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Abstract

A graph G packs if for every induced subgraph H of G; the maximum number of vertex-

disjoint cycles in H is equal to the minimum number of vertices whose deletion from H results

in a forest. The purpose of this paper is to characterize all graphs that pack.

r 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

This is a follow-up of a paper by Ding and Zang [3]. Like before, all graphs
considered are finite, simple, and undirected. We first present the main result of [3].
Let G ¼ ðV ;EÞ be a graph with a nonnegative integral weight wðvÞ on each vAV :

A collection C of cycles (repetition is allowed) of G is called a cycle w-packing if each
vertex v of G is used at most wðvÞ times by members of C; a set X of vertices in G is
called a feedback set if G\X is a forest. Let nwðGÞ denote the maximum size of a cycle
w-packing and let twðGÞ denote the minimum total weight of a feedback set. It is well
known, and it is also easy to see, that nwðGÞptwðGÞ; while the equality does not have
to hold in general. If G is a graph for which the equality nwðGÞ ¼ twðGÞ holds for all
nonnegative integral w; then G is called cycle Mengerian (CM). The main result of [3]
is a characterization of CM graphs in terms of forbidden structures, which we define
now. A wheel is a graph obtained from a cycle by adding a new vertex and making it
adjacent to all vertices of the cycle. An odd ring is a graph obtained from an odd
cycle, called the base cycle, by replacing each edge e ¼ uv with either a triangle

*Corresponding author.

E-mail address: gding1@lsu.edu (G. Ding).
1Research partially supported by NSF Grant DMS-9970329.
2Supported by the Research Grants Council of Hong Kong (Project No. HKU 7109/01P).

0095-8956/03/$ - see front matter r 2002 Elsevier Science (USA). All rights reserved.

PII: S 0 0 9 5 - 8 9 5 6 ( 0 2 ) 0 0 0 0 7 - 2



containing e or two triangles uab, vcd together with two additional edges ac and bd

(see Fig. 1).
The following is the main theorem of [3].
(1.1) A graph is CM if and only if none of its induced subgraphs is isomorphic to a

subdivision of K2;3; a wheel, or an odd ring.

The present paper is concerned with graphs enjoying a similar min–max property.
Let G be a graph. We will call a collection of vertex-disjoint cycles of G a cycle

packing (instead of cycle 1-packing) of G: Then, let nðGÞ denote the maximum size of
a cycle packing in G and let tðGÞ denote the minimum size of a feedback set in G:We
say that G packs if nðHÞ ¼ tðHÞ for all induced subgraphs H of G: It is easy to see
that G packs if and only if the equality nwðGÞ ¼ twðGÞ holds for all f0; 1g-valued w:
Intuitively speaking, CM graphs are graphs that hold the desired min–max relation
in the weighted case, while graphs that pack are the counterparts of CM graphs in the
unweighted case.
The purpose of this paper is to prove a theorem similar to (1.1) that characterizes

all graphs that pack. First, it is worth pointing out that when proving G;
a subdivision of a wheel or an odd ring, is not CM, it was actually proved (cf. [3,
Proof of Lemma 4.2]) that nwðGÞotwðGÞ; for w � 1: Therefore, subdivisions
of wheels and odd rings do not pack and thus should be excluded, as
induced subgraphs. In addition, it is not difficult to see that, if G is a subdivision
of K3;3; then nðGÞ ¼ 1o2 ¼ tðGÞ: It follows that subdivisions of K3;3 do not pack

and thus should also be excluded. The next, our main result of this paper, states that
these are the only graphs we need to exclude in order to characterize graphs that
pack.

Theorem 1. A graph packs if and only if none of its induced subgraphs is isomorphic to

a subdivision of K3;3; a wheel, or an odd ring.

Fig. 1. An odd ring with base cycle C7:

G. Ding et al. / Journal of Combinatorial Theory, Series B 87 (2003) 244–253 245



The rest of this paper is a proof of Theorem 1, using (1.1). Our proof is
constructive and it yields a polynomial-time algorithm for finding, in graphs that
pack, a maximum cycle packing as well as a minimum feedback set. Since converting
our proof to an algorithm is quite standard, we will not discuss the algorithmic
aspect any further, except for pointing out that, for CM graphs, both tw and nw can
be computed in polynomial time [3] while for general graphs computing t and n are
already NP-hard [4].

