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Abstract

We study topological versions of paths, cycles and spanning trees in infinite graphs with ends
that allow more comprehensive generalizations of finite results than their standard notions. For some
graphs it turns out that best results are obtained not for the standard space consisting of the graph
and all its ends, but for one where only its topological ends are added as new points, while rays from
other ends are made to converge to certain vertices.
© 2003 Published by Elsevier Ltd

1. Introduction

This paper is part of an on-going project in which we seek to explore how standard facts
about paths and cycles in finite graphs can bestbe generalized to infinite graphs. The basic
idea is that such generalizations can, and should, involve the ends of an infinite graph on a
par with its other points (vertices or inner points of edges), both as endpoints of paths and
as inner points of paths or cycles.

To implement this idea we define paths and cycles topologically: in the spaceG
consisting of a graphG together with its ends, we consider arcs (homeomorphic images
of [0, 1]) instead of paths, and circles (homeomorphic images of the unit circle) instead of
cycles. The topological version of a spanning tree, then, will be a path-connected subset of
G that contains its vertices and endsbutdoes not contain any circles.

Let us look at an example. Thedouble ladder Lshown inFig. 1 has two ends, and
its two sides (the top double rayR and the bottom double rayQ) will form a circle D
with these ends: in the standard topology onL (to be defined later), every left-going ray
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Fig. 1. The double ladderL.

converges toω, while every right-going ray converges toω′. Similarly, the edgevw forms
a circle with the endω′ and the two right-going subrays ofR and Q starting atv andw,
respectively.

Which subsets ofL would be topological spanning trees inL? The ‘infinite comb’
consisting ofR, theendsω andω′, and all the vertical edges ofL would be one example;
the arcuRωQω′ Rv obtained fromD by deleting the edgeuv another. The ordinary
spanning treeR ∪ Q + vw of L, however, would not qualify, because it fails to contain
the endsω andω′. (And we cannot simply add the ends, since that would create infinite
circles.)

When G is locally finite, then those of its ordinary spanning trees whose closure in
G qualifies as a topological spanning tree are precisely itsend-faithfulspanning trees
(see Section 7). In [4] we showed that these are precisely the spanning trees ofG
whose fundamental cycles generate its entire cycle space (including infinite cycles). Thus,
topological spanning trees are not merely natural objects to study in an infinite graph but
came up as the solution to a problem: the problem of how to generalize a basic fact about
finite spanning trees and cycles to infinite graphs.

WhenG is not locally finite, however, things are more complicated. The complications
which arise require either restrictions to the notion of the cycle space that are needed in
some cases but seem unnecessary in others, or a different topology onG. The firstof these
approaches was followed in [5], while it is the purpose of this paper to explore the other.
One of our first tasks will be to motivate our new topology onG in terms of the problems
indicated above, and this will be done inSection 3. However, there isyet another way to
motivate that topology, independent of those problems, which we indicate now.

The double ladderL satisfies Menger’s theorem for ω and ω′: these ends can be
separated by two vertices (such asv andw), and they are joined by the two independent
arcsωRω′ andωQω′. However, when we contractR to the edgeuv (Fig. 2), the resulting
graphG no longer contains two independent arcs betweenω andω′, although we still need
two vertices to separate them. Our way to restore the validity of Menger’s theorem here
will be to identify ω with u andω′ with v. Or put another way: we shall define the space
G not by addingω andω′ to G as extra points and then applying the standard topology
(seeSection 2), but by choosing a topology onG itself in which the left and right subray
of Q converge tou andv, respectively. Thenu andv are joined by the two arcsuv andQ
(which together form a circle), andG again satisfies Menger’s theorem.

More generally, the topological space for a graphG and its ends that we propose here
will be the quotientspace obtained fromG with its standard topology (in which all the
ends are new points) by making all vertex-end identifications in situations as above. In this
space, only ends that are not ‘dominated’ by a vertex (in the wayω is dominated byu
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Fig. 2. A Menger problem forω andω′.

in Fig. 2: there are infinitely many paths which joinu to a ray inω and which only meet in
u) will be new points. As it happens (see [6]), these are precisely the ends ofG that satisfy
Freudenthal’s [9] original topological definition of an end.

Weshall see later that our identification topology is not just an ad hoc device to deal with
problems such as the Menger example above. Roughly speaking, it is with this topology
that standard finite results such as the generation of the cycle space by fundamental cycles
can be generalized to the largest class of graphs that are not necessarily locally finite.
But the example ofFig. 2 already indicates why this is notunexpected: the identification
topology onG merely extends to vertex-end pairs what is already the case in the standard
topology for pairs of ends of rays inG, namely, that two such points are to be identified if
theycannot be finitely separated.

We haveorganized this paper as follows. InSection 2we define the concepts to be used,
in particular our topological versions of paths, cycles, and spanning trees, and introduce
the topology onG that is standard in the literature. InSection 3we recall some results
from [4] about topological spanning trees and the cycle space of locally finite graphs,
and describe the obstructions that arise when we try to extend these results to graphs
with infinite degrees. The identification topology motivated by these obstructions (as well
as by the considerations above) is introduced inSection 4. In Section 5we prove that
topological spanning trees exist in all graphs in which their existence is not ruled out
trivially by some obvious obstructions. As a spin-off of our methods we obtain that closed
connected subsets ofG are path-connected. (This was unknown even for locally finite
graphs under the standard topology and is falsein general for graphs with infinite degrees;
seeSection 2for an example.) InSection 6weprove our main results on topological cycles
and spanning trees. These extend our locally finite results from [4] to a largerclass of
infinite graphs, which will be seen to be essentially largest possible. InSection 7, finally,
we relate topological spanning trees to the existing literature on end-faithful spanning trees,
and briefly address the general existence problem of topological spanning trees under the
standard topology.

2. Basic concepts, and the standard topology

The terminology we use is that of [1]. A 1-way infinite path will be called aray, a 2-way
infinite path adouble ray. The subrays of rays or double rays are theirtails. Two rays in
a graphG areend-equivalentif no finite set of vertices separates them inG. This is an
equivalence relation on the set of rays inG; its equivalence classes are theendsof G. We
denote the set of ends ofG by Ω(G). A vertexv ∈ G is said todominatean endω if for
some (andhence every) rayR ∈ ω there are infinitely manyv–R paths inG that meet
pairwise only inv; such a set of paths is av–R fan.
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Weshall freely view a graph either as a combinatorial object or as the topological space
of a 1-complex. (So every edge is homeomorphic to the real interval [0, 1], and the basic
open neighbourhoods of a vertexx are the unions of half-open intervals[x, z), one from
every edge[x, y] at x; note that we do not require local finiteness here.) WhenE is a set
of edges we let̊E denote the union of their interiors, i.e. the set of all inner points of edges
in E.

A homeomorphic image in a topological spaceX of the closed unit interval [0, 1] will
be called anarc in X; ahomeomorphic image inX of the unit circle is acircle in X; and a
homeomorphic image inX of the interval [0, 1) is atopological rayin X. A continuous (but
not necessarily injective) image of [0, 1] is atopological path. If x andy are distinct points
on an arcA, we write x Ay for the subarc ofA betweenx andy. Note that an arc inherits
a linear ordering of its points from [0, 1] (up to reflection). Given two setsY, Z ⊆ X, we
say thatA is aY–Z arc if one endpoint ofA lies in Y, theother lies inZ, and the interior
of A avoidsY ∪ Z.

We shall frequently use the following lemma from elementary topology [11, p. 208].

Lemma 2.1. Every topological path with distinct endpoints x, y in a Hausdorff space X
contains an arc in X between x and y.�

Our objects of study will be Hausdorff spacesG consisting of a graphG and some or
all of its ends. More precisely, we will either add all ends toG and endow this set with
the standard topology, or add only those ends that correspond to the topological ends ofG
as a 1-complex. In the first case, the topology whichG induces onG will be the original
1-complex topology ofG, while in the latter some rays may converge to vertices. In both
cases, however, all the rays in an endω will converge to a common point: either toω (if
ω ∈ G\G), or to the unique vertex dominatingω.

Any circle D in G will have the property that it contains every edge of which it contains
an inner point. The setC(D) of edges contained inD will be called itscircuit. Since
we intend to study the circles inG combinatorially in terms of their circuits, it will be
important that no two circles have the same circuit. To ensure this, we shall require that the
topology onG satisfies the following condition:

For everycircle D ⊆ G, theunion
⋃

C(D) of its edges is dense inD. (1)

Thus every circleD is the closure inG of its circuitC, and isthereforeuniquely determined
by C.

Let us call a family (Ci )i∈I of circuits thin if no edge lies inCi for infinitely manyi ,
and let thesum

∑
i∈I Ci of these circuits be the set of those edges that lie inCi for an

odd number of indicesi . We now define thecycle spaceC(G) of G as the set of sums of
circuits inG; this is a subspace of the edge space ofG just as in the finite case. InSection 6
we show that, for the topology considered in this paper,C(G) is closed also under infinite
sums.

Finally, atopological spanning treeof G is a path-connected subsetT of G that contains
all the vertices and ends ofG, contains every edge of which it contains an inner point, and
does not contain a circle. Note thatT is closed inG. Its subsetT ∩ G is a subgraph of
G but need not be connected. (However, topological spanning trees for which this is the
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case, i.e. whereT ∩ G is an ordinary spanning tree ofG, may beof particularinterest.)
We write E(T) for the set of all edges contained inT . For every edgee = xy not in
E(T), Lemma 2.1ensures thatT contains a (unique) arc betweenx andy, and soT ∪ e
contains a unique circleD. Wecall every suchD a fundamental circle, andits circuitCe a
fundamental circuitof T .

Wewill use the following standard lemma about infinite graphs; the proof is not difficult
and is included in [3, Lemma 1.2].

