$Bolyai\ Society-Springer-Verlag$

CIRCULAR CHROMATIC NUMBER AND MYCIELSKI GRAPHS

GENGHUA FAN*

Received December 22, 2000

As a natural generalization of graph coloring, Vince introduced the star chromatic number of a graph G and denoted it by $\chi^*(G)$. Later, Zhu called it circular chromatic number and denoted it by $\chi_c(G)$. Let $\chi(G)$ be the chromatic number of G. In this paper, it is shown that if the complement of G is non-hamiltonian, then $\chi_c(G) = \chi(G)$. Denote by M(G) the Mycielski graph of G. Recursively define $M^m(G) = M(M^{m-1}(G))$. It was conjectured that if $m \leq n-2$, then $\chi_c(M^m(K_n)) = \chi(M^m(K_n))$. Suppose that G is a graph on n vertices. We prove that if $\chi(G) \geq \frac{n+3}{2}$, then $\chi_c(M(G)) = \chi(M(G))$. Let S be the set of vertices of degree n-1 in G. It is proved that if $|S| \geq 3$, then $\chi_c(M(G)) = \chi(M(G))$, and if $|S| \geq 5$, then $\chi_c(M^2(G)) = \chi(M^2(G))$, which implies the known results of Chang, Huang, and Zhu that if $n \geq 3$, $\chi_c(M(K_n)) = \chi(M(K_n))$, and if $n \geq 5$, then $\chi_c(M^2(K_n)) = \chi(M^2(K_n))$.

1. Introduction

All graphs considered are finite and simple. Let k and d be positive integers such that $k \ge 2d$. A (k,d)-coloring of a graph G with vertex-set V(G) and edge-set E(G) is a mapping $c: V(G) \to \{0,1,\ldots,k-1\}$ such that for each edge $xy \in E(G)$, $d \le |c(x) - c(y)| \le k - d$. A (k, 1)-coloring of G is simply a proper k-coloring of G. As a natural generalization of the chromatic number, Vince [6] introduced the star chromatic number of a graph G, which is defined to be the infimum of the ratio k/d for which G has a (k,d)-coloring. It was shown [6] that the infimum can be replaced by minimum. Zhu [7] equivalently

Mathematics Subject Classification (2000): 05C15

^{*} Research supported by Grants from National Science Foundation of China and Chinese Academy of Sciences.

GENGHUA FAN

considered a (k,d)-coloring of G as a mapping c from V(G) to open arcs of unit length in a circle of length k/d such that for each edge $xy \in E(G)$, $c(x) \cap c(y) = \emptyset$. Instead of "star chromatic number", Zhu used "circular chromatic number" and denoted it by $\chi_c(G)$ (see [8]). In this paper, we use Zhu's notations, but for the definition of circular chromatic number, we still use the one given by Vince [6] (or see Bondy and Hell [2]).

Definition 1.1. Let G be a graph on n vertices. The *circular chromatic* number of G is defined as $\chi_c(G) = \inf\{\frac{k}{d}: G \text{ has a } (k,d)\text{-coloring}\}.$

Let G_k^d denote the graph whose vertex-set is $\{0, 1, 2, \ldots, k-1\}$ and whose edge-set is $\{ij: d \leq |i-j| \leq k-d\}$. Vince [6] showed that $\chi_c(G_k^d) = \frac{k}{d}$. (An easier proof was given by Bondy and Hell [2].) For two graphs G and H, a homomorphism from G to H is a mapping $f: V(G) \to V(H)$ such that $f(x)f(y) \in E(H)$ whenever $xy \in E(G)$. It is easy to show (see [2]) that Ghas a (k,d)-coloring if and only if there is a homomorphism from G to G_k^d . The following proposition was obtained by Zhu [7]. Here we provide an easy derivation from a result of Bondy and Hell [2].

Proposition 1.2. Let f be a homomorphism from G to G_k^d , where gcd(k,d) = 1. If f is not surjective, then $\chi_c(G) < \frac{k}{d}$.

