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As a natural generalization of graph coloring, Vince introduced the star chromatic number
of a graph G and denoted it by x*(G). Later, Zhu called it circular chromatic number and
denoted it by x.(G). Let x(G) be the chromatic number of G. In this paper, it is shown
that if the complement of G is non-hamiltonian, then x.(G)=x(G). Denote by M(G) the
Mycielski graph of G. Recursively define M™(G) =M (M™ *(G)). Tt was conjectured that
if m<n—2, then xc(M™(Kyn))=x(M™(Ky)). Suppose that G is a graph on n vertices.
We prove that if x(G) > 2£2, then x.(M(G)) =x(M(G)). Let S be the set of vertices of
degree n—1 in G. It is proved that if |S| >3, then x.(M(G))=x(M(G)), and if |S| > 5,
then x.(M?(G))=x(M?(G)), which implies the known results of Chang, Huang, and Zhu
that if n>3, xe(M(Kn))=x(M(K,)), and if n>5, then x.(M?(K,))=x(M?*(K,)).

1. Introduction

All graphs considered are finite and simple. Let k and d be positive integers
such that k£ >2d. A (k,d)-coloring of a graph G with vertex-set V(G) and
edge-set E(G) is a mapping ¢:V(G)—{0,1,...,k—1} such that for each edge
ry€ E(G) , d<|c(z)—c(y)|<k—d. A (k,1)-coloring of G is simply a proper
k-coloring of GG. As a natural generalization of the chromatic number,Vince
[6] introduced the star chromatic number of a graph G, which is defined
to be the infimum of the ratio k/d for which G has a (k,d)-coloring. It was
shown [6] that the infimum can be replaced by minimum. Zhu [7] equivalently
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considered a (k,d)-coloring of G as a mapping ¢ from V(G) to open arcs of
unit length in a circle of length k/d such that for each edge zy € E(G),
c(z) Ne(y) = 0. Instead of “star chromatic number”, Zhu used “circular
chromatic number” and denoted it by x.(G) (see [8]). In this paper, we use
Zhu’s notations, but for the definition of circular chromatic number, we still
use the one given by Vince [6] (or see Bondy and Hell [2]).

Definition 1.1. Let G be a graph on n vertices. The circular chromatic
number of G is defined as XC(G):inf{gz G has a (k,d)-coloring}.

Let Gg denote the graph whose vertex-set is {0,1,2,...,k—1} and whose
edge-set is {ij :d <|i—j| <k—d}. Vince [6] showed that y.(G{)=%. (An
easier proof was given by Bondy and Hell [2].) For two graphs G and H,
a homomorphism from G to H is a mapping f: V(G)— V(H) such that
f(x)f(y) € E(H) whenever zy € E(G). It is easy to show (see [2]) that G
has a (k,d)-coloring if and only if there is a homomorphism from G to G¢.
The following proposition was obtained by Zhu [7]. Here we provide an easy
derivation from a result of Bondy and Hell [2].

Proposition 1.2. Let f be a homomorphism from G to Gg, where
ged(k,d)=1. If f is not surjective, then x.(G) < %.

Proof. Since f is not surjective, it is a homomorphism from G to a subgraph
H = GY—v for some vertex v € V(G). Note that V(H) CV(G%)={0,1,... k-
1}. Define ¢(i) =1 for each vertex i € V(H). Then ¢ is a (k,d)-coloring of
H. Since |V (H)|< |V (G$)|=Fk, by [2, Proposition 2], H has a (t,s)-coloring
with % < %. Let g be a homomorphism from H to Gj. The composition of
f and ¢ is a homomorphism from G to G, which implies x.(G) < i < %, as
required. ]

In this paper we consider a (k,d)-coloring of a graph G as a partition of
V(G). A (k,d)-partition of G is a partition (Xo, X1,...,Xx_1) of V(G) such
that for each j, 0<j<k—1,

X;UX; U, U Xj+d71

is an independent set in G, where the addition of indices is taken mod k.
(Here it is allowed that X; =0.) It is easy to see that a (k,d)-partition of G is
simply the color classes of a (k,d)-coloring of G. Thus we have the following
easy observation.

