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A box is a set of the form X=X1×·· ·×Xd, for some finite sets Xi, i=1, . . . ,d. Answering
a question posed by Kearnes and Kiss [2], Alon, Bohman, Holzman and Kleitman proved
[1] that any partition of X into nonempty sets of the form A1 × ·· ·×Ad, with Ai �Xi,
must contain at least 2d members. In this paper we explore properties of such partitions
with minimum possible number of parts. In particular, we derive two characterizations
of minimal partitions among all partitions of X into proper boxes. For instance, let P =
P1 ×·· ·×Pd be a fixed k-dimensional plane in X, that is Pi=Xi for exactly k different
subscripts i, with |Pi|=1 otherwise. It is shown that F is a minimal partition of X if and
only if P intersects exactly 2k members of F , for every such P .

1. Introduction

Let X=X1×·· ·×Xd be the Cartesian product of finite sets Xi, i=1, . . . ,d. If
each Xi has more than one element, then X is called a d-box. Each nonempty
subset A of X which itself is a Cartesian product, i.e. A=A1×·· ·×Ad, with
Ai ⊆Xi, is called a sub-box of X (or simply a box). A box A is proper if
Ai �=Xi for each i=1, . . . ,d.

Problems considered in this paper emerged in connection with a recent
paper by Kearnes and Kiss [2]. As a combinatorial counterpart of one of their
results concerning an important class of rectangular algebras, they proved
that in any partition of a d-box into at most d boxes none of the parts can be
proper. And, occasionally, they asked if it is true that any partition of a d-
box into less than 2d boxes must contain a part which is not proper. This has
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been answered affirmatively by Alon, Bohman, Holzman and Kleitman [1].
An elegant argument provided in [1] uses an ingenious idea based on boxes
with odd number of elements. There is also an apparently earlier electronic
note [3] containing a slightly different solution (attributed to Bohman and
Holzman) to the question of Kearnes and Kiss.

A superficial comparison of these two approaches shows that they are in
a sense complementary. This observation is the starting point of the present
investigation. However, our main aim is to discuss in detail the properties
of minimal partitions, that is, partitions of a d-box X consisting of exactly
2d proper boxes. In Section 3 we present two characterizations of minimal
partitions among all partitions of X into proper boxes.

Another related problem concerns spanning sets of boxes. A set S of sub-
boxes of X is called spanning if the minimal box containing all elements of
S is X itself. Given a minimal partition of a d-box X, what is the minimal
size of a spanning set consisting of members of this partition? This question
is studied in Section 4. In Section 5 we describe a simple recursive rule
for constructing all minimal partitions of a d-box X, starting with minimal
partitions of a box of dimension d−1. The problem of finding such a rule
has been raised in [1]. In Section 6 we show that if X is odd then there
is a canonical one-to-one correspondence between members of a minimal
partition of X and elements of the cube {0,1}d. Finally, the last section of
the paper is devoted to partitions of a box into arbitrary boxes.

2. Odd coverings

We start with a definition that appears in [3]. A box A is said to be odd if
|A| is an odd number. A covering F of a d-box X with proper boxes is said
to be odd if for each x∈X the number |{F ∈F :x∈F}| is odd. In the sequel
we always assume tacitly that every box in an odd covering of X is proper.

For a given integer d≥ 1 we write [d] = {1, . . . ,d}. By I = {i1, . . . , ik} we
denote a (possibly empty) subset of [d]. If I⊆ [d] then its complement [d]\I
is denoted by I ′.

Given a box A⊆X and I ⊆ [d], let AI =Ai1 ×·· ·×Aik . In case of I = ∅
we adopt the convention that A∅ ={∅}. Also, for i∈ [d] we write simply Ai′

instead of A{i}′ . This notation is naturally extended to families of boxes.
A box A ⊆ X is I-odd if AI is odd and AI′ = XI′ . Finally, for a fixed

I⊆ [d], we denote by FI(A) the set of those F ∈F for which FI ∩AI is odd.
Our basic result reads as follows.
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Theorem 1. If F is an odd covering of a d-box X and B is an I-odd sub-
box of X, with |I|=k, then

|FI(B)| ≥ 2d−k.

Additionally, if |F|=2d, then

|FI(B)| = 2d−k.

