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Abstract

We study topological versions of paths, cycles and spanning trees in infinite graphs with ends
that allow more omprehensive generalizations of finite results than their standard notions. For some
graphs it turns out that best results are obtained not for the standard space consisting of the graph
and all its ends, but for one where only its topological ends are added as new points, while rays from
other ends are made to converge to certain vertices.
© 2003 Published by Elsevier Ltd

1. Introduction

This paper is part of an on-going project in which we seek to explore how standard facts
about paths and cycles in finite graphs can beggeneralized to infinite graphs. The basic
idea is that such generalizations can, and should, involve the ends of an infinite graph on a
par with its other points (vertices or inner points of edges), both as endpoints of paths and
as inner points of paths or cycles.

To implement this idea we define paths and cycles topologically: in the s@ace
consisting of a grapl® together with its ends, we considarcs (homeomorphic images
of [0, 1]) instead of paths, and circles (homeomorphic images of the unit circle) instead of
cycles. The topological version of a spanning tree, then, will be a path-connected subset of
G that contains its vertices and erlst does not contain any circles.

Let us look at an example. Ttapouble ladder Lshown inFig. 1 has two ends, and
its two ddes (the top double rafr and the bottom double ra@) will form a circle D
with these ends: in the standard topologylorito be defined later), every left-going ray
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Fig. 1. The double laddér.

converges ta, while every rightgoing ray converges t’. Similarly, the edgevw forms
a circle wth the endw’ and the two right-going subrays & and Q starting atv andw,
respectively.

Which subsets ofL would be topological spanning trees ir? The ‘infinite comb’
consisting ofR, theendsw andw’, and all he vertical edges df would be one example;
the arcuRwQw’'Rv obtained fromD by deleting the edgev another. The ordinary
spaning treeR U Q + vw of L, however, would not qualify, because it fails to contain
the endsw andw’. (And we cannot simply add the ends, since that would create infinite
circles.)

When G is locally finite, then those of its ondary spanning trees whose closure in
G qualifies as a topological spanning tree are preciseliiig-faithful spanning trees
(see Section 7. In [4] we showed hat these are precisely the spanning treesGof
whose fundamental cycles generate its entire cycle space (including infinite cycles). Thus,
topological spanning trees are not merely natural objects to study in an infinite graph but
came up as the solution to a problem: the problem of how to generalize a basic fact about
finite spannng trees and cycles to infinite graphs.

WhenG is not locally finite, however, things areare complicated. The complications
which arise require either restrictions taethotion of the cycle space that are needed in
same cases but seem unnecessary in others, or a different topold@gyTdre firstof these
approaches was followed iB][ while it is the purpose of this paper to explore the other.
One o our first tasks will be to motivate our new topology Gnin terms of he problems
indicated above, and this will be doneSection 3 However, there iyet another way to
motivate that topology, independent of those problems, which we indicate now.

The double laddet. satisfies Menges' therem for w and »: these ads can be
separated ptwo vertices (such as andw), and they are joined by the two independent
arcswRe’ andwQw’. However, wha we ontractR to the edgeaiv (Fig. 2), the resulting
graphG no longer contains two independent arcs betweandw’, dthough we still need
two vertices to separate them. Our way to restore the validity of Menger’s theorem here
will be to identify w with u andw’ with v. Or put another way: we shall define the space
G not by adding» andw’ to G as extra points and then applying the standard topology
(seeSection 2, but by choosing a topology o8 itself in which the &ft and right subray
of Q converge tas andv, resgectively. Theru andv are joined by the two arasv and Q
(which together form a circle), and again satisfies Menger’s theorem.

More generally, the topological space for a grapland its ends that we propose here
will be the quotientspace obtained fronG with its standard topology (in which all the
ends are new points) by making all vertex-end identifications in situations as above. In this
space, only ends that are not ‘dominated’ by a vertex (in the wag domirated byu
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Fig. 2. A Menger problem fow ande’.

in Fig. 2 there arerifinitely many paths which joim to a ray inw and which only meet in
u) will be new points. As it happens (se@l), these are precisely the ends@that satisfy
Freudenthal’s 9] original topological definition of an end.