Proof. Since f is not surjective, it is a homomorphism from G to a subgraph $H = G_k^d - v$ for some vertex $v \in V(G_k^d)$. Note that $V(H) \subseteq V(G_k^d) = \{0, 1, \ldots, k-1\}$. Define c(i) = i for each vertex $i \in V(H)$. Then c is a (k, d)-coloring of H. Since $|V(H)| < |V(G_k^d)| = k$, by [2, Proposition 2], H has a (t, s)-coloring with $\frac{t}{s} < \frac{k}{d}$. Let g be a homomorphism from H to G_t^s . The composition of f and g is a homomorphism from G to G_t^s , which implies $\chi_c(G) \le \frac{t}{s} < \frac{k}{d}$, as required.

In this paper we consider a (k,d)-coloring of a graph G as a partition of V(G). A (k,d)-partition of G is a partition $(X_0, X_1, \ldots, X_{k-1})$ of V(G) such that for each $j, 0 \le j \le k-1$,

$$X_j \cup X_{j+1} \cup \ldots \cup X_{j+d-1}$$

is an independent set in G, where the addition of indices is taken mod k. (Here it is allowed that $X_i = \emptyset$.) It is easy to see that a (k, d)-partition of G is simply the color classes of a (k, d)-coloring of G. Thus we have the following easy observation.

Observation 1.3. A graph G has a (k,d)-coloring if and only if it has a (k,d)-partition.

Proposition 1.4. Let $(X_0, X_1, \ldots, X_{k-1})$ be a (k, d)-partition of G, where gcd(k, d) = 1. If $X_t = \emptyset$ for some t, then $\chi_c(G) < \frac{k}{d}$.

Proof. Let $V(G_k^d) = \{0, 1, \dots, k-1\}$. Define a homomorphism f from G to G_k^d by f(v) = i if $v \in X_i$. Since $X_t = \emptyset$, we have that $f^{-1}(t) = \emptyset$, and hence f is not surjective. By Proposition 1.2, $\chi_c(G) < \frac{k}{d}$, as required.

2. Sufficient Conditions for Graphs G with $\chi_c(G) = \chi(G)$

As usual, let $\chi(G)$ denote the chromatic number of a graph G. It is shown by Vince [6] that

$$\chi(G) - 1 < \chi_c(G) \le \chi(G).$$

What determines whether $\chi_c(G) = \chi(G)$? This problem was raised by Vince [6] and has been investigated extensively. Abbott and Zhou [1] proved that if the complement of G is disconnected, then $\chi_c(G) = \chi(G)$. A special case of this result is that if G has a vertex of degree |V(G)| - 1, then $\chi_c(G) = \chi(G)$, a result which was previously proved by Zhu [7] and by Guichard [4]. In this section we show that if the complement of G is non-hamiltonian, then $\chi_c(G) = \chi(G)$. Since a necessary condition for a graph to be hamiltonian is to be 2-connected, an immediate consequence of our result is that if the complement of G is not 2-connected, then $\chi_c(G) = \chi(G)$. This improves the earlier results mentioned above.

Theorem 2.1. If $\chi_c(G) < \chi(G)$, then the complement of G is hamiltonian.

Proof. Let $\chi_c(G) = \frac{k}{d}$, where $d \ge 2$ since $\chi_c(G) < \chi(G)$. By [2, Corollary 1], we may assume that gcd(k,d) = 1. By Observation 1.3, G has a (k,d)-partition $\{X_0, X_1, \ldots, X_{k-1}\}$, and by Proposition 1.4, $X_i \ne \emptyset$, $0 \le i \le k-1$. Since $d \ge 2$, $X_i \cup X_{i+1}$ is an independent set in G, $0 \le i \le k-1$, where $X_k = X_0$. Thus, in the complement of G, X_i induces a complete subgraph and each vertex of X_i is adjacent to every vertex of X_{i+1} , $0 \le i \le k-1$. It follows that the complement of G has a hamiltonian cycle in which the vertices of each X_i are consecutive on the hamiltonian cycle.