Observation 1.3. A graph G has a (k,d)-coloring if and only if it has a
(k,d)-partition.
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Proposition 1.4. Let (Xo,X1,...,Xk_1) be a (k,d)-partition of G, where
ged(k,d)=1. If X;=() for some t, then x.(G)<%.

Proof. Let V(G$)={0,1,...,k—1}. Define a homomorphism f from G to
G¢ by f(v)=i if vE X;. Since X; =0, we have that f~1(¢t)=0, and hence f
is not surjective. By Proposition 1.2, x.(G) < %, as required. |

2. Sufficient Conditions for Graphs G with x.(G) = x(G)

As usual, let x(G) denote the chromatic number of a graph G. It is shown
by Vince [6] that
X(G) =1 < xe(G) < x(G).

What determines whether y.(G)=x(G)? This problem was raised by Vince
[6] and has been investigated extensively. Abbott and Zhou [1] proved that
if the complement of G is disconnected, then x.(G)=x(G). A special case of
this result is that if G has a vertex of degree |V (G)|—1, then x.(G)=x(G),
a result which was previously proved by Zhu [7] and by Guichard [4]. In
this section we show that if the complement of GG is non-hamiltonian, then
Xc¢(G) = x(G). Since a necessary condition for a graph to be hamiltonian
is to be 2-connected, an immediate consequence of our result is that if the
complement of G is not 2-connected, then x.(G)=x(G). This improves the
earlier results mentioned above.

Theorem 2.1. If x.(G) < x(G), then the complement of G is hamiltonian.

Proof. Let x.(G) =%, where d>2 since x.(G) < x(G). By [2, Corollary 1], we
may assume that ged(k,d)=1. By Observation 1.3, G has a (k,d)-partition
{Xo,X1,...,Xk_1}, and by Proposition 1.4, X;#0, 0<i<k—1. Since d>2,
X;UX;41 is an independent set in G, 0 <i<k—1, where X = Xy. Thus,
in the complement of GG, X; induces a complete subgraph and each vertex
of X; is adjacent to every vertex of X;y1, 0<i<k—1. It follows that the
complement of G has a hamiltonian cycle in which the vertices of each X
are consecutive on the hamiltonian cycle. ]

Let C be a cycle. The dth power of C'is the graph obtained from C by
adding edges joining every pair of vertices with distance at most d in C.
(The 1st power of C' is simply C' itself.) It is easy to see that the arguments
used in the proof of Theorem 2.1 give the following more general result.

Theorem 2.2. If x.(G)= d+i1’ where d > 1 and ged(k,d+1) =1, then the
complement of G' contains the dth power of a hamiltonian cycle.
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A proper k-coloring of G is simply a (k,1)-partition of G, that is, a
partition of V(G) into (Vi,Va,...,V}) such that each V; is an independent
set, 1<i<k. Another application of (k,d)-partitions is the following easier
proof of a result of Steffen and Zhu [5].

Theorem 2.3. Let x(G) = t. If there is a nonempty proper subset A of
V(G) such that for any t-coloring ¢ of G, and for any color class F of c,
either FC A or FNA=0, then x.(G)=t.

Proof. If not true, let x.(G) :§ with d>2 and ged(k,d)=1. As before, G
has a (k,d)-partition {Xo, X1,...,X;_1} and for each j, 0<j<k—1,

Fj :Xj UX]‘_H U... UXjer,l
is an independent set. Let m=[%| and set
Fog=XnaUXpgr1 U...UXp g,

Then (Fy, Fy,...,Fnq) is an (m+1)-coloring of G. Note that m+1= [%] =t.
By the given condition, for each i, 0 <i<m, either F;4 C A or F;uNA=0,
which implies that there is an s such that Fyq C A and Fi,y1)0 CV(G)\ 4,
where F{,,4 1= Fo. Then (F1, Fyy1,. .., Fnqr1) is a t-coloring of G in which
neither Fygy1 C A nor Fygi1NA=0, where Fq11 = (Fpaq\ Xma)UXo. This
contradiction completes the proof. |

For the next two results, and for the use in the next section, we need
some additional notations. Let v be a vertex in a graph G. A neighbor of v
is a vertex that is adjacent to v. Denote by N(v) the set of neighbors of v.
Then d(v)=|N(v)| is the degree of v. If H is a subgraph of G, define

NH)= |J N@) and dH)= > d).
veV (H) veV (H)

Proposition 2.4. If x.(G) = &, where ged(k,d) =1, then d(v) < [V(G)| -
2d+1 for each veV(G).

