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As a natural generalization of graph coloring, Vince introduced the star chromatic number
of a graph G and denoted it by χ∗(G). Later, Zhu called it circular chromatic number and
denoted it by χc(G). Let χ(G) be the chromatic number of G. In this paper, it is shown
that if the complement of G is non-hamiltonian, then χc(G)=χ(G). Denote by M(G) the
Mycielski graph of G. Recursively defineMm(G)=M(Mm−1(G)). It was conjectured that
if m≤n−2, then χc(M

m(Kn))=χ(Mm(Kn)). Suppose that G is a graph on n vertices.
We prove that if χ(G)≥ n+3

2
, then χc(M(G))=χ(M(G)). Let S be the set of vertices of

degree n−1 in G. It is proved that if |S| ≥ 3, then χc(M(G))=χ(M(G)), and if |S| ≥ 5,
then χc(M

2(G))=χ(M2(G)), which implies the known results of Chang, Huang, and Zhu
that if n≥3, χc(M(Kn))=χ(M(Kn)), and if n≥5, then χc(M

2(Kn))=χ(M2(Kn)).

1. Introduction

All graphs considered are finite and simple. Let k and d be positive integers
such that k≥ 2d. A (k,d)-coloring of a graph G with vertex-set V (G) and
edge-set E(G) is a mapping c :V (G)→{0,1, . . . ,k−1} such that for each edge
xy∈E(G) , d≤|c(x)−c(y)|≤k−d. A (k,1)-coloring of G is simply a proper
k-coloring of G. As a natural generalization of the chromatic number,Vince
[6] introduced the star chromatic number of a graph G, which is defined
to be the infimum of the ratio k/d for which G has a (k,d)-coloring. It was
shown [6] that the infimum can be replaced by minimum. Zhu [7] equivalently
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considered a (k,d)-coloring of G as a mapping c from V (G) to open arcs of
unit length in a circle of length k/d such that for each edge xy ∈ E(G),
c(x) ∩ c(y) = ∅. Instead of “star chromatic number”, Zhu used “circular
chromatic number” and denoted it by χc(G) (see [8]). In this paper, we use
Zhu’s notations, but for the definition of circular chromatic number, we still
use the one given by Vince [6] (or see Bondy and Hell [2]).

Definition 1.1. Let G be a graph on n vertices. The circular chromatic
number of G is defined as χc(G)=inf{k

d : G has a (k,d)-coloring}.

Let Gd
k denote the graph whose vertex-set is {0,1,2, . . . ,k−1} and whose

edge-set is {ij : d≤ |i− j| ≤ k−d}. Vince [6] showed that χc(Gd
k) = k

d . (An
easier proof was given by Bondy and Hell [2].) For two graphs G and H,
a homomorphism from G to H is a mapping f : V (G)→ V (H) such that
f(x)f(y) ∈ E(H) whenever xy ∈ E(G). It is easy to show (see [2]) that G
has a (k,d)-coloring if and only if there is a homomorphism from G to Gd

k.
The following proposition was obtained by Zhu [7]. Here we provide an easy
derivation from a result of Bondy and Hell [2].

Proposition 1.2. Let f be a homomorphism from G to Gd
k, where

gcd(k,d)=1. If f is not surjective, then χc(G)< k
d .

Proof. Since f is not surjective, it is a homomorphism from G to a subgraph
H=Gd

k−v for some vertex v∈V (Gd
k). Note that V (H)⊆V (Gd

k)={0,1, . . . ,k−
1}. Define c(i) = i for each vertex i ∈ V (H). Then c is a (k,d)-coloring of
H. Since |V (H)|< |V (Gd

k)|=k, by [2, Proposition 2], H has a (t,s)-coloring
with t

s < k
d . Let g be a homomorphism from H to Gs

t . The composition of
f and g is a homomorphism from G to Gs

t , which implies χc(G)≤ t
s <

k
d , as

required.

In this paper we consider a (k,d)-coloring of a graph G as a partition of
V (G). A (k,d)-partition of G is a partition (X0,X1, . . . ,Xk−1) of V (G) such
that for each j, 0≤j≤k−1,

Xj ∪Xj+1 ∪ . . . ∪Xj+d−1

is an independent set in G, where the addition of indices is taken mod k.
(Here it is allowed that Xi=∅.) It is easy to see that a (k,d)-partition of G is
simply the color classes of a (k,d)-coloring of G. Thus we have the following
easy observation.

Observation 1.3. A graph G has a (k,d)-coloring if and only if it has a
(k,d)-partition.
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Proposition 1.4. Let (X0,X1, . . . ,Xk−1) be a (k,d)-partition of G, where
gcd(k,d)=1. If Xt =∅ for some t, then χc(G)< k

d .

