, be a collection of paths which intersdet
at exactly their terminal vertices, where for eaclP; has terminal vertices,; ;y and v
andr (i) < h(i). If the pathsP;, i = 1, ..., k are internally vertex-disjoint and satisfy,

(i) t(1) =0, h(k) = n.
(i) 1G) <tG+D<h@) <h(+1),i=1... k-1
(i) h(i) <t +2),i=1....k—2

then we say thapPy, ..., P, form avinealong P. Note that a vine may consist of just one
path. We say that verticasandv arejoined by a vinef there exists a patP fromuto v
and a vine along (see Figl1).

Let G be a graph and lad be a subgraph. Le® be a path fronu to v in H and let
P1, ..., P, be avine alond® where eaclp; intersectdd only at its terminal vertices. Then
we say thatPy, ..., P, is anH-vine In this case, we say that there isldfvine fromuto
vin H.

Let Py, ..., P, be avine along® = vgvs - - - v, as above. We shall now define what we
call thecircuit of the vineCp,,_p,. Ifk =1,letCp,, p =PUPLIF k=241, 121,
then let

.....

Cp,...p. = PLUPlupy, v 31U ---U Py_1U Plugi—1y, vrivn] -
U Pyq1U Plug, vr2)] U P2U -+~ U Plug2iy, vr2i42)]
U P2 U---U Plug@y, val.
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If k=21, [>1,thenlet

Cpy,...p. = PLUP[vpy, v 3)1U---U Pp_1U Plupi—1), viitnl---U Pa—1
U Plop@—1), v21]1 U Plvg, v 21U P2 U - - - U Plug2iy, vr2i42)]
U PyiyoU---U Plup—2), vz]1 U Py

Let G be a connected cubic graph containing a subgkpbhich is homeomorphic to
a cubic graphf . For each edgé € E(H), let[¢]y be the corresponding path #, and
for any subgrapt € H, we let[/]y be the corresponding subgraphfih We leave the
verification of the following theorem to the reader.

Theorem 7.1. Suppose for any two edgésf e E(H) it holds that if there is an H-vine
from a vertex ofe]y to a vertex o{f ., thene andf are incident inH. Then the graph
G is an expansion off.

Theorem 7.2. Let G be a connected, cubic graph and let H be a subgraph homeomorphic
to H >~ Pio. Suppose, f € E(H) are two non-incident edges. If there is an H-vine from
avertexvg € [¢]y to a vertex,, € [f]H. Then for some such ving, ..., Py it holds that
Jy(HUPLU---UP) =3,

Proof. Suppose that there are non-incident edges e E(H) for which there is aiti-vine
from a vertex ofé]y to a vertex of f1. Pick such a vine having a fewest number of paths,
sayPi, ..., P, and assume thatitis &itvine along a patl? C H from avertexg € [¢]y
to a vertex, € [ f1y. Given thatd ~ Pyo, H has a 2-facto€1 andC» being two 5-cycles
whereé € E(Cy) and f € Cs. If the vine consists of only one paify, theni(H U Py)
has a 2-factor consisting of two 6-cyc|¢é‘,i]H, i = 1,2. Inthis casey'(H U P1) = 3.
We suppose therefore that the vine has more than one path. Since wePghose P, to
have as few paths as possible, we have that the distance betveeery in H equals 2,
and moreover, there is a pathvgw fz in H such thatP C [uévgw fz]x.

Let C; = [Cily, i = 1,2. Now (C1 U C2)/Cp,...p, is a cycle inG, which is also a
hamilton cycle im:(H U PLU- - - U Py). thus we have that, (HU P U---U P) = 3. [

From the above, we obtain the following corollary.

Corollary 7.3. Let G be a connected cubic graph and let H be a subgraph homeomorphic
to P1o. Then either G is an expansion 8fg, or there is an H-vinePy, ..., P, such that
Jy(HUPLU---UP) =3,

We also see that Theore2nbis a consequence of the above result.

Appendix A.