2. A Proof of Theorem 1

We begin by proving two lemmas.

Lemma 1. Let x and y be two distinct vertices in a graph G, and let %G be the graph

obtained from G by introducing a new vertex z, then adding the edges zx, zy, and finally

adding xy if x and y are nonadjacent in G. Suppose both G and %G pack. If nðG\xÞ ¼
nðG\yÞ ¼ nðGÞ; then nðG\fx; ygÞ ¼ nðGÞ:

Proof. Let Cx ¼ fC1;C2;y;CnðGÞg be a cycle packing in G\x; let Cy ¼
fD1;D2;y;DnðGÞg be a cycle packing in G\y; and let S be a minimum feedback set

in %G: Let T be the triangle xyz and let C ¼ fT ;C1;y;CnðGÞ;D1;y;DnðGÞg (notice that
Ci and Dj should be viewed as two different members of C even though they may

correspond to the same cycle in G). Then, as all members of C are cycles of %G; we
observe that every member of C must intersect S: On the other hand, from the

definitions of Cx; Cy; and %G; we also observe that each vertex in S is contained in at

most two members of C: Based on these two observations we deduce that 2jSjXjCj ¼
2nðGÞ þ 1 and hence jSj4nðGÞ: Since %G packs, nð %GÞ ¼ tð %GÞ ¼ jSj; so nð %GÞ4nðGÞ: Let
D be a maximum cycle packing %G: Then the last inequality implies that some cycle C of

D uses an edges in Eð %GÞ\EðGÞ: Since ðD	 fCgÞ,fTg is a cycle packing of %G; we may
thus assume that TAD: Consequently, D\fTg is a cycle packing in G\fx; yg of size at
least nðGÞ; which implies nðG\fx; ygÞXnðGÞ and thus nðG\fx; ygÞ ¼ nðGÞ: &

For convenience, subdivisions of K2;3; K3;3; wheels, and odd rings will be called

Y-graphs, K-graphs, W -graphs, and R-graphs, respectively. We also simply say that a
graph G has a graph H if H is isomorphic to an induced subgraph of G: The
following is Lemma 3.1 in [3].

Lemma 2. Let H be a subdivision of K4 and let x and y be two of the four degree-three

vertices. Let G be obtained from H by adding edges such that all these edges are

incident with either x or y. Then G has a W-graph.

Lemma 3. Let G be a graph having neither K-graphs nor W-graphs. If G has a Y-graph

S which consists of three paths, P1;P2;P3; linking distinct vertices x and y, then

Pi\fx; yg; i ¼ 1; 2; 3; are contained in three different components of G\fx; yg:
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Proof. For i ¼ 1; 2; 3; let P0
i ¼ Pi\fx; yg: We remark that P0

i may consist of a single

vertex. Suppose, on the contrary, that some distinct P0
i and P0

j are contained in the

same component of G\fx; yg: For convenience, let us choose the pair fi; jg such that
the shortest path Q linking P0

i and P0
j in G\fx; yg is as short as possible. Rename the

subscripts if necessary, we may assume that i ¼ 1 and j ¼ 2: Note that Q is an
induced path. Let z0; z1;y; zp; zpþ1 be the vertices of Q such that

z0AVðP0
1Þ; zpþ1AVðP0

2Þ; and they are ordered as in Q: By the minimality of Q; no

zi ði41Þ has a neighbor in P0
1 and no zi ðiopÞ has a neighbor in P0

2:
Suppose some zi is adjacent to a vertex z on P0

3: Then 1pipp as S is an induced

subgraph of G: Since z0z1yziz is a path linking P0
1 and P0

3 of length i þ 1; and
zziziþ1yzpþ1 is a path linking P0

2 and P0
3 of length p þ 2	 i; in view of the

minimality of Q (which has length p þ 1), we have p þ 1pminfi þ 1; p þ 2	 ig:
Thus p ¼ i ¼ 1; in other words, Q is of length two and z1 is adjacent to z: If z1 is
adjacent to at least three vertices in VðPiÞ,VðPjÞ for some iaj; then

VðPiÞ,FðPjÞ,fz1g induces a W -graph in G; else, z1 is adjacent to no vertices in

VðP1Þ,VðP2Þ,FðP3Þ; except for z0; z2 and z: Thus VðP1Þ,VðP2Þ,VðP3Þ,fz1g
induces a K-graph in G: So we reach a contradiction in either case, and hence we
may assume hereafter that no vertex on Q is adjacent to any vertex on P0

3: Let us now
distinguish among three cases.