Proof. Let {Xo,X1,...,Xk_1} be a (k,d)-partition of G. For any ve V(G),
say veE Xj, let

A:XjUXj+1U...UXj+d_1 andB:XjUXj,lu...UXj_dH.

So A and B are independent sets. Note that ANB =X}, we see that v is not
adjacent to any vertex of X; for each i€ {j+d—1,...,j+1,7,7—1,...,j—d+1}.
Since X; # () for each i by Proposition 1.4, it follows that v is not adjacent
to at least 2d—1 vertices in G, that is, d(v) <|V(G)|—2d+1, as required. i



CIRCULAR CHROMATIC NUMBER AND MYCIELSKI GRAPHS 131

Proposition 2.4 is best possible in the sense that y.(G{)= %, while d(v)=
[V (G)|—2d+1 for each ve V(GY). (Proposition 2.4 can also be derived from
Theorem 2.2.) We conclude this section with the following result which has
applications to Mycielski graphs in the next section.

Theorem 2.5. Let G be a graph on n vertices. If there is a set S of three
vertices in G such that N(S)US#V(G) and d(S)>3(n—3), then x.(G)=
X(G).

Proof. Suppose, to the contrary, that x.(G) = § < x(G), where d >2 and
ged(k,d) = 1. Let {Xo,X1,...,Xk_1} be a (k,d)-partition of G. Let z € S,
say x € X; for some j. Since d>2, we have that X;UX;_; and X;UX,  are
independent sets, and hence N(z) CV(G)\ (X;-1UX;UX;41), where the
addition of indices is taken mod k. By Proposition 1.4, X; #0, 0<i<k—1,
and therefore d(x) <n—3 with equality only if N (z) =V (G)\(X;-1UX;UX;41)
and | X;_1|=|X;|=|X;41|=1. Let S={zp,24,2,}. Then

3(n —3) <d(S) =d(zp) + d(xg) + d(z,) < 3(n —3),

which implies that for each i € {p,q,r}, equality d(z;) =n—3 holds, and thus
N(J}Z) = V(G) \ (Xi—l UX; UXi—I—l) and ‘Xi—1| = ‘Xz| = |Xi+1| = 1. Noting
that N(S)=N(zp)UN(zq)UN (x,), we have that N(S)US=V(G), which is
contrary to the given condition and completes the proof. ]

3. Mycielski Graphs

Let G be a graph with V(G) ={z;:1<i<n}. The Mycielski graph of G,
denoted by M (G), is the graph obtained from G by adding n+1 new vertices
@y, ah,...,xl,u, and then, for 1<i<n, joining z to the neighbors of z; and
to u. The vertex z is called the twin of z; (z; is also the twin of 2). The
vertex u is called the root of M(G). It is well known that for any nonempty
graph G, x(M(G))=x(G)+1. However, there are infinitely many graphs G
for which x.(M(G))# x(G)+1. For instance, let G be a cycle of length 2m+1.
It is known [6] that x.(G)=2+1. But, by a result in [3], x.(M(G))=4. Let
K,, denote the complete graph on n vertices. Chang, Huang, and Zhu [3]
proved that if n>3, then x.(M(K,))=x:(K,)+1=x(M(K,)). Their proof
is rather involved. We present here a stronger result with an easier proof.