Proof. The method of the proof is a simple modification of that in [1]
and [3]. Observe that the case I=∅ corresponds to the original problem of
Kearnes and Kiss. This will be the base for induction with respect to d in
the first part of the proof, but we will verify it later.

Let F2 be the field of integers modulo 2. Clearly, each element of FX
2 may

be identified with the characteristic function of a certain subset of X. Then
the fact that F is an odd covering of X means simply that

1X =
∑
F∈F

1F .

Let I �=∅ be fixed. To simplify notation assume that I={1, . . . ,k}. Consider
now a mapping TB :FX

2 →F
XI′
2 defined by the formula

TBf(y) =
∑

x:(x,y)∈B

f(x, y),

where x∈XI , y∈XI′ and (x,y) denotes the sequence x followed by y. Note
that TXf=

∑
x∈X f(x), since it is natural to identify F{∅}2 with F2. Note also

that TB is an additive function.
Observe that since B is I-odd, for any box A⊆X we have

TB1A =
{

1AI′ if AI ∩BI is odd,
0 otherwise.

Hence, applying TB to both sides of the expression for 1X gives

1XI′ =
∑

F∈FI(B)

1FI′ .

The last equation means that the set {FI′ :F ∈FI(B)} is an odd covering of
XI′ . By the induction hypothesis it has at least 2d−k elements, which implies
|FI(B)|≥2d−k.

For the second assertion of the theorem, let BI be the family of all I-odd
boxes, and for F ∈F let

BI(F ) = {B ∈ BI : FI ∩BI is odd}.
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By the first part of the theorem
∑

B∈BI

|FI(B)| ≥ |BI | 2d−k.

Since |BI(F )|=2−k |BI |, we obtain

2−k |BI | |F| =
∑
F∈F

|BI(F )| =
∑

B∈BI

|FI(B)| ≥ |BI | 2d−k.

Clearly, if |F|=2d the inequality above becomes an equality and the second
assertion follows.

Let us note that the case k=d holds independently of our induction ar-
gument. In fact, in this situation |FI(B)|≥1 means simply that there exists
some F ∈F such that F ∩B is odd, which is obvious (compare [1]). Apply-
ing it to the last inequality gives |F| ≥ 2d, which completes the induction.
Actually, this is exactly the argument from [1].

Though a simple generalization of the result of [1] it is, Theorem 1 implies
some interesting ”geometrical” properties of minimal partitions. Consider a
set P ⊆X such that PI is a singleton and PI′ =XI′ . This is a special kind of
an I-odd box which we call a plane of dimension d−k. In particular, P is a
hyperplane if k=1, and a line if k=d−1. Clearly, if F is an odd covering of
X, then the set FI(P ) consists of all boxes that intersect P . Thus we have
the following corollary.

Corollary 1. For each plane P of dimension d−k in a d-box X and every
odd covering F of X we have

|{F ∈ F : F ∩ P �= ∅}| ≥ 2d−k.

Moreover, if F is a minimal partition of X, then there are exactly 2d−k

members of F intersecting P .

It is justified to call the second part of this corollary the equipartition
principle.

Another interesting consequence of Theorem 1 reads as follows.

Proposition 1. If F is an odd covering of X of size 2d, then for every pair
F,G∈F there is i∈ [d] such that {Fi,Gi} is a partition of Xi. In particular,
F is a minimal partition of X.



MINIMAL PARTITIONS OF A BOX INTO BOXES 609

Proof. Suppose that for each i the set {Fi,Gi} is not a partition of Xi. Two
situations may occur: (1) Fi ∩Gi �= ∅ or (2) Fi ∩Gi = ∅ but Fi ∪Gi �= Xi.
If (1) occurs we pick xi from the common part of Fi and Gi and define
Bi = {xi}. Otherwise, we pick ui ∈ Fi, vi ∈Gi and wi ∈Xi \ (Fi ∪Gi) and
put Bi ={ui,vi,wi}. A box B=B1×·· ·×Bd obtained in this way is [d]-odd,
hence, by Theorem 1, F[d](B) has only one element. But F and G are both
in F[d](B), which is a contradiction.

3. Minimal partitions

It is natural to expect that the properties of minimal partitions described
above characterize them among all partitions of X with proper boxes. This
intuition will be confirmed below.