Lemma 2.2. Let U bean infinite set of vertices in a connected graph G. Then G contains
either a ray R with infinitely many disjoint U–R paths or a subdivided star with infinitely
many leaves in U. �

Let X be a Hausdorff space. We denote the closure of a setY ⊆ X by cl(Y). Given
a topological rayR in X, an infinite sequencex1, x2, . . . of distinct points, and for all
xi /∈ R disjoint xi –R arcsQi such that the sequence consisting of the preimages under the
homeomorphism[0, 1) → R of the endpoints onR of these paths and the preimages of
all xi on R converges to 1, we call the union ofR with all the Qi a topological combin
X with back Randteeth x1, x2, . . . (including thexi on R). A topologicalℵ0-star in X is
any unionS of ℵ0 arcs inX meeting pairwise exactly in their firstpoint. This point is the
centreof S, the other endpoints of those arcs are itsleaves. Lemma 2.2thus states that, for
every infinite setU of vertices,G contains either a topological comb with teeth inU (and
back a ray) or a topologicalℵ0-star with leaves inU .

The following lemma generalizesLemma 2.2to arbitrary path-connected Hausdorff
spaces. We omit its straightforward proof, which is similar to that ofLemma 2.2.

Lemma 2.3. Let U bean infinite set of points in a path-connected Hausdorff space X.
Then X contains either a topological comb with all its teeth in U or a topologicalℵ0-star
with all its leaves in U. �

A rooted (ordinary) spanning treeT of G is normal if the endvertices of every edge
of G are comparable in the tree order induced byT ; see [1]. Countable connected graphs
are easily seen to have normal spanning trees, but not all uncountable ones do; see [8] for
details. For our purposes, we shall need the following existence theorem of Halin [10]:

Lemma 2.4. Every connected graph containing no subdivision of Kℵ0 has a normal
spanning tree. In particular, every connected graph in which every end is dominated by
at most one vertex has a normal spanning tree.

The usefulness of normal spanning trees is based on the following easy lemma:

Lemma 2.5 ([7]). Let x1, x2 ∈ V(G), and let T be a normal spanning tree of G. For
i = 1, 2 let �xi 	 denote the path in T that joins xi to the rootof T . Then�x1	 ∩ �x2	
separates x1 from x2 in G.

We now define the topology TOP on G that is standard in the literature forG =
G ∪ Ω(G). We refer to [2] and, especially, Polat [13] for more background on TOP.
Consider a finite setX ⊆ V(G) ∪ E(G).

For every endω of G there is exactly one componentC of G − X that contains a tail
of every ray inω; we saythat ω belongsto C. Ends or vertices belonging to different
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components ofG − X areseparatedby X. Wheny is either an end or a vertex inG − X,
we writeCG(X, y) for the component ofG − X to whichy belongs, andEG(X, y) for the
set of edges that either joinCG(X, y) to vertices inX or else are edges inX incident with
CG(X, y). The ends ofC correspond naturally to the ends ofG belonging toC, andwe do
not normally distinguish between them. Finally, we define

Ĉ := ĈG(X, y) := C ∪ Ω(C) ∪ E′(X, y) ⊆ G,

whereE′(X, y) is the union of any maximal set of internally disjoint half-edges(z, v] ⊂ e
with e ∈ E(X, y), z ∈ e̊, andv ∈ V(C). (ThusE′(X, y) contains two half-edges for every
edgee ∈ X joining two vertices ofC and one for every other edge inE(X, y).) WhenU
is a union of components ofG − X, we similarly write Û for any union of setŝC, one for
each componentC ⊆ U .

Now let TOP denote the topology onG that is generated by the open sets of the
1-complexG and all sets of the form̂CG(S, ω) with S a finite set of vertices. Thus for
each endω, the setŝCG(S, ω) are the basic open neighbourhoods ofω. It is not difficult to
check [4] that TOP satisfies all our earlier requirements onG. In particular, TOP satisfies
(1), so the circles in G correspond bijectively to its circuits. WhenG is locally finite and
connected,G is compact under TOP.

We close this section with a general observation concerning TOP that we have found
surprisingly difficult to prove:

Theorem 2.6. When G is locally finite, every closed connected subset ofG is path-
connected.

Note thatG is locally path-connected and so every open connected subset ofG is path-
connected (even ifG is not locally finite).Theorem 2.6is a special case ofTheorem 5.3,
to be proved below. We expect that it extends to setsX that are neither open nor closed,
but our proof ofTheorem 5.3depends on the assumption thatX is closed.

WhenG has vertices of infinite degree,G can have closed connected subsets that are
not path-connected. For example, ifG is obtained from a rayR by adding a new vertex
x and infinitely manyx–R paths of length 2 that meet only inx, then deleting from these
paths the edges incident withR results in a subspace ofG that is connected (because every
neighbourhood of the unique end contains a tail ofR and almost all the neighbours ofx)
but not path-connected.

3. Cycles and trees in the standard topology

Let G be a locally finite graph, and considerG := G ∪ Ω(G) with TOP. Here are some
results concerninginfinite cycles inG that we would like to generalize sensibly to graphs
that are not locally finite.

Theorem 3.1. The fundamental circuits of any topological spanning tree ofG span its
cycle spaceC(G).
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Fig. 3. The edgexy is the sum of all the facial cycles.

This is the locally finite case ofTheorem 6.1below. It was proved in [4] for end-faithful
spanning trees ofG, i.e. for topological spanning treesT ⊆ G suchthatT ∩G is connected
(cf. Theorem 7.3).

Cycle-cut orthogonalityin finite graphs generalizes too:

Theorem 3.2 ([4]). C(G) consists of precisely those sets of edges that meet every finite
cut in an even number of edges.

Nash-Williams [12] proved that the edge set of any graph (not necessarily locally finite)
decomposes into finite circuits if (and only if) the graph has no odd cut. If the entire edge
set E = E(G) is an element ofC(G), then this implies with Theorem 3.2that E is a
sum of disjoint (finite) circuits. For arbitrary elements ofC(G) this is no longer clear
(even admitting infinite circuits in the sum), since the graph onV(G) induced by an
infinite circuit is just a disjoint union of rays, which has lots of odd cuts. The fact that
arbitrary elements ofC(G) have disjoint-circuit decompositions is one of the main results
of [5]:

Theorem 3.3 ([5]). Every element ofC(G) is aunion of disjoint circuits.

How do the above results generalize to graphs that are not locally finite? Consider
the plane graphG shown in Fig. 3. There, the finite circuits bounding a face form a
family in which the edgexy occurs in one circuit and every other edge occurs in two
circuits. So these circuits sum to the single edgexy—which would thus be an (unwelcome)
element ofC(G) according to the definition given inSection 2. (Theunwelcomeness is not
just a matter of taste: of the above three theorems onlyTheorem 3.2generalizes to this
graph.)

In [5], we dealt with this phenomenon by restricting the notion of the cycle space,
disallowing sums in which infinitely many terms share a vertex. With this restriction,
Theorem 3.3generalizes to arbitrary infinite graphs, whileTheorem 3.2adapts with a
trivial modification. ButTheorem 3.1no longer works for all topological spanning trees:
in the graph ofFig. 4, all fundamental circuits of the topological spanning treeT contain
x, butno finite sum of these circuits generates the infinite circuit E(RyQ).

This problem is not easily overcome just by allowing more sums in the definition of
C(G). Indeed, any sum

∑
Ce of fundamental circuits yieldingE(RyQ) would have to be

over precisely the edgese ∈ R, because these are the edges ofRyQthat are not inT . But
clearly

∑
e∈R Ce = E(xy R) �= E(RyQ), no matter whether this sum is a legal element of

C(G) or not.
As soon as we identify the endω with the vertexx dominating it, however, the problem

disappears: nowT is no longer a topologicalspanning tree (becausexy R is now a circle
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Fig. 4. The circuitE(RyQ) is not a sum of fundamental circuits.

contained inT), but T − xy is a topological spanning tree, and its fundamental circuits
generate all circuits, includingE(RyQ).

In this paper we show that, for all graphsG not containing the trivial obstruction
of Fig. 3, identifying every end with the (unique) vertex dominating it yields the ‘right’
space for our desired generalization ofTheorems 3.1–3.3: we prove that all three theorems
continue to hold in this spacẽG, even with the original (unrestricted) definition of the cycle
space that includes arbitrary sums of thin families of circuits.

Because of the unavoidable problems associated withFig. 3, we will only consider
graphs which satisfy the following condition:

No two vertices are joined by infinitely many independent paths. (2)

(Some additional motivation for why such graphs may be interesting will be given at the
end of this section.)

We remark that all the blocksB of a graph satisfying (2) are countable. Indeed, by
Lemma 2.4, B has a normal spanning treeT , and this must be locally finite: ift is a vertex
of infinite degree inT , thenits finite down-closure�t	 separatesB into infinitely many
components (Lemma 2.5), and by the 2-connectedness ofB infinitely many of these send
edges to the same two vertices in�t	. Then these two vertices are joined by infinitely many
independent paths, contradicting (2).

Although all our results will technically be true for any graph satisfying (2), to make
them interesting we may wish to impose the following stronger condition:

No two vertices are joined by infinitely many edge-disjoint paths. (3)

(Fig. 5 shows that this is indeed stronger, i.e. that (2) does not imply (3). Note that by
the (straightforward) infinite analogue of Menger’s theorem, condition (2) (resp. condition
(3)) implies that every pair of non-adjacent vertices ofG can be separated by finitely many
vertices (resp. edges).)

The possible justification for imposing (3) lies in the fact that for graphsG satisfying (2)
butnot (3) our quotient spacẽG may contain circles consisting only of ends and vertices—
in which case (1) fails, different circles may have the same circuit, and there may be no
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Fig. 5. A graph that satisfies (2) but violates (3).

topological spanning tree. In the proof of the following lemma we exhibit such a graph,
which is essentially the graph ofFig. 5 with x andy identified. See the start ofSection 4
for a formal definition ofG̃ if desired.

Proposition 3.4. There exists a countable graph G satisfying(2) for which G̃ contains a
circle consisting only of vertices and ends.