Let C be a cycle. The *dth power* of C is the graph obtained from C by adding edges joining every pair of vertices with distance at most d in C. (The 1st power of C is simply C itself.) It is easy to see that the arguments used in the proof of Theorem 2.1 give the following more general result.

Theorem 2.2. If $\chi_c(G) = \frac{k}{d+1}$, where $d \ge 1$ and gcd(k, d+1) = 1, then the complement of G contains the dth power of a hamiltonian cycle.

129

A proper k-coloring of G is simply a (k, 1)-partition of G, that is, a partition of V(G) into (V_1, V_2, \ldots, V_k) such that each V_i is an independent set, $1 \le i \le k$. Another application of (k, d)-partitions is the following easier proof of a result of Steffen and Zhu [5].

Theorem 2.3. Let $\chi(G) = t$. If there is a nonempty proper subset A of V(G) such that for any t-coloring c of G, and for any color class F of c, either $F \subseteq A$ or $F \cap A = \emptyset$, then $\chi_c(G) = t$.

Proof. If not true, let $\chi_c(G) = \frac{k}{d}$ with $d \ge 2$ and gcd(k,d) = 1. As before, G has a (k,d)-partition $\{X_0, X_1, \ldots, X_{k-1}\}$ and for each $j, 0 \le j \le k-1$,

$$F_j = X_j \cup X_{j+1} \cup \ldots \cup X_{j+d-1}$$

is an independent set. Let $m = \lfloor \frac{k}{d} \rfloor$ and set

$$F_{md} = X_{md} \cup X_{md+1} \cup \ldots \cup X_{k-1}.$$

Then $(F_0, F_d, \ldots, F_{md})$ is an (m+1)-coloring of G. Note that $m+1 = \lceil \frac{k}{d} \rceil = t$. By the given condition, for each $i, 0 \leq i \leq m$, either $F_{id} \subseteq A$ or $F_{id} \cap A = \emptyset$, which implies that there is an s such that $F_{sd} \subseteq A$ and $F_{(s+1)d} \subseteq V(G) \setminus A$, where $F_{(m+1)d} = F_0$. Then $(F_1, F_{d+1}, \ldots, F_{md+1})$ is a t-coloring of G in which neither $F_{sd+1} \subseteq A$ nor $F_{sd+1} \cap A = \emptyset$, where $F_{md+1} = (F_{md} \setminus X_{md}) \cup X_0$. This contradiction completes the proof.

For the next two results, and for the use in the next section, we need some additional notations. Let v be a vertex in a graph G. A *neighbor* of vis a vertex that is adjacent to v. Denote by N(v) the set of neighbors of v. Then d(v) = |N(v)| is the *degree* of v. If H is a subgraph of G, define

$$N(H) = \bigcup_{v \in V(H)} N(v) \quad \text{and} \quad d(H) = \sum_{v \in V(H)} d(v).$$

Proposition 2.4. If $\chi_c(G) = \frac{k}{d}$, where gcd(k,d) = 1, then $d(v) \leq |V(G)| - 2d + 1$ for each $v \in V(G)$.

Proof. Let $\{X_0, X_1, \ldots, X_{k-1}\}$ be a (k, d)-partition of G. For any $v \in V(G)$, say $v \in X_j$, let

$$A = X_j \cup X_{j+1} \cup \ldots \cup X_{j+d-1}$$
 and $B = X_j \cup X_{j-1} \cup \ldots \cup X_{j-d+1}$.

So A and B are independent sets. Note that $A \cap B = X_j$, we see that v is not adjacent to any vertex of X_i for each $i \in \{j+d-1,\ldots,j+1,j,j-1,\ldots,j-d+1\}$. Since $X_i \neq \emptyset$ for each i by Proposition 1.4, it follows that v is not adjacent to at least 2d-1 vertices in G, that is, $d(v) \leq |V(G)| - 2d + 1$, as required. Proposition 2.4 is best possible in the sense that $\chi_c(G_k^d) = \frac{k}{d}$, while $d(v) = |V(G_k^d)| - 2d + 1$ for each $v \in V(G_k^d)$. (Proposition 2.4 can also be derived from Theorem 2.2.) We conclude this section with the following result which has applications to Mycielski graphs in the next section.