Let F be a partition of a d-box X. We say that it satisfies the splitting
property if for any two members F,G∈F there is i∈ [d] such that {Fi,Gi}
is a partition of Xi.

Theorem 2. F is a minimal partition of a d-box X if and only if it satisfies
the splitting property.

Proof. By Proposition 1, only the ”if” part remains to be proved. We use
induction with respect to d. There is nothing to show if d= 1. If d> 1, fix
z ∈Xd and put H =Xd′ ×{z}. Let H = {F ∈F : F ∩H �= ∅}. Consider the
related family G={Fd′ :F ∈H}. Since {Fd,Gd} can not be a partition of Xd,
for every pair F,G ∈H, it follows that G inherits the splitting property of
F . Hence, G is a partition of Xd′ , and, by the inductive assumption, it has
2d−1 elements. Consequently, |H|=2d−1.

The same argument applies to G′={Fd′ :F ∈F\H}. Thus, F\H also has
2d−1 elements, and the result follows.

Yet another characterization of minimal partitions relates to the equipar-
tition principle.

Theorem 3. Let k∈ [d] be given. F is a minimal partition of a d-box X if
and only if for every plane P of dimension k the family P ={F ∈F :F∩P �=∅}
contains exactly 2k elements.

Proof. As earlier, by Corollary 1 only the ”if” part has to be shown. We
reduce first the whole theorem to the case k= 1. To this end observe that
each line L is contained in a certain plane P of dimension k. It is clear that P
can be viewed as a k-box, and, by assumption, the family E ={F∩P :F ∈P}
is a partition of P consisting of 2k proper boxes. Thus the equipartition
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principle applies to E . In particular, L intersects exactly two elements of E ,
so it does the same with P.

For the case k= 1 assume inductively that the assertion holds for boxes
with dimension less than d. As in the preceding proof, consider families
H = {F ∈ F : F ∩H �= ∅} and G = {Fd′ : F ∈ H}, where H = Xd′ ×{z} is
a fixed hyperplane. Clearly, G is a partition of Xd′ satisfying our inductive
assumption. Hence,

|H| = |G| = 2d−1.

We will show now that also G′ = {Fd′ : F ∈ F \H} is a partition of
Xd′ satisfying the equipartition principle. First we will show that G′ is a
partition of Xd′ . To this end suppose that there are two different boxes F
and G in F \H such that Fd′ ∩Gd′ �= ∅. Let x be their common element
and let E be a box from H that contains the element (x,z). Then the line
L={x}×Xd intersects three boxes E,F,G, which is a contradiction. Thus,
G′ is a partition of Xd′ . Moreover, |F \H|= |G′|.

To see that G′ satisfies the inductive assumption suppose that there is a
line K in Xd′ intersecting at least three boxes of G′. Then a 2-dimensional
plane K×Xd intersects at least five boxes of F . There is a unique i∈ [d−1]
such that Ki =Xi. Consider the family D = {Fi ×Fd :F ∈F ,F ∩K×Xd �=
∅}. Thus |D| ≥ 5. Arguing similarly as before we get that D is a partition
of Xi ×Xd such that any line of Xi ×Xd intersects exactly two boxes of
D. However, in case of 2-dimensional boxes, this property is easily seen to
contradict the fact that |D|≥5. Hence, G′ satisfies the inductive assumption
and therefore |G′|=2d−1. This completes the proof.

4. Spanning sets

In this section we consider another problem related to minimal partitions.
Let M be a family of sub-boxes of a d-box X. We say that M is a spanning
set of boxes if X is the minimal box containing all elements of M. A natural
question concerns the minimal size of a spanning set that may be found in a
prescribed covering F of X. We denote this quantity by S(F), and call it the
spanning number of F . In particular, we estimate it precisely for minimal
partitions of X.

The following graph-theoretical lemma will be of use.