Theorem 3.1. Let G be a graph on n vertices and K the set of vertices of
degree n—1. If |K| >3, then x.(M(G))=x.(G)+1=x(M(G)).
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Proof. Let S C K with |S| =3. For each v € S, since v has degree n—1
in G, and by the structure of M(G), v has degree 2(n—1)=|V(M(G)|—3
in M(G). Therefore, in M(G), d(S)=3(|V(M(G)|—3). Clearly, the root of
M(G) is not in N(S)US. Applying Theorem 2.5 to M(G), we have that
Xe(M(G))=x(M(G))=x(G)+1. Since G has vertices of degree n—1, and
by Proposition 2.4, x(G)=x.(G). This completes the proof. |

Theorem 3.2. Let G be a graph on n vertices. If x.(M(G)) = %, where

ged(k,d)=1, then x(G) <2+ 11,

ISUES)

Proof. Let V(M (G))={z1,22,...,xn;2}, 2%, ..., 2} ;u}, where V={x1,29,...,
xn} is the vertex-set of G, V' = {a,2},... 2/} is the set of the twins of
vertices of V', and w is the root of M(G). Let (Xo,X1,...,Xk_1) be a (k,d)-
partition of M(G). We may assume that u€ X, and set

A=X3 1UXg o0U...UX1UXoUXp 1U...UXk gioU Xk gr1-

We note that ACV since u€ Xy. Let x € V\ A, and denote its twin by 2/, say
reX; (d<j<k—d).If ' ¢ X;, say 2’ € X; with {# j, we may move z’ to X
to obtain a new (k,d)-partition (Yp,Y7,...,Ys_1), where V; =X if i ¢ {j,¢},
Y;=X;U{z'}, and Y; = X,\{z'}. Now, = and 2’ lie in the same Yj in the new
(k,d)-partition. By this argument, we may assume that the (k,d)-partition
(X0, X1,...,Xk_1) has been chosen such that for any z€V'\ A,

(3.1) {z,2'} C X; for some j, d <j <k—d,
and by Proposition 1.4, X; #0, 0<i<k—1. Let A'={z}: x;€ A}. Then

for each j, d<j<k—d, X; contains either a vertex in V'\ A or a vertex in
A'. Using |A'|=|A], it follows that

k—2d+1<|V\Al+|A|=|V]=n.
So k <n+2d—1, and hence x.(M(G)) =& < 2+ n=l But, x.(M(G)) >
x(M(G))—1=x(G), and therefore, x(G) <24 2L, as required. |
Corollary 3.3. Let G be a graph on n vertices. If x(G) > ”TH, then
Xe(M(G))=x(M(G)).

Proof. If x.(M(G)) < x(M(G)), let x.(M(G)
ged(k,d)=1. By Theorem 3.2, x(G) <2+ %5 lon

) = %, where d > 2 and
n+t3
9
If n >3, then x(K,)=n> ”TH so that Theorem 3.2 and Corollary 3.3
provide another route to the result of Chang, Huang, and Zhu [3] that if

n >3, then x.(M(K,))=x(M(K,)). Let w(G) denote the clique number of

a contradiction. |
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G (the number of vertices in a maximum complete subgraph). It is known
that x(G) >w(G). Thus, another easy consequence of Corollary 3.3 is that

if w(G)> MG then v .(M(Q)) = x(M(G)).

Theorem 3.4. Let G be a graph on n vertices. If G contains a K5 such
that N(K5) # V(G) and each vertex of Ky has degree at least n—3 in G,
then xo(M(G)) = x(M(G)).

Proof. Suppose, to the contrary, that x.(M(G)) < x(M(G)). Then
X(M(G)) = %, where d > 2 and ged(k,d) = 1. As before, let V(M (G)) =
{x1,29,..., 2052, 2h,... .2l ;u}, where V = {x1,29,...,2,} is the vertex-set
of G, V! = {z,2h,...,2),} is the set of the twins of vertices of V, and
u is the root of M(G). For x € VUV’, denote by 2’ the twin of z; for
XCVUuV X'={2': z€X}. Asseen in (3.1), M(G) has a (k,d)-partition
(Xo0,X1,...,Xk_1) such that, with u€ Xy and