Theorem 2.5. Let G be a graph on n vertices. If there is a set S of three vertices in G such that $N(S) \cup S \neq V(G)$ and $d(S) \geq 3(n-3)$, then $\chi_c(G) = \chi(G)$.

Proof. Suppose, to the contrary, that $\chi_c(G) = \frac{k}{d} < \chi(G)$, where $d \ge 2$ and $\gcd(k,d) = 1$. Let $\{X_0, X_1, \ldots, X_{k-1}\}$ be a (k,d)-partition of G. Let $x \in S$, say $x \in X_j$ for some j. Since $d \ge 2$, we have that $X_j \cup X_{j-1}$ and $X_j \cup X_{j+1}$ are independent sets, and hence $N(x) \subseteq V(G) \setminus (X_{j-1} \cup X_j \cup X_{j+1})$, where the addition of indices is taken mod k. By Proposition 1.4, $X_i \ne \emptyset$, $0 \le i \le k-1$, and therefore $d(x) \le n-3$ with equality only if $N(x) = V(G) \setminus (X_{j-1} \cup X_j \cup X_{j+1})$ and $|X_{j-1}| = |X_j| = |X_{j+1}| = 1$. Let $S = \{x_p, x_q, x_r\}$. Then

$$3(n-3) \le d(S) = d(x_p) + d(x_q) + d(x_r) \le 3(n-3),$$

which implies that for each $i \in \{p, q, r\}$, equality $d(x_i) = n-3$ holds, and thus $N(x_i) = V(G) \setminus (X_{i-1} \cup X_i \cup X_{i+1})$ and $|X_{i-1}| = |X_i| = |X_{i+1}| = 1$. Noting that $N(S) = N(x_p) \cup N(x_q) \cup N(x_r)$, we have that $N(S) \cup S = V(G)$, which is contrary to the given condition and completes the proof.

3. Mycielski Graphs

Let G be a graph with $V(G) = \{x_i : 1 \le i \le n\}$. The Mycielski graph of G, denoted by M(G), is the graph obtained from G by adding n+1 new vertices $x'_1, x'_2, \ldots, x'_n, u$, and then, for $1 \le i \le n$, joining x'_i to the neighbors of x_i and to u. The vertex x'_i is called the twin of x_i (x_i is also the twin of x'_i). The vertex u is called the root of M(G). It is well known that for any nonempty graph G, $\chi(M(G)) = \chi(G) + 1$. However, there are infinitely many graphs G for which $\chi_c(M(G)) \ne \chi_c(G) + 1$. For instance, let G be a cycle of length 2m+1. It is known [6] that $\chi_c(G) = 2 + \frac{1}{m}$. But, by a result in [3], $\chi_c(M(G)) = 4$. Let K_n denote the complete graph on n vertices. Chang, Huang, and Zhu [3] proved that if $n \ge 3$, then $\chi_c(M(K_n)) = \chi_c(K_n) + 1 = \chi(M(K_n))$. Their proof is rather involved. We present here a stronger result with an easier proof.

Theorem 3.1. Let G be a graph on n vertices and K the set of vertices of degree n-1. If $|K| \ge 3$, then $\chi_c(M(G)) = \chi_c(G) + 1 = \chi(M(G))$.

Proof. Let $S \subseteq K$ with |S| = 3. For each $v \in S$, since v has degree n-1 in G, and by the structure of M(G), v has degree 2(n-1) = |V(M(G)| - 3) in M(G). Therefore, in M(G), d(S) = 3(|V(M(G)| - 3). Clearly, the root of M(G) is not in $N(S) \cup S$. Applying Theorem 2.5 to M(G), we have that $\chi_c(M(G)) = \chi(M(G)) = \chi(G) + 1$. Since G has vertices of degree n-1, and by Proposition 2.4, $\chi(G) = \chi_c(G)$. This completes the proof.

Theorem 3.2. Let G be a graph on n vertices. If $\chi_c(M(G)) = \frac{k}{d}$, where gcd(k,d) = 1, then $\chi(G) < 2 + \frac{n-1}{d}$.