Proof. Consider the binary treeT2 whose vertices are the finite 0–1 sequences and where
each sequence is adjacent to its two one-digit extensions. The ends ofT2 correspond to the
infinite 0–1 sequences, which we view as binary expansions of the reals in [0, 1]. Our aim
is to turn this Cantor set into a copy of [0, 1] by identifying the pairs of ends that correspond
to the same rationalq ∈ [0, 1], i.e. by identifying every two ends of the forms1000. . . and
s0111. . . for somes ∈ T2. To achieve this identification, we join the vertexs to every such
pair of ends by a couple of fans, so that iñG these ends will both get identified withs, and
hence with each other.

Formally, we join each finite sequences ∈ T2 to all sequences of at least|s| + 2 digits
that begin withs1 and thereafter contain only 0s, and to all sequences of at least|s| + 2
digits that begin withs0 and thereafter contain only 1s. Finally, we add a new vertexx
joined to all sequences consisting only of 0s oronly of 1s (Fig. 6).

Any two vertices of this graphG are separated by the finite vertex set consisting ofx and
their common initial segments, so the graph satisfies (2). It is easily checked that mapping
0 and 1 tox and every other element of [0, 1] to its corresponding end or identified pair of
ends is a homeomorphism between [0, 1] with 0 and 1 identified and the set of all vertices
and ends iñG (after identification). �

Since any topological spanning tree of a graph must contain all its vertices and ends,
everyG̃ as inProposition 3.4fails to have a topological spanning tree. Thus:

Corollary 3.5. There exists a connected countable graph G satisfying(2) suchthat G̃ has
no topological spanning tree.�

We shall prove below that (3), unlike (2), sufficesto imply (1) for G̃ (Section 4), and
that all such̃G have topological spanning trees (Section 5).
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Fig. 6. A graph whose ends form a circle in the identification topology.

We close this section with an observation that may lend some unexpected relevance to
graphs satisfying (3). In every infinite graph, being linked by infinitely many edge-disjoint
paths is an equivalence relation on the vertex set. Now it may be of interest to study the
quotient graph obtained by identifying each equivalence class into one point. (For example,
this is a central tool in Nash-Williams’s celebrated proof of his cycle decomposition
theorem [12].) All such quotient graphs satisfy (3).

4. The identification topology

In this section, we first define the identification topology ITOP more formally, and then
prove some basic facts about it.

Let G = (V, E) be an infinite graph, fixed throughout this and the next section. Put
Ω(G) =: Ω , and letΩ ′ ⊆ Ω denote the subset of those ends that are not dominated by any
vertex. (Weremark that these areprecisely the ends ofG that correspond to its ends in the
topological sense of Freudenthal [9]; see [6].) Given a vertexv ∈ G, we write Ωv for the
set of ends it dominates. As always in the rest of the paper when we consider the topology
ITOP to bedefined now, we assume that

every end of G is dominated by atmost one vertex. (†)

Note that (2) implies (†). Let G̃ be the quotient space obtained fromG endowed with
TOP by identifying every vertex with all the ends it dominates. When two pointsx, y ∈ G
are thus identified, we call themequivalent. As usual, we write π : G → G̃ for the
canonical projection sending each point ofG to its equivalence class. The (identification)
topology ofG̃, which is the finest topology on the set̃G that makesπ continuous, will be
denoted by ITOP. Recall that a setN ⊆ G̃ is open if and only ifπ−1(N) is open inG,
or equivalently if and only ifN = π(U) for some open setU ⊆ G that is closed under
equivalence.

By (†), no two vertices ofG are equivalent, so the identification does not alterV . We
may thus viewG ∪ Ω ′ as the point set of̃G, and inparticular denote every equivalence
class which is not a singleton by the unique vertex it contains. For the rest of this
paper,
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G will always denote the space ofG ∪ Ω endowed with TOP;
G̃ will always denote the space ofG ∪ Ω ′ endowed with ITOP.

Note that if no end ofG is dominated (in particular, ifG is locally finite) thenG andG̃
coincide.

Let us collect some facts aboutG andG̃. Recall that ifG is locally finite, thenG(= G̃)

is compact. WhenG has a vertex of infinite degree, however, then neitherG nor G̃ is
compact. For example, ifG is obtained from a rayR by adding a new vertexx and
infinitely manyx–R edges, then the setN ⊆ G̃ obtained fromG̃ by deleting a closed
interval Ie in the interior of everyx–R edgee is open. ButN can be combined with an
open interval around eachIe to anopen cover of̃G that has no finite subcover. However, if
G is 2-connected and satisfies (2), thenthe subsetV ∪Ω ′ of G̃ is compact. (By the remark
following (2), G has a locally finite normal spanning tree, which can be used to show that
V ∪ Ω is a compact subset ofG (seeSection 7). But everyopen cover ofV ∪ Ω ′ ⊂ G̃
corresponds viaπ−1 to anopen cover ofV ∪ Ω ⊂ G, and therefore has a finite subcover.)

Using straightforward topological arguments one can show that, inG̃ just as inG, every
arc whose endpoints are vertices or ends, and similarly every circle, includes every edge of
which it contains an inner point.

Lemma 4.1. For every vertexv ∈ G, the setΩv of ends dominated byv is closed inG.

Proof. Consider any pointx ∈ cl(Ωv); we show that x ∈ Ωv . Clearly x is an end; pick
a ray R ∈ x. For every finite setS ⊆ V(G − v), some endω ∈ Ωv belongs toC(S, x).
Sincev sends an infinite fan toω it must lie inC(S, x), and soG − Scontains av–R path.
Choosing asS the vertex sets of suitable initial segmentsR′ of R together with anyv–R′
paths already found, we may thus construct an infinitev–R fan inductively. Hencex ∈ Ωv ,
as claimed. �

Recall that acut in G is the setF of all edges between the two (non-empty) classes of
some bipartition ofV .

Lemma 4.2. Let F ⊆ E be afinite cut in G and let D be a component of G− F. ThenD
is closed under equivalence, i.e. every set of the formπ(D̂) is open inG̃. If x, y ∈ V ∪ Ω ′
belong to different components of G− F, then every x–y arc A inG̃ contains an edge
from F.

Proof. Let S be the set of all endvertices outsideD of edges fromF . ThenS is finite and
D is a component ofG − S. Sincethere are only finitely many edges betweenSandD, no
end belonging toD is dominatedby a vertex outsideD, and all ends dominated by vertices
in D belong toD. ThusD is closed under equivalence, and henceπ(D̂) is open inG̃.

To prove the second claim, suppose thatA does not contain an edge fromF . Then A
avoids F̊ . Let Nx be a set of the form̂C(F, x) and letNy be a union of setŝD, one for
every componentD �= C(F, x) of G − F , such that Nx and Ny are disjoint. Then both
Nx andNy are closed under equivalence. Henceπ(Nx) andπ(Ny) are non-empty disjoint
open subsets of̃G whose union containsA, a contradiction to the connectedness ofA. �

Lemma 4.3. If G satisfies(3) and x, y ∈ V ∪ Ω ′ are distinct, then x can be separated
from y in Gby finitely many edges.
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Proof. The lemma clearly holds when bothx andy are vertices: just take as the separator
the edges of any maximal set of edge-disjointx–y paths. Now suppose thatx ∈ Ω ′, and
let Sbe a finite set of vertices separatingx from y in G. As no vertex dominatesx, there is
for everyz ∈ Sa finite setSz of vertices inC(S, x) that separatesz from x in the subgraph
of G induced byz and all the vertices inC(S, x). ThenS′ := ⋃

z∈S Sz separatesx from S
in G. As G satisfies (3), there is afinite setF ⊆ E separatingS from S′ in G. ThenF also
separatesx from y, as desired. �

In Proposition 3.4we constructed a graphG that satisfies (2) but for whichG̃ contains
a circle whose circuit is empty. The following result, which by continuity is an immediate
consequence ofLemmas 4.2and4.3, shows that such circles cannot occur ifG satisfies
(3). Indeed, all graphsG satisfying (3) also satisfy (1) under ITOP:

Corollary 4.4. Suppose that G satisfies(3), and let x, y ∈ V ∪Ω ′. Then for every x–y arc
A in G̃ theunion of all edges contained in A is dense in A. Similarly, for every circle D in
G̃ theunion

⋃
C(D) of its edges is dense in D.�

The following lemma is an analogue ofLemma 4.2for finite vertex separators. As a
corollary of this lemma we obtain a weakening ofCorollary 4.4 for arbitrary graphsG
satisfying(†): for every arcA in G̃ the set of itspoints inG, i.e. of its non-ends, is dense
in A.

Lemma 4.5. Let S be a finite set of vertices of G. Then for every component D of G− S,

every set of the formπ(D̂)\S isopen inG̃. If x, y ∈ V ∪ Ω ′ belong to distinct components
of G − S then every x–y arc inG̃ meets S.

Proof. By Lemma 4.1, every set of the form D̂\⋃
s∈SΩs is open in G, and it is

clearly closed under equivalence. So its imageπ(D̂)\S in G̃ is open inG̃.
For the second part of the lemma one shows as in the proof ofLemma 4.2that anyx–y

arc avoidingScannot be connected (a contradiction).�

Corollary 4.6. For every arc A inG̃ the set A∩ G is dense in A. �

Our next aim is to prove that̃G is Hausdorff. In the proof of this result we will use a
normal spanning tree ofG, which weknow to exist by(†) andLemma 2.4.

We need some more notation. Given a rooted treeT and a vertext ∈ T , we write �t	
for the unique path inT that joinst to the root. We say thatt ′ lies above t if t ∈ �t ′	,
and denote by�t the subtree ofT induced by all vertices abovet (including t itself).
Now suppose thatT is anormal spanning tree of a graphG. UsingLemma 2.5, one easily
shows that every endω of G contains exactly one rayRω ⊆ T starting at the root ofT ; in
particular, disjoint rays ofT belong to distinct ends ofG. (Sonormal spanning trees are
end-faithful; seeSection 7.)