Proof. Let V (Gd
k)= {0,1, . . . ,k−1}. Define a homomorphism f from G to

Gd
k by f(v)= i if v∈Xi. Since Xt =∅, we have that f−1(t)=∅, and hence f

is not surjective. By Proposition 1.2, χc(G)< k
d , as required.

2. Sufficient Conditions for Graphs G with χc(G)=χ(G)

As usual, let χ(G) denote the chromatic number of a graph G. It is shown
by Vince [6] that

χ(G) − 1 < χc(G) ≤ χ(G).

What determines whether χc(G)=χ(G)? This problem was raised by Vince
[6] and has been investigated extensively. Abbott and Zhou [1] proved that
if the complement of G is disconnected, then χc(G)=χ(G). A special case of
this result is that if G has a vertex of degree |V (G)|−1, then χc(G)=χ(G),
a result which was previously proved by Zhu [7] and by Guichard [4]. In
this section we show that if the complement of G is non-hamiltonian, then
χc(G) = χ(G). Since a necessary condition for a graph to be hamiltonian
is to be 2-connected, an immediate consequence of our result is that if the
complement of G is not 2-connected, then χc(G)=χ(G). This improves the
earlier results mentioned above.

Theorem 2.1. If χc(G)<χ(G), then the complement of G is hamiltonian.

Proof. Let χc(G)= k
d , where d≥2 since χc(G)<χ(G). By [2, Corollary 1], we

may assume that gcd(k,d)=1. By Observation 1.3, G has a (k,d)-partition
{X0,X1, . . . ,Xk−1}, and by Proposition 1.4, Xi 
=∅, 0≤ i≤k−1. Since d≥2,
Xi ∪Xi+1 is an independent set in G, 0≤ i≤ k−1, where Xk =X0. Thus,
in the complement of G, Xi induces a complete subgraph and each vertex
of Xi is adjacent to every vertex of Xi+1, 0≤ i≤ k−1. It follows that the
complement of G has a hamiltonian cycle in which the vertices of each Xi

are consecutive on the hamiltonian cycle.

Let C be a cycle. The dth power of C is the graph obtained from C by
adding edges joining every pair of vertices with distance at most d in C.
(The 1st power of C is simply C itself.) It is easy to see that the arguments
used in the proof of Theorem 2.1 give the following more general result.

Theorem 2.2. If χc(G) = k
d+1 , where d≥ 1 and gcd(k,d+1) = 1, then the

complement of G contains the dth power of a hamiltonian cycle.
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A proper k-coloring of G is simply a (k,1)-partition of G, that is, a
partition of V (G) into (V1,V2, . . . ,Vk) such that each Vi is an independent
set, 1≤ i≤k. Another application of (k,d)-partitions is the following easier
proof of a result of Steffen and Zhu [5].

Theorem 2.3. Let χ(G) = t. If there is a nonempty proper subset A of
V (G) such that for any t-coloring c of G, and for any color class F of c,
either F ⊆A or F ∩A=∅, then χc(G)= t.

Proof. If not true, let χc(G)= k
d with d≥2 and gcd(k,d)=1. As before, G

has a (k,d)-partition {X0,X1, . . . ,Xk−1} and for each j, 0≤j≤k−1,

Fj = Xj ∪Xj+1 ∪ . . . ∪Xj+d−1

is an independent set. Let m=�k
d� and set

Fmd = Xmd ∪Xmd+1 ∪ . . . ∪Xk−1.

Then (F0,Fd, . . . ,Fmd) is an (m+1)-coloring of G. Note that m+1=�k
d�= t.

By the given condition, for each i, 0≤ i≤m, either Fid ⊆A or Fid∩A= ∅,
which implies that there is an s such that Fsd ⊆A and F(s+1)d ⊆V (G)\A,
where F(m+1)d =F0. Then (F1,Fd+1, . . . ,Fmd+1) is a t-coloring of G in which
neither Fsd+1⊆A nor Fsd+1∩A=∅, where Fmd+1 =(Fmd \Xmd)∪X0. This
contradiction completes the proof.

For the next two results, and for the use in the next section, we need
some additional notations. Let v be a vertex in a graph G. A neighbor of v
is a vertex that is adjacent to v. Denote by N(v) the set of neighbors of v.
Then d(v)= |N(v)| is the degree of v. If H is a subgraph of G, define

N(H) =
⋃

v∈V (H)

N(v) and d(H) =
∑

v∈V (H)

d(v).