Proof. Let $V(M(G)) = \{x_1, x_2, \ldots, x_n; x'_1, x'_2, \ldots, x'_n; u\}$, where $V = \{x_1, x_2, \ldots, x_n\}$ is the vertex-set of $G, V' = \{x'_1, x'_2, \ldots, x'_n\}$ is the set of the twins of vertices of V, and u is the root of M(G). Let $(X_0, X_1, \ldots, X_{k-1})$ be a (k, d)-partition of M(G). We may assume that $u \in X_0$, and set

$$A = X_{d-1} \cup X_{d-2} \cup \ldots \cup X_1 \cup X_0 \cup X_{k-1} \cup \ldots \cup X_{k-d+2} \cup X_{k-d+1}.$$

We note that $A \subseteq V$ since $u \in X_0$. Let $x \in V \setminus A$, and denote its twin by x', say $x \in X_j$ $(d \leq j \leq k-d)$. If $x' \notin X_j$, say $x' \in X_\ell$ with $\ell \neq j$, we may move x' to X_j to obtain a new (k,d)-partition $(Y_0, Y_1, \ldots, Y_{k-1})$, where $Y_i = X_i$ if $i \notin \{j, \ell\}$, $Y_j = X_j \cup \{x'\}$, and $Y_\ell = X_\ell \setminus \{x'\}$. Now, x and x' lie in the same Y_j in the new (k,d)-partition. By this argument, we may assume that the (k,d)-partition $(X_0, X_1, \ldots, X_{k-1})$ has been chosen such that for any $x \in V \setminus A$,

(3.1)
$$\{x, x'\} \subseteq X_j \text{ for some } j, \ d \le j \le k - d,$$

and by Proposition 1.4, $X_i \neq \emptyset$, $0 \le i \le k-1$. Let $A' = \{x'_i : x_i \in A\}$. Then for each $j, d \le j \le k-d, X_j$ contains either a vertex in $V \setminus A$ or a vertex in A'. Using |A'| = |A|, it follows that

$$k - 2d + 1 \le |V \setminus A| + |A'| = |V| = n.$$

So $k \leq n+2d-1$, and hence $\chi_c(M(G)) = \frac{k}{d} \leq 2 + \frac{n-1}{d}$. But, $\chi_c(M(G)) > \chi(M(G)) - 1 = \chi(G)$, and therefore, $\chi(G) < 2 + \frac{n-1}{d}$, as required.

Corollary 3.3. Let G be a graph on n vertices. If $\chi(G) \geq \frac{n+3}{2}$, then $\chi_c(M(G)) = \chi(M(G))$.

Proof. If $\chi_c(M(G)) < \chi(M(G))$, let $\chi_c(M(G)) = \frac{k}{d}$, where $d \ge 2$ and $\gcd(k,d)=1$. By Theorem 3.2, $\chi(G) < 2 + \frac{n-1}{d} \le \frac{n+3}{2}$, a contradiction.

If $n \ge 3$, then $\chi(K_n) = n \ge \frac{n+3}{2}$ so that Theorem 3.2 and Corollary 3.3 provide another route to the result of Chang, Huang, and Zhu [3] that if $n \ge 3$, then $\chi_c(M(K_n)) = \chi(M(K_n))$. Let $\omega(G)$ denote the *clique number* of

G (the number of vertices in a maximum complete subgraph). It is known that $\chi(G) \ge \omega(G)$. Thus, another easy consequence of Corollary 3.3 is that if $\omega(G) \ge \frac{|V(G)|+3}{2}$, then $\chi_c(M(G)) = \chi(M(G))$.

Theorem 3.4. Let G be a graph on n vertices. If G contains a K_5 such that $N(K_5) \neq V(G)$ and each vertex of K_5 has degree at least n-3 in G, then $\chi_c(M(G)) = \chi(M(G))$.