Case 1: z1 has three or more neighbors in P1; or zp has three or more neighbors in

P2: In this case, VðP1Þ,VðP3Þ,fz1g or VðP2Þ,VðP3Þ,fzpg induces a W -graph, a

contradiction.
Case 2: z1 has precisely one neighbor in P0

1 and zp has precisely one neighbor in P0
2:

In this case, let H denote the K4 subdivision consisting of S and Q: Then it is easy
to see that, in the subgraph induced by VðHÞ; edges not in EðHÞ must have one
end in fx; yg and the other in VðQÞ\fz0; zpþ1g: By Lemma 2, we deduce that G has a

W -graph.
Case 3: If neither of the previous cases occurs, then, by symmetry, we may assume

that z1 has precisely two neighbors on P1 and neither of them is x or y: It follows that
pX2; for otherwise VðP1Þ,VðP0

2Þ,fz1g would induce a W -graph in G: Next,
observe that some zi; with 2pipp; is adjacent to a vertex in VðP2Þ\fzpþ1g; since
otherwise VðP1Þ,VðP2Þ,VðQÞ would also induce a W -graph in G: Let R be a
shortest path between z1 and fx; yg; which only use vertices in ðVðQÞ\fz0gÞ,VðP2Þ:
If j is the largest subscript such that zjAVðRÞ; then zj is adjacent to some vertex

on P2 and so jX2: It is easy to see that a W -graph in G is induced by
VðP1Þ,fz1; z2;y; zjg if zj is adjacent to both x and y; and by VðP1Þ,VðP3Þ,VðRÞ
if zj is nonadjacent to x or y; this contradiction completes the proof of

Lemma 3. &

We are now ready to establish the main result. An induced subgraph is called an
obstruction if it is a K-graph, a W -graph, or an R-graph.

Proof of Theorem 1. The ‘‘only if’’ part has been justified before stating the theorem.
Here we prove the ‘‘if’’ part. Let G ¼ ðV ;EÞ be a graph having no obstructions. To
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show G packs, we apply induction on jV j: The statement clearly holds when jV j ¼ 1:
So we proceed to the induction step. In view of the induction hypothesis, it suffices to
verify that nðGÞ ¼ tðGÞ:
If G has no Y-graphs, then the desired statement follows directly from (1.1). So we

assume that G has a Y-graph S: Let x; y be the two branch vertices of S and let
P1;P2; and P3 be the three paths linking x and y in S: By Lemma 3,
P1\fx; yg; P2\fx; yg; and P3\fx; yg are contained in three different components of
G\fx; yg; say C1;C2; and C3; respectively. Let Hi be the subgraph of G induced by
VðCiÞ,fx; yg: Rename the subscripts if necessary, we may assume that

(2.1) jVðH1ÞjpjVðH2ÞjpjVðH3Þj:
In addition, we may also assume that
(2.2) jVðH1Þ\fx; ygjX2:
If H1\fx; yg has only one vertex, say z; then P1 is the path xzy. Let F denote the

graph obtained from G be replacing the path P1 with the edge xy. Clearly, G is a
subdivision of F : It follows that F has no obstructions, and it also follows that
nðFÞ ¼ nðGÞ and tðFÞ ¼ tðGÞ: Since jVðFÞjojVðGÞj; we conclude from the
induction hypothesis that F packs. Therefore, nðFÞ ¼ tðFÞ; which implies nðGÞ ¼
tðGÞ; and thus we may assume (2.2) holds.

(2.3) If nðH1\xÞ ¼ nðH1\yÞ ¼ nðH1Þ then nðH1\fx; ygÞ ¼ nðH1Þ:
To justify it, let %H1 be the graph obtained from H1 by introducing a new vertex z

and then adding the edges zx; zy and xy: Clearly, F ¼ H1,P2,P3 is a subdivision

of %H1: It follows that %H1 has no obstructions. Since jVðH1ÞjpjVð %H1Þjo
jVðFÞjpjVðGÞj; by induction hypothesis both H1 and %H1 pack. Thus (2.3) follows
from Lemma 1.
Let us now make two copies of H1; denoted by H11 and H12: For i ¼ 1; 2; let xi

and yi be the two vertices in H1i that correspond to x and y; respectively. Let H be
the graph obtained from the vertex-disjoint union of H11 and H12 by identifying x1
and y2 (with a as the new vertex), and y1 and x2 (with b as the new vertex). In the
following, we prove some properties of H:

(2.4) H packs.
By (2.1) and our induction hypothesis, we only need show that H has

no obstructions. Suppose the contrary: H has an obstruction Q: We aim to show
that G has an obstruction. For i ¼ 1; 2; let Qi be the induced subgraph of Q in H1i:

Then VðQiÞ\fa; bga|; for otherwise Q is entirely contained in H11 or H12; thus Q is
an induced subgraph of G; contradicting the assumption on G: It follows that

fa; bgDVðQiÞ as Q is 2-connected. If one of Q1 and Q2; say Q1; is a path, let %Q

denote the graph obtained from Q by replacing Q1 with P2; then %Q is an induced
subgraph of G and it is also an obstruction, a contradiction. So we may assume that
neither of Q1 and Q2 is a path. From the definitions of a K-graph, a W -graph, and
an R-graph, it follows instantly that Q must be an R-graph, and fa; bg separates the
base cycle of this R-graph into even and odd two paths (recall the definition of an
odd ring). Without loss of generality, let us assume that Q1 corresponds to the odd

path. Let %Q be the graph obtained from Q by replacing Q1 with the cycle P2,P3:

Then %Q is an R-graph of G; this contradiction completes the proof of (2.4).
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(2.5) nðHÞp2nðH1Þ þ 1; and equality holds only if H1 has a maximum
cycle packing D and a path P connecting x and y such that D is contained in
H1\VðPÞ:

Let C be a maximum cycle packing in H; and let Ci be the collection of all cycles in
C that are entirely contained in H1i: If C\ðC1,C2Þ has a cycle, say C; then C must
pass through both a and b and thus C is the only cycle in C\ðC1,C2Þ as cycles in C
are pairwise vertex disjoint. Hence nðHÞ ¼ jCjpjC1j þ jC2j þ 1p2nðH1Þ þ 1: If the
equality holds, then jC1j ¼ jC2j ¼ nðH1Þ and jC\ðC1,C2Þj ¼ 1: Thus C1 corresponds
to a maximum cycle packing D in H1; and one portion of the unique cycle in
C\ðC1,C2Þ corresponds to a path P linking x and y in H1 such that D is contained
in H1\VðPÞ: So (2.5) is established.

(2.6) tðHÞX2tðH1Þ 	 2; and equality holds only if H1 has a minimum feedback set
T which contains both x and y:
Let S be a minimum feedback set in H and let Si ¼ S-VðH1iÞ: Then Si is a

feedback set in H1i and S1-S2Dfa; bg: Note that jS1jXtðH11Þ; jS2jXtðH12Þ; and
jS1-S2jp2: So tðHÞ ¼ jSj ¼ jS1j þ jS2j 	 jS1-S2jX2tðH1Þ 	 2: If the equality
holds then jS1j ¼ jS2j ¼ tðH1Þ and jS1-S2j ¼ 2: Thus S1 corresponds to a minimum
feedback set T of H1 which contains both x and y: So (2.6) is proved.

(2.7) If tðHÞ ¼ 2tðH1Þ 	 1; then H1 has two minimum feedback sets T1 and T2

such that xAT1\T2 and yAT2\T1: Moreover, no minimum feedback set in H1

contains both x and y:
Let S; S1; and S2 be as in the proof of (2.6). We claim that S contains at most one

vertex from fa; bg; for otherwise, we have fa; bgDS1-S2: Since jSj ¼ 2tðH1Þ 	 1; it
follows from the pigeonhole principle that jS1\fa; bgjptðH1Þ 	 2; or
jS2\fa; bgjptðH1Þ 	 2; say the former. Then jS1jptðH1Þ and thus equality must
hold, which implies that S1 is a minimum feedback set in H11 that contains both a

and b: Now let %S2 be the set of all the vertices in H12 that correspond to those in S1

(recall that both H11 and H12 are isomorphic to H1). Then S1, %S2 is a feedback set in
H of size 2tðH1Þ 	 2; contradicting the hypothesis tðHÞ ¼ 2tðH1Þ 	 1; and so the
claim is proved. (Similarly, we can prove that no minimum feedback set in H1

contains both x and y:) From this claim we conclude that jS1-S2jp1: Once again
using jSj ¼ jS1j þ jS2j 	 jS1-S2j and jSj ¼ tðHÞ ¼ 2tðH1Þ 	 1; we obtain jS1j ¼
jS2j ¼ tðH1Þ and jS1-S2j ¼ 1: By symmetry we may assume that S1-S2 ¼ fag:
Then beS1,S2 according to the above claim. Thus S1 and S2 correspond to two
minimum feedback sets T1 and T2; respectively, in H1 such that xAT1\T2 and
yAT2\T1: So (2.7) is justified.