Given avertexx on Rω, we write x Rω for the subray ofRω induced by all its vertices
above x, and x̊ Rω for the rayx Rω − x. We say that an endω of G lies abovea vertex
x ∈ G if all its rays have a tail in�x; by Lemma 2.5, this is the case if and only ifx lies on
Rω. Note that if x andy are neighbours onRω andy lies abovex, thenC(�x	, ω) consists
of the subgraph ofG induced by�y together withall the ends ofG that lie abovey in T .
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Note also that an endω lies above any vertex that dominates it, and that a vertex dominates
ω if and only if it has a neighbour abovez for every vertexz ∈ Rω.

Given avertexx ∈ G, anyunion of half-edges[x, z) ⊂ e, one for every edgee at x,
will be called anopen star around x.

Theorem 4.7. G̃ is Hausdorff.

Proof. We have to showthat for every two distinct points ofx, y ∈ G̃ there aredisjoint
open neighbourhoods aroundx and y. We only consider the case that bothx and y are
vertices ofG; theother cases are trivial or similar. So we have to find disjoint open setsNx

andNy in G suchthatx ∈ Nx , y ∈ Ny, andbothNx andNy are closed under equivalence.
(Thenπ(Nx) andπ(Ny) are disjoint open neighbourhoods ofx and y in G̃.) Let us first
constructNx .

We may assume thatG is connected; then byLemma 2.4it has anormal spanning
treeT . Givenan endω of G, let Rω denote the unique ray inT that belongs toω and starts
at the roott0 of T .

For every endω ∈ Ωx define verticestω andsω on Rω as follows. Sinceω /∈ Ωy andΩy

is closed inG (Lemma 4.1), there exists a vertextω ∈ x̊ Rω such that neithery nor an end
from Ωy lies abovetω in T . Since novertex in�tω	\{x} dominatesω, there exists a vertex
sω ∈ t̊ω Rω suchthatG contains no edge between�sω and�tω	\{x} (Fig. 7).

Fig. 7. ConstructingNx in the proof ofTheorem 4.7.

Let N1 be the union of an open star aroundx and sets of the form̂C(�sω	, ω), one
for eachω ∈ Ωx. Then N1 is open inG and containsΩx ∪ {x}. If N1 is closed under
equivalence we setNx := N1.
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Sosuppose thatN1 is not closed under equivalence.N1 contains every end lying above
any of its vertices other thanx, andthus N1 contains all ends dominated by vertices in
N1. Hence there must be an endτ ′ in N1 that is dominated bya vertexoutsideN1. For
every suchτ ′ there exists anω ∈ Ωx suchthat τ ′ lies abovesω. For everyω ∈ Ωx let
Z1

ω be the set of all verticesz /∈ N1 dominating some end in̂C(�sω	, ω) ⊆ N1. Then
Z1

ω ⊆ �sω	\�tω	, by the choice ofsω. Let Ω1
ω be the set of all ends outsideN1 dominated

by vertices inZ1
ω. Let τ be any end inΩ1

ω, dominated byz ∈ Z1
ω, say. Thenτ lies abovez,

andz also dominates an endτ ′ ∈ N1 abovesω. As z is the only vertex dominatingτ , no
vertex in�tω	 dominatesτ . Hence there is a vertexsτ ∈ z̊ Rτ ⊆ tω Rτ suchthatG contains
no edge between�sτ  and�tω	. Let N2 be the union of open stars around the vertices in⋃

ω∈Ωx
Z1

ω and sets of the form̂C(�sτ 	, τ ), one for eachτ ∈ ⋃
ω∈Ωx

Ω1
ω.

Note thatN1∪N2 contains all points that are equivalent to points inN1. Thus as before,
N1 ∪ N2 is closed under equivalence if no end inN2 is dominated by a vertexz outside
N1 ∪ N2. If such verticesz exist, then we extendN1 ∪ N2 further by adding an open set
N3 ⊆ G which contains all ends dominated by such verticesz and open stars around these
vertices. ThusN1 ∪ N2 ∪ N3 contains all points that are equivalent to points inN1 ∪ N2.
We continue inthis fashion for (at most)ω steps and putNx := N1 ∪ N2 ∪ · · ·. ThenNx

is closed under equivalence and it consists of an open star aroundx together with a subset
of

⋃
ω∈Ωx

Ĉ(�tω	, ω).

Similarly we construct anopen setNy ⊆ G which containsy and is closed under
equivalence, and which consists of an open star aroundy together with a subset of⋃

ω′∈Ωy
Ĉ(�tω′ 	, ω′) (wheretω′ is a vertex onRω′ such that neitherx nor an end from

Ωx lies abovetω′ ).
It remains to show thatNx and Ny are disjoint. First note thatx /∈ Ny since for each

ω′ ∈ Ωy, x does not lie abovetω′ in T . Similarly, y /∈ Nx . Let usnow show that for all
ω ∈ Ωx andω′ ∈ Ωy we haveĈ(�tω	, ω) ∩ Ĉ(�tω′ 	, ω′) = ∅. Everyvertex and every
end in Ĉ(�tω	, ω) lies abovetω in T and so does an endvertex of every (half) edge in
Ĉ(�tω	, ω); and the same is true forω′. As by definition none oftω, tω′ lies above the
other, it follows that Ĉ(�tω	, ω) andĈ(�tω′ 	, ω′) are disjoint. ThereforeNx and Ny are
disjoint if the open stars aroundx andy were chosen small enough.�

We conclude this section by proving three simple lemmas to be used inSection 5.

Lemma 4.8. Suppose that G satisfies(2) and has distinct vertices x1, x2, . . . any three
of whichlie on a common arc iñG. Then there exists a subsequence of x1, x2, . . . which
converges inG to an endof G.

Proof. Suppose not. Since all the verticesxi must lie in the same component ofG, we
may assume thatG is connected. ThenLemma 2.2implies thatG contains a subdivided
infinite starSwith leaves in{x1, x2, . . .}. (Indeed,G cannot contain a rayR with infinitely
many{x1, x2, . . .}–R paths, since then the starting vertices of these paths would converge
to the end ofG containingR.) Let X denote the set of leaves ofS, and lets be thecentre
of S. Suppose first that one componentC of G−s contains infinitely many vertices fromX.
ApplyingLemma 2.2again to the graphC and the setX∩V(C) =: X′ wefind asubdivided
infinite starS′ in C whose leaves lie inX′. It is now easy to find infinitely many internally
disjoint paths inG betweens and the centre ofS′, which contradicts our assumption that
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G satisfies (2). Therefore there are infinitely many components ofG − s each containing a
vertexfrom X. Let x, x′, x′′ ∈ X be vertices from different components ofG − s, and let
A be an arc iñG containing them. ThenA has a subarc which avoidss but joins two of the
threepointsx, x′, x′′, a contradiction toLemma 4.5. �

Lemma 4.9. Suppose that G satisfies(2). Let x1, x2, . . . and y1, y2, . . . be sequences of
distinct vertices of G which inG converge to endsωx andωy, respectively. Suppose that
for every k≥ 1 there exists an arc Ak in G̃ containing all the points x1, y1, . . . , xk, yk in
that order. Thenωx = ωy.

Proof. Suppose thatωx �= ωy and let S be a finite set of vertices ofG separatingωx

from ωy in G. By considering subsequences we may assume thatxi ∈ C(S, ωx) and
yi ∈ C(S, ωy) for all i ≥ 1. Then the arcA|S|+1 contains a subarc which avoidsSbut joins
xi to yi for somei ≤ |S| + 1, contradictingLemma 4.5. �

Our last lemmashows that ifG satisfies (2) then every topological ray iñG converges:

Lemma 4.10. Suppose that G satisfies(2), and let σ : [0, 1) → R ⊆ G̃ be a
homeomorphism. Thenσ can be extended to a continuous map[0, 1] → G̃.

Proof. UsingCorollary 4.6, wecan find a sequenceΣ = (x1, x2, . . .) of points inR ∩ G
whose images underσ−1 converge to 1. Clearly the lemma holds if all but finitely many
of the xi lie on a common edge. We may therefore assume that everyxi is a vertex.
By Lemma 4.8, some subsequence ofΣ converges inG to an endω of G. We show that
putting σ(1) := π(ω) makesσ continuous (at 1).

Let N be an open neighbourhood ofσ(1) = π(ω) in G̃ andS a finite set of vertices
suchthatπ(Ĉ(S, ω)) ⊆ N. By Lemma 4.5, π(C(S, ω) ∪ E(S, ω))\S is open inG̃, and
the frontier of this set iscontained in the finite setS. As R has arbitrarily late pointsxi in
π(C(S, ω)), this implies thatR has a final segment inπ(Ĉ(S, ω)), as required. �

Lemma 4.10implies that for every topological rayR in G̃ there is aunique pointp ∈ G̃
suchthat R ∪ {p} is a topological path iñG. We will call p theendpointof R.

5. Trees and paths in the identification topology

In Section 3we saw that even if our graphG = (V, E) satisfies (2), it may still happen
that G̃ has no topological spanning tree (Corollary 3.5). We now show that a topological
spanning tree does exist if we strengthen our assumption of (2) to (3). To do so, we shall use
Zorn’s lemma to show that the set of path-connected subspaces ofG̃ has a minimal element
with respect to edge-deletion (Lemma 5.1), which is then easily seen to be a topological
spanning tree.

Let us recall some notation. A subsequenceΣ ′ of a given (transfinite well-ordered)
sequenceΣ is cofinal in Σ if for every s ∈ Σ there is an element ofΣ ′ that does not
strictly precedes. Given a (graph-theoretical) rooted treeT andi ≥ 0, thei th levelof T is
the set of all its vertices at distancei from the root ofT .

The following lemma has been abstracted from the proofs ofTheorems 5.2, 5.3and6.3,
and will be used in all those proofs.
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Lemma 5.1. Assume that G satisfies(2), and let x, y ∈ V ∪Ω ′. Suppose that(Aα)α<γ is a
(transfinite) sequence of x–y arcs iñG. Then there is a topological x–y path P iñG and a
dense subset P∗ of P such that P∗ ⊆ G and for all points p∈ P∗ the arcs Aα containing
p form a cofinal subsequence of(Aα)α<γ . In particular, for every edge e whose interior
meets P the arcs Aα containing e form a cofinal subsequence of(Aα)α<γ .