Lemma 1. Let n and k be positive integers such that n > 2k−1. Suppose
the edges of a complete graph Kn have been colored so that each color class
forms a bipartite subgraph. Then there exists a multicolored (all edges have
different color) tree T ⊆Kn with at least k edges.
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Proof. Assume k > 1. We will construct a multicolored tree with k edges
successively as follows. Choose any edge e of Kn and let ce be its color.
Consider the subgraph G⊆Kn formed by all vertices of Kn and all edges in
color ce. Clearly, one of the bipartition classes of V (G), say A, must have
more than 2k−2 vertices. Then we pick an edge f with both ends in A, which
is incident to e. Obviously, colors on edges spanned by A in Kn are different
from ce, hence cf �= ce. The same argument may be repeated for f on the
complete subgraph on A, thus obtaining the next edge with new color, and
so on. This gives the desired tree of size k.

Theorem 4. Let F be a minimal partition of a d-box X and let k ∈ [d].
Then out of any 2k−1 + 1 members of F one can choose k + 1 boxes
F 1, . . . ,F k+1such that F 1

I , . . . ,F
k+1
I span XI , for some I ⊆ [d] of size k. In

particular, S(F)≤d+1.

Proof. Consider a complete graph Γ on the set of vertices F with edges
colored in the following way. For an edge FG choose any color i∈ [d] such
that the pair {Fi,Gi} splits on Xi. By Proposition 1 all edges have been
colored and certainly no odd cycle is monochromatic. Hence, any color class
induces a bipartite graph and the assertion follows from Lemma 1.

A special case of our next result shows that in general the above bound
on S(F) is optimal. In order to simplify its proof we find it useful to discuss
first certain special partitions of 2-boxes.

Let Q be a nonempty set and let Q denote any of its partitions. The
partition Q induces a new partition Q∗ of Q×2Q as follows. We take K×K
as a part of Q∗ if and only if K∈Q and K is one of the two sets

K0 = {A ⊆ Q : K ∈ A}, K1 = {A ⊆ Q : K /∈ A}.
In the proof of the optimality of the bound on the spanning number given

in Theorem 4 we will need the following lemma.

Lemma 2. Let P ⊆Q∗ and let S= {K⊆ 2Q :K×K∈P}. If 2Q =
⋃
S then

there is D∈Q such that both D×D0 and D×D1 belong to P.
Proof. The proof is a simple utilization of Cantor’s diagonal method. Define

Z = {K ∈ Q : K ×K0 /∈ P and K ×K1 ∈ P}.
Since Z ∈ ⋃

S there exists B×B ∈ P such that Z ∈ B. If we had B = B0,
then, by the definition of Q∗, we would also have B∈Z. In turn, this relation
would imply, by the definition of Z, that B×B0 /∈P, which is a contradiction.
Thus B = B1. So B /∈ Z, which is equivalent to saying that B×B0 ∈ P or
B ×B1 /∈ P. As the second possibility is excluded, we have B ×B0 ∈ P.
Henceforth, D=B is an element the existence of which had to be shown.
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Proposition 2. For each d there exists a d-boxKd with a minimal partition
Fd satisfying the following property. Given arbitrary I⊆ [d] no G ⊆Fd can
be found such that |G|= |I| and GI spans K

d
I .

Proof. We define inductively the sequence of pairs Kd, Fd for d= 1,2, . . . .
For d=1 putK1 =2{∅} and Fd ={{∅},{{∅}}}. If d≥2 putKd =Kd−1×2F

d−1

and Fd =(Fd−1)∗ with Q=Kd−1 and Q=Fd−1.
Suppose that for some d and some k ∈ [d] there exists G of cardinality

k such that GI spans Kd
I for some I of the same size. Take the smallest

d and then the smallest k for which such a choice of G and I is possible.
Obviously d>1 and k>1. Observe that d must belong to I, since otherwise
GI spans Kd−1

I , which contradicts the minimality of d. Now, by Lemma 2
there exists D ∈Gd′ such that D×D0 and D×D1 are disjoint members of
G. It follows that the cardinality of G̃ = Gd′ must be strictly smaller than
that of G. Moreover, G̃

Ĩ
spans Kd−1

Ĩ
, where Ĩ = I ∩d′. This contradicts the

minimality of k, as
∣∣∣G̃∣∣∣≤ ∣∣∣Ĩ∣∣∣=k−1.

Remark 1. It is natural to ask about the size of a minimal box Kd satis-
fying Proposition 2. Certainly, the above construction is not optimal with
that respect. Another, more involved construction exists giving a bound of
order 2O(d3).