Proposition 2.4. If χc(G) = k
d , where gcd(k,d) = 1, then d(v)≤ |V (G)|−

2d+1 for each v∈V (G).

Proof. Let {X0,X1, . . . ,Xk−1} be a (k,d)-partition of G. For any v∈V (G),
say v∈Xj , let

A = Xj ∪Xj+1 ∪ . . . ∪Xj+d−1 and B = Xj ∪Xj−1 ∪ . . . ∪Xj−d+1.

So A and B are independent sets. Note that A∩B=Xj, we see that v is not
adjacent to any vertex of Xi for each i∈{j+d−1, . . . , j+1, j,j−1, . . . , j−d+1}.
Since Xi 
= ∅ for each i by Proposition 1.4, it follows that v is not adjacent
to at least 2d−1 vertices in G, that is, d(v)≤|V (G)|−2d+1, as required.
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Proposition 2.4 is best possible in the sense that χc(Gd
k)=

k
d , while d(v)=

|V (Gd
k)|−2d+1 for each v∈V (Gd

k). (Proposition 2.4 can also be derived from
Theorem 2.2.) We conclude this section with the following result which has
applications to Mycielski graphs in the next section.

Theorem 2.5. Let G be a graph on n vertices. If there is a set S of three
vertices in G such that N(S)∪S 
=V (G) and d(S)≥3(n−3), then χc(G)=
χ(G).

Proof. Suppose, to the contrary, that χc(G) = k
d <χ(G), where d≥ 2 and

gcd(k,d) = 1. Let {X0,X1, . . . ,Xk−1} be a (k,d)-partition of G. Let x ∈ S,
say x∈Xj for some j. Since d≥2, we have that Xj∪Xj−1 and Xj∪Xj+1 are
independent sets, and hence N(x)⊆ V (G)\ (Xj−1 ∪Xj ∪Xj+1), where the
addition of indices is taken mod k. By Proposition 1.4, Xi 
=∅, 0≤ i≤k−1,
and therefore d(x)≤n−3 with equality only if N(x)=V (G)\(Xj−1∪Xj∪Xj+1)
and |Xj−1|= |Xj |= |Xj+1|=1. Let S={xp,xq,xr}. Then

3(n− 3) ≤ d(S) = d(xp) + d(xq) + d(xr) ≤ 3(n− 3),

which implies that for each i∈{p,q,r}, equality d(xi)=n−3 holds, and thus
N(xi) = V (G) \ (Xi−1 ∪Xi ∪Xi+1) and |Xi−1| = |Xi| = |Xi+1| = 1. Noting
that N(S)=N(xp)∪N(xq)∪N(xr), we have that N(S)∪S=V (G), which is
contrary to the given condition and completes the proof.

3. Mycielski Graphs

Let G be a graph with V (G) = {xi : 1≤ i≤ n}. The Mycielski graph of G,
denoted by M(G), is the graph obtained from G by adding n+1 new vertices
x′

1,x
′
2, . . . ,x

′
n,u, and then, for 1≤ i≤n, joining x′

i to the neighbors of xi and
to u. The vertex x′

i is called the twin of xi (xi is also the twin of x′
i). The

vertex u is called the root of M(G). It is well known that for any nonempty
graph G, χ(M(G))=χ(G)+1. However, there are infinitely many graphs G
for which χc(M(G)) 
=χc(G)+1. For instance, let G be a cycle of length 2m+1.
It is known [6] that χc(G)=2+ 1

m . But, by a result in [3], χc(M(G))=4. Let
Kn denote the complete graph on n vertices. Chang, Huang, and Zhu [3]
proved that if n≥3, then χc(M(Kn))=χc(Kn)+1=χ(M(Kn)). Their proof
is rather involved. We present here a stronger result with an easier proof.

Theorem 3.1. Let G be a graph on n vertices and K the set of vertices of
degree n−1. If |K|≥3, then χc(M(G))=χc(G)+1=χ(M(G)).
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Proof. Let S ⊆ K with |S| = 3. For each v ∈ S, since v has degree n− 1
in G, and by the structure of M(G), v has degree 2(n−1)= |V (M(G)|−3
in M(G). Therefore, in M(G), d(S)=3(|V (M(G)|−3). Clearly, the root of
M(G) is not in N(S)∪S. Applying Theorem 2.5 to M(G), we have that
χc(M(G))=χ(M(G))=χ(G)+1. Since G has vertices of degree n−1, and
by Proposition 2.4, χ(G)=χc(G). This completes the proof.

Theorem 3.2. Let G be a graph on n vertices. If χc(M(G)) = k
d , where

gcd(k,d)=1, then χ(G)<2+ n−1
d .