Proof. Suppose, to the contrary, that $\chi_c(M(G)) < \chi(M(G))$. Then $\chi_c(M(G)) = \frac{k}{d}$, where $d \ge 2$ and gcd(k,d) = 1. As before, let $V(M(G)) = \{x_1, x_2, \ldots, x_n; x'_1, x'_2, \ldots, x'_n; u\}$, where $V = \{x_1, x_2, \ldots, x_n\}$ is the vertex-set of $G, V' = \{x'_1, x'_2, \ldots, x'_n\}$ is the set of the twins of vertices of V, and u is the root of M(G). For $x \in V \cup V'$, denote by x' the twin of x; for $X \subseteq V \cup V', X' = \{x': x \in X\}$. As seen in (3.1), M(G) has a (k,d)-partition $(X_0, X_1, \ldots, X_{k-1})$ such that, with $u \in X_0$ and

$$A = X_{d-1} \cup \ldots \cup X_1 \cup X_0 \cup X_{k-1} \cup \ldots \cup X_{k-d+1},$$

for any $x \in V \setminus A$,

(3.2)
$$\{x, x'\} \subseteq X_j \text{ for some } j, \ d \le j \le k - d$$

and $X_i \neq \emptyset$, $0 \leq i \leq k-1$. Since each pair of the five vertices of the K_5 is adjacent, we may let $\{x_p, x_q, x_r, x_s, x_t\}$ be the five vertices of the K_5 such that $x_i \in X_i, i \in \{p, q, r, s, t\}$, and $0 \leq p < q < r < s < t \leq k-1$. By the given condition that $N(K_5) \neq V(G)$, there is

$$z \in V \setminus \left(\bigcup_{i \in \{p,q,r,s,t\}} N(x_i) \right),$$

and hence $d(x_i) \leq n-2$ in G for each $i \in \{p, q, r, s, t\}$.

Claim. For any $i \in \{p, q, r, s, t\}$, if $d + 1 \le i \le k - d - 1$, then $d(x_i) = n - 3$ in $G, X_i = \{x_i, x'_i\}, z' \in X_{i-1} \cup X_{i+1}, and |X_{i-1} \cap V'| = |X_{i+1} \cap V'| = 1.$

Proof. Since $d+1 \le i \le k-d-1$, we have that $(X_{i-1} \cup X_{i+1}) \cap A = \emptyset$, and thus by (3.2), no vertex of X_{i-1} can be the twin of a vertex of X_{i+1} . If we let

$$R = X_{i-1} \cup X_{i+1} \cup X'_{i-1} \cup X'_{i+1},$$

then $|R \cap V| \ge 2$. We note that $x_i \in V$, and in M(G), x_i is not adjacent to any vertex of $X_{i-1} \cup X_{i+1}$ and thus not to any vertex of R. Moreover, x_i is not adjacent to any vertex of $X_i \cup X'_i$. It follows that $d(x_i) \le n-3$ in G with equality only if $z \in R$, $X_i = X'_i = \{x_i, x'_i\}$, and $|X_{i-1} \cap V'| = |X_{i+1} \cap V'| = 1$. By the given condition, equality $d(x_i) = n-3$ holds and therefore $z \in R$, $X_i = \{x_i, x'_i\}$, and $|X_{i-1} \cap V'| = |X_{i+1} \cap V'| = 1$. By (3.2), $z \in R$ implies that $z' \in X_{i-1} \cup X_{i+1}$. This proves the claim.

Since each pair of the five vertices is adjacent, we have that

$$d \le p + d \le q$$
, $q + d \le r$, $r + d \le s$, and $s \le t - d \le k - d - 1$.