Proof. We may assume thatG is connected and consider only the case thatx, y ∈ V ; the
other cases are similar. Ifγ is a successor ordinal, sayγ = β + 1, then byCorollary 4.6
we can setP := Aβ . Thus we may assume thatγ is a limit ordinal. ByLemma 2.4, G has
anormal spanning treeT . Let uscall a pointp ∈ G goodif the arcsAα containingp form
a cofinal subsequence of(Aα)α<γ . To construct our topologicalx–y pathP, we shall first
assign to every rationalr ∈ [0, 1] a good pointσ(r ) ∈ G. We then extend this mapσ to a
continuous map[0, 1] → G̃, whose image will be the desired topological pathP.

Putσ(0) := x andσ(1) := y, and letr1, r2, . . . be an enumeration of(0, 1) ∩ Q. We
define our partial mappingσ in at mostω steps, so that after stepn its domain is a closed
subset of [0, 1] containingrn.

If xy is an edge of G and theAα consisting ofxy form a cofinal subsequence of
Σ0 := (Aα)α<γ , then letσ : [0, 1] → xy ⊆ G̃ be a homeomorphism sending 0 tox
and 1 toy. (So in this case we takexy for P.) Otherwise we defineσ only at r1. Our
candidates forσ(r1) are all the good verticesz ∈ V\{x, y}. SinceG satisfies (2), there
is a finite setS ⊆ V separatingx from y in G − xy. By Lemma 4.5, S meets every arc
Aα not consisting ofxy, so there is atleast one candidate forσ(r1). From amongst all the
candidates we choose a vertexz1 at the lowest possible level ofT , setσ(r1) := z1, and
defineΣ1 to be the cofinal subsequence ofΣ0 consisting of allAα containingz1.

Next we considerr2. For example, let us assume thatr2 ∈ (0, r1). If xz1 is an edge ofG
and if the subsequenceΣ2

xz1
of Σ1 consisting of allAα with x Aαz1 = xz1 is cofinal inΣ1,

we defineσ on (0, r1) so as to send[0, r1] continuously and bijectively ontoxz1 and put
Σ2 := Σ2

xz1
. Otherwise we just choose a good vertex asσ(r2). Thistime ourcandidates for

σ(r2) are the verticesz for which the subsequenceΣ2
z ⊆ Σ1 of all Aα with z ∈ x̊ Aα z̊1 is

cofinal inΣ1. (AsΣ1 is cofinal inΣ0, all these candidates forσ(r2) are good vertices.) As
before there is at least one candidate. From amongst all the candidates we choose a vertex
z2 at the lowest possible level ofT , andputσ(r2) := z2 andΣ2 := Σ2

z2
. As before,Σ2 is

cofinal inΣ1 and hence inΣ0 = (Aα)α<γ .
Now consider the first rationalr in r1, r2, . . . for which σ(r ) is not yet defined. Since

the current domain ofσ is closed in [0, 1] and its frontier consists of rationals, there are
rationalsq1 < r < q2 suchthatσ is already defined on bothq1 andq2 but not yet on any
point in (q1, q2). For all Aα in Σ2 we consider the segmentsσ(q1)Aασ(q2) and extend
σ as before, either as a homeomorphism between[q1, q2] and the edgeσ(q1)σ (q2) or by
choosing a good vertex asσ(r ). We continue inthis fashion for at mostω steps until we
have definedσ on [0, 1] ∩ Q. Let X be the domain ofσ . Then X contains all rationals
in [0, 1] and, for each irrationalq ∈ X, σ (q) is an innerpoint of an edge contained in
σ(X). Moreover,σ is injective onX. In what follows we will extendσ to a continuous
map [0, 1] → G̃ by sending the points of[0, 1]\X to suitable ends ofG (or to vertices
dominating them). Asσ(X) ⊇ σ([0, 1] ∩ Q) consists of good points,σ([0, 1]) will then
be a topological pathP as desired.
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Let I be the set of all pointsp ∈ [0, 1] for which there exists a sequenceq1 < q2 < · · ·
of rationals converging top such that eachσ(qi ) is a vertex. Forp ∈ I , let Qp

denote the set of sequencesσ(q1), σ (q2), . . . of vertices corresponding to such sequences
q1 < q2 < · · · of rationals. Similarly, let I ′ be the set of all pointsp ∈ [0, 1] for which
there exists a sequenceq1 > q2 > · · · of rationals converging top such that eachσ(qi ) is
a vertex. Forp ∈ I ′, letQ′

p denote the set of sequencesσ(q1), σ (q2), . . . corresponding to
such sequencesq1 > q2 > · · ·. Note that[0, 1]\X ⊆ I ∩ I ′.

Let us prove the following:

For everyp ∈ I all the sequences inQp converge inG to a single
endωp. Similarly, for everyp ∈ I ′ all the sequences inQ′

p converge
in G to a single endω′

p.

(∗)

We only consider the case thatp ∈ I ; theother case is similar. Consider any finite set
U ⊂ (0, 1) ∩ Q, and letr i be the last element ofU in our enumeration of(0, 1) ∩ Q. Then
every Aα with α ∈ Σ i contains all the points ofσ(U ∪ {0, 1}), in theorder induced by
[0, 1] andσ . Lemma 4.8therefore implies that every sequence inQp has a subsequence
which converges inG to an end ofG. Lemma 4.9shows that these ends are the same for
all such subsequences and all choices of sequences inQp; in particular, everysequence in
Qp must itself converge to this single end. This completes the proof of(∗).

We now extendσ to all of [0, 1] by settingσ(p) := π(ωp) for all p ∈ [0, 1]\X. Thus if
ωp ∈ Ω ′ thenσ(p) = ωp, while otherwiseσ(p) is the unique vertex dominatingωp. This
completes the definition ofσ .

Forour proof thatσ is continuous we need the following assertions about allp ∈ [0, 1]:
If p /∈ X thenωp = ω′

p.

If p ∈ I ∩ Q (and thusσ(p) is a vertex) thenσ(p) dominatesωp.

If p ∈ I ′ ∩ Q (and thusσ(p) is a vertex) thenσ(p) dominatesω′
p.

(∗∗)

We only consider the case thatp /∈ X; the other cases are similar. Suppose that
ωp �= ω′

p. Since p /∈ X, and after any finite number of steps in the inductive defini-
tion of σ the set ofpoints in [0, 1] for whichσ was still undefined was open and the
frontier of this set consisted of rationals, there is a sequenceσ(s1), σ (s2), . . . in Qp with
the property that for everyi ≥ 1 there are rationalsq1

i , q2
i suchthatq1

i < si < p < q2
i

and such that whenσ was defined forsi it had previously been defined forq1
i andq2

i but
not for any point in(q1

i , q2
i ). Thenσ(q1

i ) andσ(q2
i ) are vertices, the pointsq1

1 < q1
2 < · · ·

converge top from below, andq2
1 ≥ q2

2 ≥ · · · converge top from above. By choosing
a subsequence if necessary we may further assume thatq2

1 > q2
2 > · · ·. Then the se-

quenceσ(q1
1), σ (q1

2), . . . lies in Qp while σ(q2
1), σ (q2

2), . . . lies inQ′
p. Now (∗) implies

thatσ(q1
1), σ (q1

2), . . . converges toωp, while σ(q2
1), σ (q2

2), . . . converges toω′
p. Let Sbe

a finite set of vertices separatingωp from ω′
p in G. Then for all but finitely manyi we have

σ(q1
i ) ∈ C(S, ωp) butσ(q2

i ) ∈ C(S, ω′
p), andhence every arc of the formσ(q1

i )Aασ(q2
i )

meetsS (Lemma 4.5). Hence for all but finitely manyi some vertex inS was a candi-
date forσ(si ). But since, by(∗), the sequenceσ(s1), σ (s2), . . . converges toωp in G,
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eventually the verticesσ(si ) lie at a higher level of T than all the vertices fromS, contra-
dicting the definition ofσ(si ) for thesesi . This completes the proof of(∗∗).

Let us nowshow thatσ : [0, 1] → G̃ is continuous. This is clear at pointsp ∈
[0, 1]\(I ∪ I ′). Indeed, for all suchp, thepointσ(p) is either an innerpoint of an edge con-
tained inσ([0, 1]) or a vertex incident with two edges contained inσ([0, 1]) or, if p = 0, 1,
an endvertex of an edge contained inσ([0, 1]). So suppose thatp ∈ I ∪ I ′. We will only
consider the case thatp /∈ X, the remaining cases being similar. LetN be an open neigh-
bourhood ofσ(p) in G̃. Then there is a finite setSof vertices such thatπ(Ĉ(S, ωp)) ⊆ N.
We have to showthat there exist pointsa < p < b such that (a, b) ⊆ σ−1(N). If
not, then there exists a sequencer1, r2, . . . of reals converging top whose images un-
der σ all lie outsideπ(Ĉ(S, ωp)). We mayassume that theseσ(r i ) are not inner points
of edges. Indeed, asσ is injective onX, only finitely many such edges can have an end-
vertex in S, and so all but finitely many of ther i whose image is an inner point of an
edge can be replaced by a rational whose imageis an endvertex of that edge lying out-
sideS∪ C(S, ωp) and hence outsideπ(Ĉ(S, ωp)). Thus in particular nor i is an irrational
contained inX. We may even assume that everyr i is rational: if r i ∈ [0, 1]\X ⊆ I then
ωri /∈ C(S, ωp) (asσ(r i ) /∈ π(Ĉ(S, ωp))), so by(∗) we may replacer i with a rational close
to it whose image isa vertexoutsideS∪C(S, ωp). But now the sequenceσ(r1), σ (r2), . . .

has a subsequence inQp or Q′
p not converging toωp = ω′

p (cf. (∗∗)), in violation
of (∗). �

Theorem 5.2. If G is connected and satisfies(3), thenG̃ has a topological spanning tree.