Let G be a 2-connected cubic graph withG) = 4 and let(X, C) be a pseudo 2-factor
of G where| X| plus the number of odd cycles ¢hequals 4. LeG. be the graph obtained
from G by contracting the cycles @f.
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Theorem A.1. Suppose that the odd vertices@$ are contained in a bloclB.. Then one
of the three statements holds

(i) G¢ contains a degree-compatible subgraflp satisfying one of3.1.1)—(3.1.8)or
whichh(H) is C-compatible
(i) G¢ contains a degree-compatible subgraplz where each odd degree vertex has
degree three and for whidla(H) is C-compatible
(iii) G contains a non-triviaB-edge cut which separates a vertex of X or an odd cyole of
from the other vertices of X and odd cycle€ of

Proof. The odd vertices of;c are easily seen to be exactly the odd verticeBgafSince
Bc is a block with more than one edge, Lemn3aSand3.6imply that it contains a degree
compatible subgrapl: € F (which is also degree-compatible @y) satisfying one of
(38.1.1)—(3.1.9). IfH satisfies one of (3.1.1)—(3.1.8), then following the proof of Theorem
6.1, case 1.1, the grapt(H) would beC-compatible. In this case, (i) holds. So we may
assume thatl; satisfies (3.1.9), and moreovéty contains no degree compatible subgraph
in F4 which satisfies one of (3.1.1)—(3.1.8). We shall assumeuhat ., v4 are exactly
the odd vertices of; . We shall letC’(v), h(H)', G/C, andG’ be as defined in the proof of
Theorem6.1

We shall first show thadt(H) is a 3-chromatic expansion &fo. We have that(h(H)') =
18. If y'(h(H)") = 3, theny), (H) = 3 (by Lemmal.7 and Corollary2.2). It would then
follow from Lemma3.1thati(H) is C-compatible. This being the case, we may assume
thaty'(h(H)') = y),(H) = 4. According to[3], there are only 3 different cubic graphs of
order 18 having girth at least 5 and chromatic ingex= 4. Two such graphs are obtained
by performing a 4-edge expansion with the grappsnd P1o. The third graph is obtained
by performing a vertex expansion at one vemef P1g, whereu — Pig.

Since He € F4, we have thatHe = H/ U F/ where H/, is homeomorphic to one
of the graphs in Fig9 and F/; is homeomorphic to a forest in Fig0. From the table
in Section3, we see that there is only one possibility fdf, and F/;; the graphF;, is
homeomorphic taFz, and H/; is homeomorphic td—lg. Given that we are assuming that
G¢ has no degree-compatible subgraphginsatisfying one of (3.1.1)—(3.1.8), we have
that the vertices13 andvy4 (as specified by Lemma.5) form a 2-separating set f@r ¢
which separates each pair of vertiagsandv;, i # j. Letui = viz anduz = vp4. The
graphH/, consists of 4 internally vertex-disjoint patﬁ’é, Pcz, PC?’, Pc4 betweernu1 anduy,
wherev; € V(Pé), i=1...,4.The graphFé is homeomorphic td&» and consists of 4
internally vertex-disjoint paths originating @i and terminating at;. One of these paths
containsup, and we may assume that this path terminateg.gfori = 1, 2, 3, we denote
the path terminating at; by Q%, and we denote the path terminatingvatby P2 U Q¢
WherePg is the portion of the path between andu», and Qé is the portion of the path
betweernu, andv, (see Figl2).

The cyclexC’ (1) andC’ (u2) are vertex-disjoint cycles d@f(B)’ having lengths 8 and 6,
respectively. Supposg H)' is a 4-edge expansion & with P1g. Let A = { f1, f2, f3, fa}
be the 4-edge cut formed via this expansion. ThéB)'\{ f1, f2, f3, f4} has exactly 2
componentsk; and K2 having 10 and 8 vertices, respectively. Suppose first that neither
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Fig. 13. The graph(H)'.

C’(u1) nor C’'(u2) contain edges ofi. Then either both cycles belong to one component,
or they belong to separate components. The former is impossible considering that each
component has at most 10 vertices. The latter is also seen to be impossible since there are
5 edge-disjoint paths between andu, in He, and hence no 4-edge cut #{H) can
separat€’(u1) andC’(u2). We conclude that at least one of the cycles contains edgés of
(see Fig13).