A=Xg1U...UX1UXgU Xk 1U...UXk g1,
for any x€V'\ A4,
(3.2) {z,2"} C X for some j, d <j <k —d,

and X; # (0, 0<i<k—1. Since each pair of the five vertices of the Kj is
adjacent, we may let {z,,24,2,,2s, 2} be the five vertices of the K5 such
that z; € X;, i € {p,q,r,s,t}, and 0<p<qg<r<s<t<k—1. By the given
condition that N(Kj5)#V (G), there is

zeV\ ( U N(xz)) ,
1€{p,q,r,s,t}
and hence d(z;)<n—2 in G for each i€ {p,q,r,s,t}.
Claim. For any i€ {p,q,r,s,t}, if d+1<i<k—d—1, then d(x;)=n—3 in
G, X;= {in,a};}, ZeX; UX;4+1, and ‘Xi—l N V/‘ = ‘Xi—i-l N V/’ =1.
Proof. Since d+1<i<k—d—1, we have that (X;_1UX;11)NA=0, and thus
by (3.2), no vertex of X;_1 can be the twin of a vertex of X; 1. If we let

R=X,1UX;1 U Xz{—l U Xz(-i—l’

then |RNV|>2. We note that z; € V, and in M(G), x; is not adjacent to
any vertex of X;_1UX; 1 and thus not to any vertex of R. Moreover, x; is
not adjacent to any vertex of X;UX/. It follows that d(z;) <n—3 in G with
equality only if z € R, X; = X|={xz;,2,}, and | X;-1NV’/|=|X; 11 NV/|=1.
By the given condition, equality d(x;) =n — 3 holds and therefore z € R,
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X, ={xi,x}}, and | X;1NV'|=|X;51NV’/|=1. By (3.2), z€ R implies that
2’ € X;_1UX;11. This proves the claim. ]

Since each pair of the five vertices is adjacent, we have that
d<p+d<gq, g+d<r, r+d<s, and s<t—d<k-—d-—1.

By the claim, for each i € {r,s}, d(z;) =n—3 in G, X; = {z;,z}}, 2’ €
Xi-1UX;41, and | X;—1NV’/|=|X;41NV’|=1. This means that X, ={x,, 2.},
Xo={zs, 2L}, s=r+2, and X, 1NV ={2'}. If ¢>d+1, then by the claim
we have that 2’ € X, 1 UX,y1, which is impossible. Therefore, ¢ = d, and
thus p=0, that is, z, € X¢. So x,, is not adjacent to any vertex of X;UX},_1.
Since the root u € Xy and u is adjacent to every vertex of V/, we have that
X1NV #0 and X;_1NV #0. On the other hand, it is given that d(z,)>n—3
in G. Therefore, d(x,) =n—3 and either X; ={z} or X;_; ={z}. Without
loss of generality, suppose that X; = {z}. We note that s =7+ 2 implies
d=2, and since X, ={z,,2,} and Xy = {zs, 2.}, we may move z to X,
(note that X,41NV’'={z'}) to obtain a new (k,d)-partition (Yp,Y1,...,Ys_1)
with V=X, if i¢ {1,r+1}, Vi1 =X, 11 U{z}, and Y1 =X;\ {2z} =0, which
contradicts Proposition 1.4 and proves Theorem 3.4. ]

Recursively define M™(G)= M (M™ 1(G)). It was conjectured [3,8] that
If m <n—2, then x.(M™(K,))=x(M™(K,)). By Theorem 3.4, we conclude:

Corollary 3.5. Let G be a graph on n vertices and K the set of vertices of
degree n—1. If | K| >5, then x.(M?(G))=x(M?*(Q)).

Proof. Let H = M(G). Then H is a graph on 2n+ 1 vertices, any five
vertices of K induces a K5 in H such that each vertex of the K5 has degree
2(n—1)=|V(H)|—3 in H. Since the root of M(G) (=H) is not in N(K3),
applying Theorem 3.4 to H, we have that y.(M(H)) = x(M(H)), that is,
Xe(M?(G))=x(M?(Q)), as required. 1

An immediate consequence of Corollary 3.5 is that if n > 5, then
Xe(M?(K,)) = x(M?(K,)), which is slightly weaker than the result of
Chang, Huang, and Zhu [3] that if n >4, then y.(M?(K,)) = x(M?(K,)).
However, as pointed out by a referee, the case of n = 4 can be handled
by using Theorem 3.2 to exclude certain pairs of (k,d) values and show
Xe(M?(Ky))=6. In fact, by more involved arguments, we are able to weaken
the condition of Theorem 3.4 by only requiring that G has a K, with the
described property, which would include the case of n=4.
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