Proof. Let X be the set of all path-connected subspaces ofG̃ of the form G̃\F̊ with
F ⊆ E. ThenX is non-empty sincẽG ∈ X . Let X be ordered by inclusion, and let us
use Zorn’s lemma to show thatX has a minimal element. Let(Xα)α<γ be a (well-ordered)
descending chain inX , sayXα = G̃\F̊α . (Thus(Fα)α<γ is an ascending chain of subsets
of E.)

Let us show thatX := ⋂
α<γ Xα ∈ X . Clearly X = G̃\F̊ with F := ⋃

α<γ Fα . In
particular,V ∪ Ω ′ ⊆ X. To show that X is path-connected, letx, y be distinct points in
V ∪Ω ′. In everyXα there is a topologicalx–y path, which byLemma 2.1andTheorem 4.7
contains anx–y arc Aα. By Lemma 5.1these yield a topologicalx–y path P in G̃ that
avoids F̊ and hence lies inX. We have thus shown that every descending chain inX has a
lower bound, and hence thatX has a minimal elementT .

It remains to show thatT is a topological spanning tree of̃G. If not, thenT contains a
circle D. By Corollary 4.4, D contains an edgee. But thenT\e̊ is still path-connected and
hence contained inX , contradicting the minimality ofT . �

Let us reapplyLemma 5.1to prove the following:

Theorem 5.3. If G is countable and satisfies(2), then every closed connected subset ofG̃
is path-connected.

Proof. Suppose thatX ⊆ G̃ is closed and connected, but not path-connected. It is easily
seen that there arex, y ∈ V ∪ Ω ′ lying in dif ferent path-components ofX. Let e1, e2, . . .

be an enumeration of all the edgese ∈ G with e̊ � X, and letz1, z2, . . . be an enumeration
of all the vertices ofG outsideX. Let Gi := G − {e1, . . . , ei } − {z1, . . . , zi }.
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Suppose thatx and y belong to the same component ofGi for all i . Then each̃Gi

contains anx–y arc Ai that is a finite path or the closure of a ray or a double ray, and
by Lemma 5.1there is a topologicalx–y path P in G̃ with a dense subsetP∗ suchthat
P∗ ⊆ G and every point fromP∗ lies in Ai for infinitely manyi . ThenP∗ ⊆ X and, asX
is closed,P ⊆ X. This contradicts the choice ofx andy.

So there exists ani suchthat x and y belong to different components ofGi . We will
show that this implies thatX cannot be connected (a contradiction). PutF := {e1, . . . , ei }
and S := {z1, . . . , zi }. Let Cx andCy denote the components ofGi with x ∈ Cx and
y ∈ Cy. By makingF smaller (and replacingGi with a supergraph) we may assume that
every edge inF joinsCx to Cy. From the interiorof every edgee ∈ F pick a pointae not
in X. Let Sx be the union ofS with the set of endvertices of edges fromF outsideCx.
DefineSy correspondingly. ByLemma 4.5, every set of the form π(Ĉx)\Sx is open inG̃.
Since no end belonging toCx is dominated by a vertex inSx\S, we haveπ(Ĉx)\Sx =
π(Ĉx)\S. Let Nx be the set of the formπ(Ĉx)\Swhich containse̊ for every edgee joining
Cx to S and which contains the half-edge[c, ae) ⊆ e with c ∈ Cx for everye ∈ F . Define
Ny correspondingly. By our assumption onF , every componentC of Gi other thanCx, Cy

is a component ofG − S. For every suchC let NC be the set of the formπ(Ĉ)\S which
contains ˚e for every edgee joining C to S. Let N′

x be the union ofNx , all the NC and the
interiors of all the edges inG[S]. ThenN′

x and Ny are disjoint open subsets of̃G whose
union containsX, contradicting the connectedness ofX. �

It is not hardto show thatG̃ is locally path-connected. This implies that every open
connected subset of̃G is path-connected. We expect thatTheorem 5.3extends to connected
subsets that are neither closed nor open, but have been unable to prove this.

6. Cycles in the identification topology

In this section we extendTheorems 3.1–3.3to all graphsG satisfying (2) endowed with
ITOP.

Theorem 6.1. Let G be a graph satisfying(2). Then the fundamental circuits of̃G with
respect to any fixed topological spanning tree span its cycle spaceC(G̃).

The proof of this theorem is similar to its analogue for locally finite graphs [4, Theorem
5.1]. The following lemma ensures that sums of distinct fundamental circuits are always
well-defined.

Lemma 6.2. Let G be a graph satisfying(2). Then the fundamental circuits of̃G with
respect to any fixed topological spanning tree T form a thin family.

Proof. Suppose not. Then there exists an edgee = xy that lies in infinitely many
fundamental circuitsCei (i = 1, 2, . . .). Clearly e ∈ E(T). Let Bx and By be the
path-components ofT\e̊ containingx and y, respectively. SinceT contains no circle,
Lemma 2.1andTheorem 4.7imply that Bx and By are distinct. Clearly eachei joins a
vertex xi ∈ Bx to a vertexyi ∈ By. As all the ei are distinct, at least one of the sets
Ux := {xi | i ≥ 1} andUy := {yi | i ≥ 1} is infinite. Let us assume thatUx is infinite.
Apply Lemma 2.3to Bx andUx to obtain an infinite setU ′

x ⊆ Ux and either a topological
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combCx ⊆ Bx whose set of teeth isU ′
x or a topologicalℵ0-starSx ⊆ Bx whose set of

leaves isU ′
x. If Lemma 2.3returns a topological combCx, let px ∈ G̃x be the endpoint of

its backRx (as defined in and afterLemma 4.10). By our definition of a comb,px is a
limit of vertices or ends, and hence is either itself a vertex or an end; in particular,px ∈ T .
ReplacingCx with a subcomb if necessary, we may assume thatpx /∈ Cx; thenRx ∪ {px}
is an arc inBx. Let Ax be the set of all arcs inCx ∪ {px} joining px to a tooth ofCx. If
Lemma 2.3returns a topologicalℵ0-star Sx, let px be its centre (which may be an end),
and letAx be the set of all arcs inSx joining px to a leaf ofSx.

Let U ′
y ⊆ Uy be the set of allyi for which xi ∈ U ′

x. If U ′
y is finite, let py be any point

in U ′
y suchthat py = yi for infinitely manyi with yi ∈ U ′

y. If U ′
y is infinite, then apply

Lemma 2.3again toBy andU ′
y to obtain an infinite setU ′′

y ⊆ U ′
y and either a topological

combCy or a topologicalℵ0-star Sy with teeth (resp. leaves) inU ′′
y . Define py andAy

as earlier forx. Thus in each case we havepy ∈ By and, ifU ′
y is infinite,Ay consists of

arcs inBy. LetA be the (infinite) set of allpx–py arcs with a first segment inAx, another
segment equal to someei , and, if U ′

y was infinite, a final segment inAy. Note that every
arc inA contains a vertex ofBx other thanpx; hence if px andpy are both vertices andG
contains the edgeexy := px py, then no arc inA meets ˚exy. Moreover, by construction of
Ax andAy no vertex other thanpx and py lies on more than finitely many arcs inA.

By (2), there is afinite setS of verticesseparatingpx from py in G (resp. inG − exy,
if exy exists). ByLemma 4.5every arc inA meetsS, andhence infinitely many arcs inA
share an inner vertex (a contradiction).�

Proof of Theorem 6.1. Let T be a topological spanning tree of̃G. It suffices to prove the
following claim.

Every circuitC is equal to the sum of all the fundamental circuits

Ce with e ∈ C\E(T).
(∗)

Before proving (∗), let us show how it implies Theorem 6.1. Let Z ∈ C(G̃) be
given. By definition,Z is a sumZ = ∑

i∈I Ci of distinct circuits Ci . By (∗) we have
Ci = ∑

C′∈Ci
C ′ with Ci := {Ce | e ∈ Ci \E(T)} for all i ∈ I . LetC be the family

⋃
i∈I Ci .

(So a fundamental circuit lying in severalCi occurs more than once inC.) Then every
fundamental circuitCe occurs only finitely often inC: if Ce occurs in someCi then it does
so only once, givinge ∈ Ci ; as thefamily (Ci )i∈I is thin, this happens for only finitely
manyi . So byLemma 6.2the familyC is thin. Clearly, the circuits inC sum toZ.

Let us now prove (∗). By Lemma 6.2the family of all fundamental circuitsCe with
e ∈ C\E(T) is thin, so it suffices to show that it sums toC. Thus for every edgef ∈ G
we have to show thatf lies in C if and only if it lies in anodd number of the circuitsCe

in (∗). This is clear if f /∈ E(T). So letus assume thatf ∈ E(T) and let B1 and B2
be the path-components ofT\ f̊ containing the two endvertices off , respectively. Then
B1 ∪ B2 = T\ f̊ (becauseT is path-connected), andB1 �= B2 (becauseT contains no
circle). By Lemma 6.2, the setE f of all the edges ofG betweenB1 and B2 is finite,
becauseE f \{ f } consists of precisely those edgese /∈ E(T) whose fundamental circuitCe

contains f . We will show that|E f ∩ C| is even. This will imply thatf ∈ C if and only
if C contains an odd number of other edges fromE f , i.e. if and only if f lies in an odd
number of the circuitsCe in (∗).
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So suppose that|E f ∩ C| is odd. Let D be a circle inG̃ whose circuit isC. Then
the closure ofD\⋃

(E f ∩ C) consists of subarcs ofD between the endpoints of edges
in E f ∩ C. Since|E f ∩ C| is odd, there must be at least one such arcA which joins
a vertexx1 ∈ B1 to a vertexx2 ∈ B2. Sinceany x1–x2 path in G contains aB1–B2
edge,E f separatesx1 from x2 in G. But thex1–x2 arc A avoids E̊ f , so this contradicts
Lemma 4.2. �

Theorem 6.3. Let G be a graph satisfying(2). Then every element ofC(G̃) is a union of
disjoint circuits.