Proof. Let V (M(G))={x1,x2, . . . ,xn;x′
1,x

′
2, . . . ,x

′
n;u}, where V ={x1,x2, . . . ,

xn} is the vertex-set of G, V ′ = {x′
1,x

′
2, . . . ,x

′
n} is the set of the twins of

vertices of V , and u is the root of M(G). Let (X0,X1, . . . ,Xk−1) be a (k,d)-
partition of M(G). We may assume that u∈X0, and set

A = Xd−1 ∪Xd−2 ∪ . . . ∪X1 ∪X0 ∪Xk−1 ∪ . . . ∪Xk−d+2 ∪Xk−d+1.

We note that A⊆V since u∈X0. Let x∈V \A, and denote its twin by x′, say
x∈Xj (d≤j≤k−d). If x′ /∈Xj , say x′∈X� with % 
=j, we may move x′ to Xj

to obtain a new (k,d)-partition (Y0,Y1, . . . ,Yk−1), where Yi =Xi if i /∈{j,%},
Yj =Xj∪{x′}, and Y�=X�\{x′}. Now, x and x′ lie in the same Yj in the new
(k,d)-partition. By this argument, we may assume that the (k,d)-partition
(X0,X1, . . . ,Xk−1) has been chosen such that for any x∈V \A,

(3.1) {x, x′} ⊆ Xj for some j, d ≤ j ≤ k − d,

and by Proposition 1.4, Xi 
= ∅, 0≤ i≤ k−1. Let A′ = {x′
i : xi ∈A}. Then

for each j, d≤ j≤k−d, Xj contains either a vertex in V \A or a vertex in
A′. Using |A′|= |A|, it follows that

k − 2d + 1 ≤ |V \ A|+ |A′| = |V | = n.

So k ≤ n+2d− 1, and hence χc(M(G)) = k
d ≤ 2+ n−1

d . But, χc(M(G)) >

χ(M(G))−1=χ(G), and therefore, χ(G)<2+ n−1
d , as required.

Corollary 3.3. Let G be a graph on n vertices. If χ(G) ≥ n+3
2 , then

χc(M(G))=χ(M(G)).

Proof. If χc(M(G)) < χ(M(G)), let χc(M(G)) = k
d , where d ≥ 2 and

gcd(k,d)=1. By Theorem 3.2, χ(G)<2+ n−1
d ≤ n+3

2 , a contradiction.

If n≥ 3, then χ(Kn) = n≥ n+3
2 so that Theorem 3.2 and Corollary 3.3

provide another route to the result of Chang, Huang, and Zhu [3] that if
n≥3, then χc(M(Kn))=χ(M(Kn)). Let ω(G) denote the clique number of
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G (the number of vertices in a maximum complete subgraph). It is known
that χ(G)≥ω(G). Thus, another easy consequence of Corollary 3.3 is that
if ω(G)≥ |V (G)|+3

2 , then χc(M(G))=χ(M(G)).

Theorem 3.4. Let G be a graph on n vertices. If G contains a K5 such
that N(K5) 
= V (G) and each vertex of K5 has degree at least n−3 in G,
then χc(M(G))=χ(M(G)).

Proof. Suppose, to the contrary, that χc(M(G)) < χ(M(G)). Then
χc(M(G)) = k

d , where d ≥ 2 and gcd(k,d) = 1. As before, let V (M(G)) =
{x1,x2, . . . ,xn;x′

1,x
′
2, . . . ,x

′
n;u}, where V = {x1,x2, . . . ,xn} is the vertex-set

of G, V ′ = {x′
1,x

′
2, . . . ,x

′
n} is the set of the twins of vertices of V , and

u is the root of M(G). For x ∈ V ∪ V ′, denote by x′ the twin of x; for
X⊆V ∪V ′, X ′={x′ : x∈X}. As seen in (3.1), M(G) has a (k,d)-partition
(X0,X1, . . . ,Xk−1) such that, with u∈X0 and

A = Xd−1 ∪ . . . ∪X1 ∪X0 ∪Xk−1 ∪ . . . ∪Xk−d+1,

for any x∈V \A,

(3.2) {x, x′} ⊆ Xj for some j, d ≤ j ≤ k − d,

and Xi 
= ∅, 0 ≤ i ≤ k− 1. Since each pair of the five vertices of the K5 is
adjacent, we may let {xp,xq,xr,xs,xt} be the five vertices of the K5 such
that xi ∈Xi, i∈ {p,q,r,s, t}, and 0≤ p< q < r < s< t≤ k−1. By the given
condition that N(K5) 
=V (G), there is

z ∈ V \


 ⋃

i∈{p,q,r,s,t}
N(xi)


 ,

and hence d(xi)≤n−2 in G for each i∈{p,q,r,s, t}.
Claim. For any i∈{p,q,r,s, t}, if d+1≤ i≤k−d−1, then d(xi)=n−3 in
G, Xi={xi,x

′
i}, z′∈Xi−1∪Xi+1, and |Xi−1∩V ′|= |Xi+1∩V ′|=1.