5. Constructing minimal partitions

Let X be a d-box and let Y =Xd′ . One may ask whether there are some rules
according to which all minimal partitions F of X could be manufactured
from those of Y . It is shown in [1] by means of an example that the simplest
rule ”take a pair of minimal partitions A and B of Y and a partition {P,Q}
of Xd, and put F =(A×P )∪(B×Q)” does not exhaust all possible patterns,
even if d is allowed to be replaced by any i∈ [d]. However, modifying slightly
the above approach we obtain the appropriate procedure.

Let Y =Xd′ and let K be the finest partition of Y such that each K∈K
is a union of some members of A as well as some members of B. Obviously,
K need not be a box. For a given K fix any partition {A(K),B(K)} of Xd

and define a minimal partition D of X as follows. A box D is a part of D
if and only if there is A∈A such that D=A×A(K) and A⊆K or there is
B∈B such that D=B×B(K) with B⊆K.

Conversely, if we start with a minimal partition D of X then it can be
easily split into two minimal partitions A and B of Y . It suffices to choose
a hyperplane H =Y ×{z} and define A and B as families of projections of
boxes intersecting H and disjoint with H, respectively.
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6. Even-odd pattern

Let us suppose that A is a sub-box of a d-box X and let I⊆ [d]. We say that
I is the even-odd pattern of A if the set Ai has an even number of elements
for i∈ I and an odd number of elements for i∈ I ′. If A is a proper sub-box
of X then the I-complement of A, denoted by AI , is defined by the formula

AI = {x ∈ X : xi /∈ Ai for i ∈ I, and xi ∈ Ai otherwise}.

If F is a minimal partition of X then FI = {AI : A ∈ F} is called the I-
complement of F . As before we simplify our notation in case of I = {i} by
dropping the brackets.

Lemma 3. If F is a minimal partition of a d-box X then FI is also a
minimal partition of X.

Proof. Let I = {i1, . . . , ik}. It is clear that FI = (. . . (F i1)i2 . . . )ik . Hence,
it suffices to show that for any i∈ [d] the i-complement of F is a minimal
partition of X.

Suppose for simplicity that i=d and let F and G be two different parts of
F . The splitting property of F implies easily that their complements F d and
Gd are disjoint. Thus it remains to be shown that Fd covers X. Let x∈X
and let A∈F be the unique part such that x∈A. For any z chosen from the
set Xd \Ad there exists B ∈F , such that (xd′ ,z)∈B. Therefore A �=B and
these two sets are disjoint. In particular, x /∈B which means that x∈Bd.

Using this Lemma we derive the following uniqueness property of even-
odd patterns in minimal partitions of odd boxes.

Theorem 5. If a d-box X is odd and F is its minimal partition then for
any I⊆ [d] there exists exactly one A∈F for which I is its even-odd pattern.

Proof. If we let B = X in Theorem 1 then we deduce with the aid of
Lemma 3 that there is a unique box C ∈ FI which is odd. Consequently,
A=CI is the unique element of F for which I is an even-odd pattern.

7. Partitions into arbitrary boxes

We consider now partitions of a d-box X into boxes that are not necessarily
proper. A box A is said to be k-proper if there exists I ⊆ [d] of size k such
that AI′ =XI′ and AI is proper in XI .

We say that a partition F of X is nontrivial if it consists of at least two
boxes. Assuming F to be nontrivial denote by pk the number of all k-proper
boxes in F . We say that the multi-index p=(p1, . . . ,pd) is associated with F .
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It is easy to observe that q is a multi-index with a certain nontrivial
partition of {0,1}d into boxes if and only if

q12d−1 + q22d−2 + · · · + qd = 2d.

Proposition 3. Let p be the multi-index of a nontrivial partition F of X.
Then there is a multi-index q associated with certain nontrivial partition of
{0,1}d such that p≥q in the coordinate order. In particular,

p12d−1 + p22d−2 + · · · + pd ≥ 2d.

Proof. Each k-proper box A∈F can be split into 2d−k proper boxes. Thus
we can generate from F a new partition G consisting of only proper boxes
such that |G|=p12d−1 +p22d−2 + · · ·+pd. On the other hand, we know that
|G|≥ 2d. So, by an easy arithmetic argument the existence of the desired q
follows.
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65-516 Zielona Góra
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