Proof. Let Z = ∑
α<γ Cα be any element ofC(G̃), the Cα being circuits in G̃. Every

Cα is a countable set (of edges), because every edge on a circle has an inner point that
corresponds to a rational point on the unit circle. Consider the auxiliary graphH whose
vertices are theCα , and inwhich Cα andCα′ are joined by an edge whenever they are not
disjoint. Since theCα form a thin family and are countable, so are the components ofH .
For each componentD of H let ZD be the sum of all thoseCα that are vertices ofD.
ThusZD is the sum of countably many circuits, andZ is the disjoint union of all theZD.
Therefore, to prove the theorem forZ, it suffices to show that eachZD is aunion of disjoint
circuits. So let us prove the following claim.

Let Z′ = ∑
i∈I Ci be the sum of countably many circuits and let

e = xy be any edge inZ′. ThenG̃ has anx–y arc A that contains
only edges fromZ′\{e}.

(∗)

Before weprove(∗), let us see how itimplies thatZ′ is aunion of disjoint circuits. Let
x1y1, x2y2, . . . be an enumeration of all the edges inZ′. Apply (∗) to obtain anx1–y1 arc
A′

1 in G̃ that containsonly edges fromZ′\{x1y1}. ThenA′
1 ∪ x1y1 is a circle inG̃ whose

circuit C(A′
1 ∪ x1y1) =: C′

1 containsx1y1, andZ′′ := Z′ + C′
1 is a subset ofZ′ thatdoes

not containx1y1. Let x j yj be the first edge fromx1y1, x2y2, . . . contained inZ′′, and apply
(∗) to Z′′ andx j yj to obtain anx j –yj arc A′

2 which contains only edges fromZ′′\{x j yj }.
Again A′

2 ∪ x j yj is a circle inG̃ whose circuitC(A′
2 ∪ x j yj ) =: C′

2 containsx j yj . Let
Z′′′ := Z′′ + C′

2 and continue in this fashion for at mostω steps to exhaustZ′. ThenZ′ is
the union of the disjoint circuitsC′

1, C′
2, . . . .

To prove (∗), let G′ be the subgraph ofG with the edge set
⋃

i∈I Ci . Let E′ :=
(E(G′)\Z′) ∪ {e}. Choose an enumeratione0, e1, . . . of the edges inE′, with e0 = e.
We shall show that for eachj ≥ 1 there is anx–y arc Aj in G̃ that contains only
edges inE(G′)\{e0, . . . , ej }. Lemma 5.1then yields a topologicalx–y pathP in G̃ which
meets only the interiors of edges that lie onAj for infinitely many j , andhencelie in
E(G′)\E′ = Z′\{e}. By Lemma 2.1andTheorem 4.7, P contains anx–y arc A, which is
as desired in(∗).

So let us prove the existence of the arcsAj . Sincethe family (Ci )i∈I is thin, we can
choose a sequenceX0 ⊂ X1 ⊂ · · · of finite subsets of{Ci | i ∈ I } such that each
X j contains all the circuitsCi containingej . With every circuitC ∈ X j we associate
a finite auxiliary cycleC′, as follows. Let D be a circle inG̃ whose circuit isC. To
form C′, we first take all the edges inC ∩ {e0, . . . , ej } =: EC, in the same cyclic order
as onD. The closure ofD\⋃

EC is a disjoint unionof closed segmentsS of D, and
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we form C′ by replacing inD each of these segmentsS by a new vertexxS joined to
the endpoints ofS. Thesenew vertices shall differ for distinct segmentsS and distinct
circuits C ∈ X j . Now let Hj be the finite graph consisting of the sum of all theC′
with C ∈ X j . Thedefinition of X j implies thatΣC∈X j C, andhence alsoE(Hj ), agrees
with Z′ on the set{e0, . . . , ej }, i.e. contains preciselye = e0 from this set. AsHj is a
finite sum of finite cycles and hence an edge-disjoint union of finitecycles, it contains a
finite pathP′

j that joins the endvertices ofe but does not containe. Replacing in P′
j the

verticesxS and their incident edges with the corresponding circle segmentsS, weobtain a
topologicalx–y pathPj in G̃ that containsonly edges fromE(G′) and avoids the interiors
of all of e0, . . . , ej . Lemma 2.1andTheorem 4.7imply that Pj contains the desiredx–y
arc Aj . �

Corollary 6.4. For every graph G satisfying(2), its cycle spaceC(G̃) is closed under
infinite sums.

Proof. Any sum of (a thin family of) elements ofC(G̃) that are each a union of disjoint
circuits can be rewritten as the sum of all these circuits, since these again form a thin
family. �

Theorem 6.5. Let G be a graph satisfying(3). Then its cycle spaceC(G̃) consists of
precisely those sets of edges that meet every finite cut in an even number of edges.

Proof. Let F ⊆ E(G) be any finite cut inG. As in theproof of (∗) in Theorem 6.1it
can be shown that every circuit meetsF in an even number of edges. Since for every
Z = ∑

i∈I Ci in C(G̃) only finitely many of the circuitsCi meetF , and since finite sums
(mod 2) of even sets are even, it follows thatZ meetsF in an even number of edges.

For the converse implication suppose thatZ ⊆ E(G) meets every finite cut in an
even number of edges, and assume without loss of generality thatG is connected. By
Theorem 5.2, G̃ has a topological spanning treeT . We show that Z is equal to the sum of
all the fundamental circuitsCe with e ∈ Z\E(T). Let f be an edge ofG. We have to show
that f ∈ Z if and only if f lies in an oddnumber ofCe with e ∈ Z\E(T). This is clear
if f /∈ E(T). So suppose thatf ∈ E(T) and letE f be the set of all edges inG joining
the two path-components ofT\ f̊ . Then E f is a cut inG, and the fundamental circuits
containing f are precisely theCe with e ∈ E f \{ f }. Hence byLemma 6.2, E f is finite.
Thus by assumptionZ meetsE f in an evennumber of edges, i.e.Z containsf if andonly
if it contains an odd number of the other edges fromE f . This is thecase if and only iff
lies on an odd number of fundamental circuitsCe with e ∈ Z\E(T), as required. �

We remark thatTheorem 6.5also holds for graphsG which only satisfy (2). Indeed, as
in the proof of Theorem 6.5it can be shown that every element ofC(G̃) meets every finite
cut in an even number of edges. The difference now is that in the proof of the converse
implication we can no longer assume thatG̃ has a topological spanning tree. Instead of
using such a tree, we consider apre-tree T of G̃: a path-connected subspace of̃G that
contains no circlewith a non-empty circuitand which is obtained from̃G by deleting F̊
for someF ⊆ E(G). Thus, every topological spanning tree ofG̃ is a pre-tree.Corollary 4.4
implies that for graphs satisfying (3) the converse is true, while the graph constructed in
Proposition 3.4shows that the converse need not hold if we only assume (2). But as in
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the proof of Theorem 5.2one can show that̃G has a pre-treeT wheneverG satisfies (2).
Moreover, adding an edgee ∈ E(G)\E(T) to T yields a circle inT ∪ e containinge, but
there may be several such circles. However, they must all have the same circuitCe. So we
may think of these circuitsCe as fundamental circuits. As before it can be shown that the
fundamental circuits with respect to a pre-treeT of G̃ form a thin family, so every sum of
distinct such fundamental circuits is well-defined. This again implies that for every edge
f the setE f of all edges inG joining the two path-components ofT\ f̊ is finite. (T\ f̊
consists of two path-components, becausef is not contained in a circle inT .) Finally, as
in the proof of Theorem 6.5one shows that ifZ ⊆ E(G) meets each finite cut inG in an
evennumber of edges thenZ is equal to the sum of allCe with e ∈ Z\E(T), andhence
lies inC(G̃).

Note that the discussion in the previous paragraph also shows thatTheorem 6.1remains
true for the fundamental circuits with respect to any fixed pre-tree.

7. Topological vs. end-faithful spanning trees, and their general existence problem

Our treatment of topological spanning trees has so far been motivated by the role they
can play for the study of the cycle space, which is why we considered the problem of their
existenceonly for the relatively narrow class of graphs satisfying (3). In this section we
consider the existence problem more generally. Unless otherwise mentioned, we assume
that any graph with ends considered is endowed with the standard topology TOP.

Topological spanning trees are closely related to ‘end-faithful’ spanning trees (see
below), which have been widely studied in the literature. In order to put the existence
problem for topological spanning trees into context, we start by pointing out this
relationship.

Let G be any graph. Given any subgraphH ⊆ G, there is a canonical mapη : Ω(H ) →
Ω(G) taking every end ofH to the end ofG that contains it as a subset (of rays).H is
called end-faithful in G if this mapη is a bijection, andtopologically end-faithfulif it
is a homeomorphism of the subspacesΩ(H ) ⊂ H andΩ(G) ⊂ G. (By definition of
TOP, η is always continuous.) IfH is locally finite and end-faithful, it is also topologically
end-faithful (becauseH is compact), but in general the latter is a stronger property.

Proposition 7.1. If T is a topological spanning tree ofG and the graph H:= T ∩ G is
connected, then H is an end-faithful (ordinary) spanning tree of G.

Proof. H is clearly a spanning tree ofG; we show that H is end-faithful. If an endω of
G contains raysR andR′ from two distinct ends ofH , wecan choose them so thatR∪ R′
is a double ray. ThenR ∪ R′ ∪ {ω} is a circle inT , a contradiction. Hence every end ofG
contains at most one end ofH .

Now suppose that some endω of G contains no end ofH . Let x be any vertex ofG, and
let A be anx–ω arc inT (which exists byLemma 2.1). It is easy to see thatA starts with
a ray R ⊆ H as an initial segment [5, Lemma 2.3]; letω′ be the end ofG containingR.
By assumptionω′ �= ω, so R � A. Pick a vertexy ∈ A\R (which again exists by [5,
Lemma 2.3]). Thenx Ay is not equal to the finitex–y pathin H , andhenceT contains a
circle (contradiction). �
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If the spanning treeH in Proposition 7.1is not locally finite, it need not be topologically
end-faithful. For example, consider the graphG obtained fromKℵ1 by adding for every
vertexv a new ray that starts atv but is otherwisedisjoint from theKℵ1 and from the
other new rays. Letω denote the end of theKℵ1 in G. Let H be any end-faithful spanning
tree ofG (which is easily found), and letT be its closure inG; this is easily seen to be
a topological spanning tree ofG. Thenη−1(ω) will have an open neighbourhoodO in H
that excludes infinitely many ends. But inG every neighbourhood ofω contains all but
finitely many ends, soη−1 cannot map it intoO.