(2.8) If tðHÞ ¼ 2tðH1Þ and H has a minimum feedback set S with S-fa; bga|;
then nðH1\aÞonðH1Þ holds for precisely one aAfx; yg:
We first show that the inequality nðH1\aÞonðH1Þ holds for at least one aAfx; yg:

Suppose the contrary that nðH1\xÞ ¼ nðH1\yÞ ¼ nðH1Þ: Then, by (2.3), we have
nðH1\fx; ygÞ ¼ nðH1Þ: Let Si ¼ S-VðH1iÞ; for i ¼ 1; 2: Since jSj ¼ 2tðH1Þ and

S-\fa; bga|; we must have jS1\fa; bgjotðH1Þ or jS2\fa; bgjotðH1Þ; say the
former. Now we have a contradiction from nðH1\fx; ygÞ ¼ nðH1Þ ¼
tðH1Þ4jS1\fa; bgjXtðH1\fx; ygÞ:
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Without loss of generality, assume nðH1\xÞonðH1Þ: Next, we show that nðH1\yÞ ¼
nðH1Þ: Let C be a maximum cycle packing in H: By (2.4) and the assumption
in (2.8), jCj ¼ nðHÞ ¼ tðHÞ ¼ 2tðH1Þ ¼ 2nðH1Þ: For i ¼ 1; 2; let Ci be the set
of cycles of C that are contained in H1i: Since each cycle in C\ðC1,C2Þ
passes through both a and b; C\ðC1,C2Þ contains at most one cycle as cycles
in C are pairwise vertex-disjoint. Thus jC1j þ jC2jXjCj 	 1 ¼ 2nðH1Þ 	 1;
implying jC1j 	 nðH1Þ or jC2j ¼ nðH1Þ; say the former. From nðH1\xÞonðH1Þ
it follows that C1 has a cycle that passes through a: Therefore, C\ðC1,C2Þ ¼ |;
which, in turn, implies that jC2j ¼ nðH1Þ; and hence, by nðH1\xÞonðH1Þ again,
C2 contains a cycle which passes through b: Consequently, b is not contained
in any cycle of C1 and thus nðH1\yÞ ¼ jC1j ¼ nðH1Þ; which finishes the proof
of (2.8).

(2.9) If tðHÞ ¼ 2tðH1Þ and S-fa; bg ¼ | for all minimum feedback sets S of H;
then tðH1\fx; ygÞ ¼ tðH1Þ; and x and y are contained in different components of
H1\T for some minimum feedback set T of H1 with T-fx; yg ¼ |:
Let S0 be a minimum feedback set in H1\fx; yg and, for i ¼ 1; 2; let Si be the copy

of S0 in H1i: Then S ¼ S1,S2,fa; bg is a feedback set in H: Clearly, S is not
minimum since S meets fa; bg: It follows that 2tðH1Þ ¼ tðHÞojSj ¼ 2tðH1\fx; ygÞ þ
2 and so tðH1\fx; ygÞ ¼ tðH1Þ:
Next, let S be a minimum feedback set in H; and, for i ¼ 1; 2; let Si ¼ S-VðH1iÞ:

Then Si-fa; bg ¼ |: Since jSj ¼ 2tðH1Þ and jSijXtðH1Þ; we have jS1j ¼ jS2j ¼
tðH1Þ: Hence Si is a minimum feedback set in H1i: If each of H11\S1 and H12\S2

contains a path between a and b: Then the union of these two paths yields a cycle in
H\S; contradicting the hypothesis that S is a feedback set in H: Hence one of H11\S1

and H12\S2 contains no path between a and b; say the former. Then S1 corresponds
to a minimum feedback set T of H1 with the desired property. The proof of (2.9) is
now complete.
Recall that our goal is to prove nðGÞ ¼ tðGÞ: Since nðGÞptðGÞ is always true, we

only need to prove in the following that tðGÞpnðGÞ: To this end, let us apply
reduction methods. By (2.4), (2.5), and (2.6), 2tðH1Þ 	 2ptðHÞp2tðH1Þ þ 1:
Depending on the relationship between tðHÞ and tðH1Þ; we distinguish among the
following four cases.