Proof. Since d+1≤ i≤k−d−1, we have that (Xi−1∪Xi+1)∩A=∅, and thus
by (3.2), no vertex of Xi−1 can be the twin of a vertex of Xi+1. If we let

R = Xi−1 ∪Xi+1 ∪X ′
i−1 ∪X ′

i+1,

then |R∩V | ≥ 2. We note that xi ∈ V , and in M(G), xi is not adjacent to
any vertex of Xi−1∪Xi+1 and thus not to any vertex of R. Moreover, xi is
not adjacent to any vertex of Xi∪X ′

i. It follows that d(xi)≤n−3 in G with
equality only if z ∈R, Xi =X ′

i = {xi,x
′
i}, and |Xi−1 ∩V ′|= |Xi+1 ∩V ′|=1.

By the given condition, equality d(xi) = n− 3 holds and therefore z ∈ R,
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Xi = {xi,x
′
i}, and |Xi−1∩V ′|= |Xi+1∩V ′|=1. By (3.2), z∈R implies that

z′∈Xi−1∪Xi+1. This proves the claim.

Since each pair of the five vertices is adjacent, we have that

d ≤ p + d ≤ q, q + d ≤ r, r + d ≤ s, and s ≤ t− d ≤ k − d− 1.

By the claim, for each i ∈ {r,s}, d(xi) = n− 3 in G, Xi = {xi,x
′
i}, z′ ∈

Xi−1∪Xi+1, and |Xi−1∩V ′|= |Xi+1∩V ′|=1. This means that Xr ={xr,x
′
r},

Xs ={xs,x
′
s}, s=r+2, and Xr+1∩V ′={z′}. If q≥d+1, then by the claim

we have that z′ ∈Xq−1 ∪Xq+1, which is impossible. Therefore, q = d, and
thus p=0, that is, xp∈X0. So xp is not adjacent to any vertex of X1∪Xk−1.
Since the root u∈X0 and u is adjacent to every vertex of V ′, we have that
X1∩V 
=∅ and Xk−1∩V 
=∅. On the other hand, it is given that d(xp)≥n−3
in G. Therefore, d(xp)=n−3 and either X1 = {z} or Xk−1 = {z}. Without
loss of generality, suppose that X1 = {z}. We note that s = r +2 implies
d= 2, and since Xr = {xr,x

′
r} and Xs = {xs,x

′
s}, we may move z to Xr+1

(note that Xr+1∩V ′={z′}) to obtain a new (k,d)-partition (Y0,Y1, . . . ,Yk−1)
with Yi =Xi if i /∈{1,r+1}, Yr+1 =Xr+1∪{z}, and Y1 =X1 \{z}=∅, which
contradicts Proposition 1.4 and proves Theorem 3.4.

Recursively define Mm(G)=M(Mm−1(G)). It was conjectured [3,8] that
If m≤n−2, then χc(Mm(Kn))=χ(Mm(Kn)). By Theorem 3.4, we conclude:

Corollary 3.5. Let G be a graph on n vertices and K the set of vertices of
degree n−1. If |K|≥5, then χc(M2(G))=χ(M2(G)).

Proof. Let H = M(G). Then H is a graph on 2n+ 1 vertices, any five
vertices of K induces a K5 in H such that each vertex of the K5 has degree
2(n−1)= |V (H)|−3 in H. Since the root of M(G) (=H) is not in N(K5),
applying Theorem 3.4 to H, we have that χc(M(H)) = χ(M(H)), that is,
χc(M2(G))=χ(M2(G)), as required.

An immediate consequence of Corollary 3.5 is that if n ≥ 5, then
χc(M2(Kn)) = χ(M2(Kn)), which is slightly weaker than the result of
Chang, Huang, and Zhu [3] that if n≥ 4, then χc(M2(Kn)) = χ(M2(Kn)).
However, as pointed out by a referee, the case of n = 4 can be handled
by using Theorem 3.2 to exclude certain pairs of (k,d) values and show
χc(M2(K4))=6. In fact, by more involved arguments, we are able to weaken
the condition of Theorem 3.4 by only requiring that G has a K4 with the
described property, which would include the case of n=4.
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