By the claim, for each $i \in \{r, s\}$, $d(x_i) = n - 3$ in G, $X_i = \{x_i, x'_i\}$, $z' \in X_{i-1} \cup X_{i+1}$, and $|X_{i-1} \cap V'| = |X_{i+1} \cap V'| = 1$. This means that $X_r = \{x_r, x'_r\}$, $X_s = \{x_s, x'_s\}$, s = r+2, and $X_{r+1} \cap V' = \{z'\}$. If $q \ge d+1$, then by the claim we have that $z' \in X_{q-1} \cup X_{q+1}$, which is impossible. Therefore, q = d, and thus p = 0, that is, $x_p \in X_0$. So x_p is not adjacent to any vertex of $X_1 \cup X_{k-1}$. Since the root $u \in X_0$ and u is adjacent to every vertex of V', we have that $X_1 \cap V \ne \emptyset$ and $X_{k-1} \cap V \ne \emptyset$. On the other hand, it is given that $d(x_p) \ge n-3$ in G. Therefore, $d(x_p) = n - 3$ and either $X_1 = \{z\}$ or $X_{k-1} = \{z\}$. Without loss of generality, suppose that $X_1 = \{z\}$. We note that s = r+2 implies d = 2, and since $X_r = \{x_r, x'_r\}$ and $X_s = \{x_s, x'_s\}$, we may move z to X_{r+1} (note that $X_{r+1} \cap V' = \{z'\}$) to obtain a new (k,d)-partition $(Y_0, Y_1, \ldots, Y_{k-1})$ with $Y_i = X_i$ if $i \notin \{1, r+1\}$, $Y_{r+1} = X_{r+1} \cup \{z\}$, and $Y_1 = X_1 \setminus \{z\} = \emptyset$, which contradicts Proposition 1.4 and proves Theorem 3.4.

Recursively define $M^m(G) = M(M^{m-1}(G))$. It was conjectured [3,8] that If $m \le n-2$, then $\chi_c(M^m(K_n)) = \chi(M^m(K_n))$. By Theorem 3.4, we conclude:

Corollary 3.5. Let G be a graph on n vertices and K the set of vertices of degree n-1. If $|K| \ge 5$, then $\chi_c(M^2(G)) = \chi(M^2(G))$.

Proof. Let H = M(G). Then H is a graph on 2n + 1 vertices, any five vertices of K induces a K_5 in H such that each vertex of the K_5 has degree 2(n-1) = |V(H)| - 3 in H. Since the root of M(G) (=H) is not in $N(K_5)$, applying Theorem 3.4 to H, we have that $\chi_c(M(H)) = \chi(M(H))$, that is, $\chi_c(M^2(G)) = \chi(M^2(G))$, as required.

An immediate consequence of Corollary 3.5 is that if $n \geq 5$, then $\chi_c(M^2(K_n)) = \chi(M^2(K_n))$, which is slightly weaker than the result of Chang, Huang, and Zhu [3] that if $n \geq 4$, then $\chi_c(M^2(K_n)) = \chi(M^2(K_n))$. However, as pointed out by a referee, the case of n = 4 can be handled by using Theorem 3.2 to exclude certain pairs of (k,d) values and show $\chi_c(M^2(K_4)) = 6$. In fact, by more involved arguments, we are able to weaken the condition of Theorem 3.4 by only requiring that G has a K_4 with the described property, which would include the case of n = 4.

135

References

- H. L. ABBOTT and B. ZHOU: The star chromatic number of a graph, J. Graph Theory 17 (1993), 349–360.
- [2] J. A. BONDY and PAVOL HELL: A note on the star chromatic number, J. Graph Theory 14 (1990), 479–482.
- [3] GERARD J. CHANG, LINGLING HUANG and XUDING ZHU: Circular chromatic numbers of Mycielski's graphs, *Discrete Mathematics* **205** (1999), 23–37.
- [4] DAVID R. GUICHARD: Acyclic graph coloring and the complexity of the star chromatic number, J. Graph Theory 17 (1993), 129–134.
- [5] ECKHARD STEFFEN and XUDING ZHU: Star chromatic numbers of graphs, Combinatorica 16 (1996), 439–448.
- [6] A. VINCE: Star chromatic number, J. Graph Theory 12 (1988), 551–559.
- [7] XUDING ZHU: Star chromatic number and products of graphs, J. Graph Theory 16 (1992), 557–569.
- [8] XUDING ZHU: Circular chromatic number: a survey, manuscript, 1999.

Genghua Fan

Center for Discrete Mathematics Fuzhou University Fuzhou, Fujian 350002 China fan@fzu.edu.cn