Case 1: tðHÞ ¼ 2tðH1Þ þ 1: Let F be the graph obtained from G\VðH1\fx; ygÞ
by adding the edge e ¼ xy: Then ðF \eÞ,P1 is an induced subgraph of G and
it is also a subdivision of F : It follows that F has no obstructions. Since
jVðFÞjojVðGÞj; by induction, F packs. To settle Case 1, we prove the following
claim.

(2.10) tðGÞptðFÞ þ tðH1Þ and nðFÞ þ nðH1ÞpnðGÞ:
To prove the first inequality, let S and T be minimum feedback sets in F and H1;

respectively. For any cycle C in G; if C is entirely contained in F \e or in H1; then C is
covered by S or T ; if C is not entirely contained in F \e nor in H1; then C passes
through both x and y: Denote by %C the cycle obtained from C by replacing its
portion in H1 with the edge e: Then %C is a cycle in F which is covered by S; so C

intersects S: Thus, we can conclude that S,T is a feedback vertex of G; and hence
tðGÞpjSj þ jT j ¼ tðFÞ þ tðH1Þ:
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Next, since we are in Case 1, we deduce from (2.4) that nðHÞ ¼ 2nðH1Þ þ 1: It
follows that we can chooseD and P as in (2.5). Let C be a maximum cycle packing in
F : Then we define a cycle packing B in ðF \eÞ,P as follows: put B ¼ C if no cycle in

C contains e; else, let C be the cycle in C containing e; and let %C be the cycle obtained
from C by replacing e with P: Set B to be the cycle packing obtained from C by

replacing C with %C: Then B,D is a cycle packing in G: Hence nðFÞ þ nðH1Þ ¼
jBj þ jDjpnðGÞ; and so the proof of (2.10) is complete.
Since both F and H1 pack, tðFÞ ¼ nðFÞ and tðH1Þ ¼ nðH1Þ: By (2.10), we thus

have the desired inequality tðGÞpnðGÞ in Case 1.
Case 2: tðHÞ ¼ 2tðH1Þ 	 2: Let F ¼ G\VðH1Þ: Then F packs for it is a proper

induced subgraph of G: Let C and D be maximum cycle packings in F and H1;
respectively. Let S be a minimum feedback set in F : In addition, by (2.6), we can
choose a minimum feedback set T of H1 with fx; ygDT : Clearly, S,T is a feedback
set in G and C,D is a cycle packing in G: Hence tðGÞpjSj þ jT j ¼ tðFÞ þ tðH1Þ
and nðFÞ þ nðH1Þ ¼ jCj þ jDjpnðGÞ: Now, similar to the proof in Case 1, we
immediately have tðGÞpnðGÞ; which settles Case 2.

Case 3: tðHÞ ¼ 2tðH1Þ 	 1: Let F be the graph obtained from the graph
G\VðH1\fx; ygÞ by introducing a new vertex z and then adding the edges zx; zy and
xy: Let us show that

(2.11) F packs.
By (2.2), jVðFÞjojVðGÞj: Hence, by the induction hypothesis, we only need to

show that F has no obstructions. Suppose the contrary that F has an obstruction Q:
We aim to show that G also has an obstruction. If zeVðQÞ and xyeEðQÞ; then
Q is an obstruction of G; if zeVðQÞ and xyAEðQÞ; denote by %Q the graph obtained

from Q by replacing edge xy with the path P1; then %Q is an obstruction of G;
we thus reach a contradiction in either case. So Q must contain z: Since z has only
two neighbors, x and y; in F and since fx; y; zg induces a triangle, from the structures
of the obstructions it can be seen that Q is an R-graph and it contains the triangle
xyz. Consequently, Q0 ¼ Q\fx; y; zg is a connected subgraph of G\fx; yg: Recall
that P1\fx; yg; P2\fx; yg; and P3\fx; yg are contained, respectively, in three different
components, C1; C2; and C3 of G\fx; yg: It follows that VðQ0Þ is disjoint from VðCiÞ
for i ¼ 2 or 3. Thus %Q; the graph obtained from Q by replacing the triangle xyz