Thus, althoughH andT in Proposition 7.1coincide as point sets (up to the bijectionη)
and in the topologies they induce onH , the topology ofH on this set (i.e. TOPfor H ) may
be finer than that ofT (the subspace topology fromG). This can have curious effects; see
Proposition 7.4.

Let us consider the converse problem toProposition 7.1. Givenan end-faithful spanning
tree H of G, let us refer to its closure inG as the subspace ofG inducedby H .
This subspace contains all the vertices and ends ofG (becauseH spansG and every
neighbourhood of an end contains a vertex), it is path-connected (becauseH is path-
connected, every end is the limit point of all its rays, andH contains a ray from every
end), and it contains every edge of which it contains an inner point (becauseH does). So
the only reason why this space might fail to be a topological spanning tree ofG is that it
might contain a circle—which can indeed happen (see below).

Problem 7.2. For which graphs G does every end-faithful spanning tree induce a
topological spanning tree inG?

For locally finite graphs this is always the case:

Theorem 7.3. If G is locally finite, then a spanning tree of G is end-faithful if and only if
it induces a topological spanning tree inG.

Proof. Weonly have to show that ifH is an end-faithful spanning tree ofG then its closure
in G contains no circle. If it did, then by [4, Lemma 4.3] (or byCorollary 4.4) this would
be the closure of a circuitC in G. By [4, Theorem 5.1],C would be a sum of fundamental
circuits of H and hence contain a chord ofH , a contradiction. �

(The reader may wonder whether it is necessary in the proof ofTheorem 7.3to use the
result of [4, Theorem 5.1]. Indeed, if we extendη to all of H by the identity onH , then
η : H → G is continuous and injective, and hence a topological embedding (sinceH is
locally finite and henceH compact). So all we need to show is thatH itself contains no
circle. But the proof of this ‘obvious’ fact, though straightforward, is already about half of
the short proof of [4, Theorem 5.1] (which is just like the proof of(∗) in Theorem 6.1).)

In general, however, the converse ofProposition 7.1can fail:

Proposition 7.4. There is a countable graph G that has an end-faithful spanning tree
whose closure inG contains a circle.

Proof. Consider the binary treeT2 whose vertices are the finite 0–1 sequences and where
each sequence is adjacent to its two one-digit extensions. The ends ofT2 correspond to the
infinite 0–1 sequences, which we view as binary expansions of the reals in [0, 1]. LetJ be
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Fig. 8.G′, and the edges ofG∗ at∅.

the set of all those rationals in (0, 1) that have a finite binary expansion. Every number in
[0, 1]\J corresponds to exactly one end ofT2, while everyq ∈ J has the formq = 0.s1
and corresponds to the two endss1000. . . ands0111. . . . Let G be the graph obtained
from T2 by adding for eachs ∈ T2 a newedgees between the verticess100 ands011; then
T2 is an end-faithful subgraph ofG. For everyq = 0.s1 in J let Dq denote the double ray
consisting of the new edgees and the two rays ofT2 in s10000. . . ands01111. . . starting
at the end-points ofes. Let D0 denote the double ray that is the union of the two rays
of T2 starting at the empty sequence∅ and corresponding to the numbers 0 and 1. In [4,
Section 5] we showed that the closureD in G of all the Dq with q ∈ J ∪ {0} is a circle
containing all the ends ofG.

Let G′ be the graph obtained fromG by subdividing every edge of the formes once.
Let vs denote the subdividingvertex and, for eachq ∈ J ∪ {0}, let D′

q be the subdivision
of Dq contained inG′. (ThusD′

0 = D0.) Clearly, the setD′ obtained fromD by replacing

eachDq with D′
q and each end ofG by its corresponding end ofG′ is a circle inG

′
.

Our aim now is to add edges toG′ in order to obtain a graphG∗ in which G′ is end-
faithful, and which has an end-faithful spanning treeH containing all these double rays
D′

q. Then the closure ofH in G∗ will contain D′ (replace the ends ofG′ in D′ by the

corresponding ends ofG∗), andD′ will still be a circle inG∗.
To do this, first join in G′ the vertex∅ to all those vertices of the formvs that have

distance 3 fromD′
0 in G′ (Fig. 8). Let N∅ denote the set of all these neighbours. Then each

componentC of G′ − (D′
0 ∪ N∅) is a copy ofG′, where the unique neighbourtC of D′

0 in
C plays the role of∅ in G′. Similarly as above, we jointC to all those vertices inC of the
form vs that have distance 3 from the ‘outer double ray’ ofC—the double ray that is union
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of the two rays inT2 starting attC and belonging to the endstC000. . . andtC111. . . of T2.
We continue in this fashion and denote the resulting graph byG∗.

SinceG∗ is obtained from the locally finite graphG′ by adding edges,Lemma 2.2
implies that every end ofG∗ contains a ray inG′. Moreover,it is easy to verify the
following claim.

For everyvertext of T2 the setXt of all vertices ofT2 abovet
together with all those vertices of the formvs for whichs lies above
t in T2 has only finitely many neighbours inG∗(outsideXt ).

(∗)

Thus in particular, every two distinct rays inT2 starting at∅ can be separated inG∗ by
finitely many vertices. Since every end ofG′ contains such a rayR ⊆ T2 (becauseT2 is
end-faithful inG′), it follows that no end ofG∗ contains distinct ends ofG′ as subsets.
ThusG′ is end-faithful inG∗, andhenceD′ is still a circle inG∗.

Let H be the subgraph ofG∗ that consists of all the double raysD′
q with q ∈ J ∪ {0},

all the edges ofG∗ not in G′ and, for each finite sequences, the two edges joining the
endverticess011 ands100 ofes to their respective predecessorss01 ands10 in T2. It is
easy to check thatH is a spanning tree ofG∗. So it remains to show thatH is end-faithful
in G∗. For this, firstnote that for every two distinct raysR andR′ of H starting at∅ there
are incomparable verticest andt ′ of T2 (i.e. none of these vertices lies above the other in
T2) such thatG∗[Xt ] contains a tail ofR andG∗[Xt ′ ] contains a tail ofR′. SinceG[Xt ] and
G[Xt ′ ] are disjoint,(∗) implies thatR andR′ belong to distinct ends ofG∗. Thus no end
of G∗ contains distinct ends ofH as subsets. Furthermore, it is easily seen that for every
ray R in T2 there exists a ray inH which is equivalent toR in G∗. As T2 is end-faithful in
G∗, it follows that every end ofG∗ contains a ray inH . �

Normal spanning trees, however, do induce topological spanning trees:

Proposition 7.5. Every normal spanning tree of a graph G induces a topological spanning
tree ofG.

Proof. Rewrite the proof ofTheorem 7.3with [5, Lemma 4.1] replacing [4, Theorem
5.1]. �

Proposition 7.5suggests that, in search of a converse toProposition 7.1, instead of
focussing on the structure ofG we might try to characterize the spanning trees that
induce topological spanning treesdirectly (although, of course, in terms of their position
within G):

Problem 7.6. For whichend-faithful spanning treesH of an arbitrary infinite graphG is
the closure ofH in G a topological spanning tree ofG?

Here is another question that we have been unable to decide:

Problem 7.7. Are thereconnected graphsG suchthatG has no topological spanning tree?

By Proposition 7.5and the results of [8], any graphG as inProblem 7.7must contain
certain substructures; in particular,G must be uncountable.

Seymour and Thomas [14] and Thomassen [15] have constructed connected graphs that
have no end-faithful spanning tree. FromProposition 7.1we know that for such graphsG
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there can be no topological spanning treeT of G suchthatT ∩ G is connected. But there
might be other topological spanning trees, and in all the cases we looked at we managed
to find one. In particular, all the known connected graphs without end-faithful spanning
trees haveonly one end (or contain a one-ended such graph), and for these we do have
topological spanning trees:

Proposition 7.8. If G is a connected graph with only one end, thenG has a topological
spanning tree.

Proof. We shall construct a spanning forest ofG whose components eachcontain a ray but
no double ray. Together with the unique endω of G, this forest will form a path-connected
subspace ofG that contains no circle, because every circle inG is finite or consists ofω
together with a double ray.

Such a forestH is easily constructed inductively, as the union of a well-ordered chain
of subforests. We start by well-ordering the vertices ofG. Then in the induction step we
consider the least vertexx not yet covered by our current subforestF . If G − F contains a
ray starting atx, we add this ray toF ; if not, we add a finitex–F path.

It is easily checked thatH has the desired properties. Indeed, every componentC of H
contains the rayR that came with its first vertex. And every component ofC− R is rayless:
otherwise its first vertex should have started a new component ofH rather than become
part ofC. ThereforeC, being a tree, contains no double ray.�

Finally, one might ask whether the topological spanning treesT that we found to exist
for G̃ under ITOP can always be chosen withT ∩ G connected:

Problem 7.9. When G is a connected graph satisfying (3), does G̃ always have a
topological spanning tree whose intersection withG is connected?
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862 R. Diestel, D. Kühn / European Journal of Combinatorics 25 (2004) 835–862

[14] P.D. Seymour, R. Thomas, An end-faithful spanningtree counterexample, Proc. Amer. Math. Soc. 113
(1991) 1163–1171.

[15] C. Thomassen, Infinite connected graphs with no end-preserving spanning trees, J. Combin. Theory Ser. B
54 (1992) 322–324.


	Topological paths, cycles and spanning trees in infinite graphs
	Introduction
	Basic concepts, and the standard topology
	Cycles and trees in the standard topology
	The identification topology
	Trees and paths in the identification topology
	Cycles in the identification topology
	Topological vs. end-faithful spanning trees, and their general existence problem
	References