Suppose&’’(11) contains no edges @, butC’(u2) does. TherC’(u1) € Kj; for other-
wise, if C’(u1) € K>, then it would follow thatC’(u2) € K1. Given thatC’(u2) contains
at least 2 edges @, one sees upon examination Bf that K1 would contain at least 3
of the verticesv;, i = 1,...,4 and hence(K1) >8 + 3 = 11 vertices. This yields a
contradiction. We may therefore assume tigi«1) contains edges of, and hence it must
have at least 2 such edges.

Suppose&’(u2) contains no edges @& GivenC’(u1) contains at least 2 edgesAfone
sees by inspectingl; that for at least 2 of the verticasg, i = 1, ..., 4, no edge oA is
incident withv;. Thus the component; or K») containingC’(u2) would have at least
6+ 5= 11 vertices. This yields a contradiction. We may therefore assume€that) and
C’(u2) both contain edges @, and hence they contain 2 edges apiece.
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We now have that no edge Afis incident with the vertices;, i = 1, ..., 4 and hence
the neighbours of; in #(H) belong to the same componeity(or K») asv;. Thus, neither
K1 nor K3 can contain 3 or more or the verticgs and each component contains 2 vertices
apiece. Suppose; andv; belong toK,. Given thatK3 is in the Pg part of the 4-edge
expansion and no edge #fis incident withv; or v;, it follows thatdistg, (v;, v;) <2.
However, upon inspection dfc, one sees that far # j, dist,gy (v;, vj) > 3. Here we
reach a final contradiction. We conclude th&#{)" cannot be a 4-edge expansion &
with Pjg. Similar arguments also demonstrate th@it/)’ is not a vertex-expansion @
where for a vertex. € V (P10) we expand the vertex via— Pig.

From the above, Propositich7 implies thath (H)’ must be a 3-chromatic expansion of
P1o. Henceh(H) is also a 3-chromatic expansion Bfp, and we leb — A,, v € V(P1)
be a representation of this expansion. For eadbt A/, be the subgraph df(H) induced
by those edges df(H) coinciding with those im,. If one of the cycle (u;), i = 1,2
belongs to somet/, then all but one of the cycleS(v), v € V(B¢)\X belong toA]’s,
and as was demonstrated befdréH ) is C-compatible in this case. Thus, we may assume
that neitherC (u1) nor C(u2) are contained in anyt,. Thus each cycle intersects exactly 5
of the subgraph4,.

SupposePe is a path inG¢ andu is one of its endvertices. We definstem-vertexf P
in the following way: ifu € X, then itis a stem vertex. Otherwise, we define a vertex of
C(u) to be a stem-vertex if it is a separating vertexPof

Fori = 1,2andj = 1,...,5 lets/ denote the stem-vertex @/ on C(u;). For j =

1,2,3 Iett{ denote the stem-vertex ¢f/ on C (1) and Iett§1 denote the stem-vertex ¢f*
lying on C (u2). Let P11 denote the portion oP® lying betweenC (v1) andv1. Letx andy
denote the stem-vertices lying on either sidellaindtll, and letC;[x, y] denote the portion
of C1 betweerxandywhich contains} andz} (see Fig14). LetJ = C1[s, rFjuPLlul.
One can show thdt, y, 521} is a 3-separating set bfwhich separated into two subgraphs
Hy and H (so thatH; N Hp = {x, y, s3}) whereCi[x, y]U PL U Q! C Hi. If there is
a H-vine in G from a vertex inJ to a vertex inH», then we could modifyH to obtain
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a degree-compatible graph ¢ofc for which h(H) is 3-edge colourable and hen€e
compatible (we leave the verification of this to the reader). In addition, each odd degree
vertex in such a subgraph has degree three, in which case (ii) holds. We may thus assume
that no suchH-vine exists. Let’ be the vertex of”1[x, y] closest ta, wherex’ is joined

to a vertex inJ by anH-vine in G. We definey’ analogously fory. Let S21’ be the vertex

of P! closest tasi which is joined by arH-vine to a vertex in/. Now {x', y', 51} is a
3-separating set is. Consequently(> contains a non-trivial 3-edge cut which separates
the odd cycle or vertex it corresponding te1 from the odd cycles or vertices (B corre-
sponding tovy, v3, andvy. In this case, (iii) is seen to hold. This concludes the proof of the
theorem. [
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