with the cycle P1,Pi; is an R-graph in G; this contradiction completes the proof
of (2.11).
Similar to the proofs in the last two cases, we prove the following, which implies

tðGÞpnðGÞ:
(2.12) tðGÞptðFÞ þ tðH1Þ 	 1 and nðFÞ þ nðH1Þ 	 1pnðGÞ:
By (2.7), H1 has two minimum feedback sets T1 and T2 with xAT1\T2 and

yAT2\T1: Let S be a minimum feedback set in F such that jS-fx; ygj is maximized.
Then at least one of x and y is in S; for otherwise zAS as the triangle xyz is covered

by S: Now it is easy to see that %S ¼ ðS\fzgÞ,fxg is also a minimum feedback set in

F ; but j %S-fx; ygj4jS-fx; ygj; contradicting the assumption on S: By symmetry, let
xAS: Then it is not difficult to see that S,T1 is a feedback set in G; and so
tðGÞpjS,T1jptðFÞ þ tðH1Þ 	 1:
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Now let C be a maximum cycle packing in F : We may assume that if the vertex z

or the edge xy is contained in a cycle C in C; then C is the triangle xyz, for otherwise
we can replace C by the triangle xyz to get a new maximum cycle packing in F with
the desired property. By (2.7), no minimum feedback set in H1 contains both x and y;
in other words, tðH1\fx; ygÞXtðH1Þ 	 1: Since both H1\fx; yg and H1 pack, we have
nðH1\fx; ygÞXnðH1Þ 	 1; which guarantees the existence of a cycle packing B in
H1\fx; yg with jBj 	 nðH1Þ 	 1: Once again letD be a maximum cycle packing in H1:
Observe that if triangle xyzAC; then ðC\fxyzgÞ,D is a cycle packing in G with size
nðFÞ þ nðH1Þ 	 1; if xyzeC; then the assumption on C implies that C is a cycle
packing in G; and so B,C is a cycle packing in G with size nðFÞ þ nðH1Þ 	 1: Thus
we always have nðFÞ þ nðH1Þ 	 1pnðGÞ; which proves (2.12) and completes the
proof for Case 3.

Case 4: tðHÞ ¼ 2tðH1Þ:
We consider two subcases.
Case 4.1: H has a minimum feedback set that intersects fa; bg: By (2.8), we may

assume that nðH1\xÞonðH1Þ ¼ nðH1\yÞ and so tðH1\xÞotðH1Þ; as H1 packs. Let D
be a maximum cycle packing in H1\y and let T be a minimum feedback set in H1:
Then jDj ¼ nðH1Þ and xAT : Clearly, F ¼ G\VðH1\yÞ packs since it is a proper
induced subgraph of G: Let C and S be a maximum cycle packing and a minimum
feedback set in F ; respectively. Then it is routine to check that C,D is a cycle
packing in G; and S,T is a feedback set in G: Thus tðGÞpjSj þ jT j ¼ tðFÞ þ
tðH1Þ ¼ nðFÞ þ nðH1Þ ¼ jCj þ jDjpnðGÞ; which settles case 4.1.

Case 4.2: All minimum feedback sets of H are disjoint from fa; bg: Let D be a
maximum cycle packing in H1\fx; yg and let T be a minimum feedback set in H1 as
chosen in (2.9). Let F ¼ G\VðH1\fx; ygÞ: Then F packs since it is a proper induced
subgraph of G: Now let C and S be a maximum cycle packing and a minimum
feedback vertex set in F ; respectively. It follows that C,D is a cycle packing in G (by
the definitions of C and D), and S,T is a feedback set in G (note that since there is
no path linking x and y in H1\T ; every cycle of G which is not entirely contained in F

nor in H1 must intersect T). Similar to the proof in case 4.1, we have tðGÞpnðGÞ:
The proof of Theorem 1 is complete. &

3. Concluding remarks

Graphs with the min–max relation on feedback sets and cycle packings in both
weighted and unweighted cases are characterized in our two papers. The closely
related problems of describing digraphs with the same min–max properties have also
attracted much attention, see, for instances, [1,2,5–8]. However, the general problems
remain open, and certainly they deserve more research efforts.
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