We shall see later that our identification topology is not just an ad hoc device to deal with
problems such as the Menger example above. Roughly speaking, it is with this topology
that standard finite results such as the generation of the cycle space by fundamental cycles
can be generalized to the largest class oppsathat are not necesag locally finite.

But the example ofFig. 2 already indicates why this is nahexpected: the identification
topology onG merely extends to vertex-end pairs what is already the case in the standard
topology for pairs of ends of rays i@, nanely, that two such points are to be identified if
they cannot be finitely separated.

We haveorganized this paper as follows. 8®ction 2wve definehe concepts to be used,
in particular our topological versions of paths, cycles, and spanning trees, and introduce
the topology onG that is standard in the literature. Bection 3we recall some results
from [4] about topological spanning trees and the cycle space of locally finite graphs,
and describe the obstructions that arise when we try to extend these results to graphs
with infinite degrees. The identification topology motivated by these obstructions (as well
as by the considerations above) is introduced&étction 4 In Section 5we prove that
topological spanning trees exist in all graphs in which their existence is not ruled out
trivially by some obvious obstructions. As a spin-off of our methods we obtain that closed
connected subsets @ are path-connected. (This was unknown even for locally finite
graphs under the standard topology and is fadsgeneral for graphs with infinite degrees;
seeSection Zor an example.) I’'Section Bxe prove our main results on topological cycles
and spanning trees. These extend our locally finite results fljrto[a largerclass of
infinite graphs, which will be seen to be essentially largest possiblgettion 7 finally,
we relate topological spanning trees to the xgliterature on end-faithful spanning trees,
and briefly address the general existence problem of topological spanning trees under the
standard topology.

2. Basic concepts, and the standard topology

The terminology we use is that df][ A 1-way infinite path will be called @ay, a 2-way
infinite path adouble ray The subrays of rays or double rays are thails. Two rays in
a graphG areend-equivalenif no finite set of vertices separates themGn This is an
equivalence relation on the set of raysGnits equivalence classes are #edsof G. We
denote the set of ends & by 2(G). A vertexv € G is said todominatean endw if for
some (anchence every) raR € o there are infinitely many—R paths inG that meet
pairwise only inv; such a set of paths isia-R fan
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We shall freely view a graph either as a combinatorial object or as the topological space
of a 1-complex. (So every edge is homeomorphic to the real interval [0, 1], and the basic
open neighbourhoods of a vertgxare the unions of half-open intervdls, z), one from
evey edge[x, y] atx; note that we do not require local finiteness here.) WHes a set
of edges we leE denote the union of their interiors, i.e. the set of all inner points of edges
in E.

A homeomorphic image in a topological spaXef the closed unit interval [0, 1] will
be cdled anarcin X; ahomeomorphic image iX of the unit circle is aircle in X; and a
homeomorphicimage iX of the interval [0, 1) is @opological rayin X. A continuous (but
not necessarily injective) image of [0, 1] is@pological pathIf x andy are distinct points
on an arcA, we write x Ay for the subarc ofA betweerx andy. Note hat an arc inherits
alinear odering of its points from [0, 1] (up to reflection). Given two s¥tZ C X, we
say thatAis aY—Z arcif one endpoint ofA lies inY, theother lies inZ, and the mterior
of AavoidsY U Z.

We shall frequently use the following lemma from elementary topolot p. 208].

Lemma 2.1. Every topological path with distinct endpoints x, y in a Hausdorff space X
contains an arc in X between x and ylJ

Our objects of study will be Hausdorff spad8sconsisting of a grapis and some or
all of its ends. More precisely, we will either add all endsGaand endow this set with
the gandard topology, or add only those ends that correspond to the topological e@ds of
as a 1-complex. In the first case, the topology wHmduces orG will be the aiginal
1-complex topology of5, while in the latter some rays may converge to vertices. In both
cases, however, all the rays in an enavill converge to a common point: either to (if
w € G\G), or to the unique vertex dominatirag

Any circle D in G will have the propertyHat it contains every edge of which it contains
an inner point. The se€(D) of edges contained i will be called itscircuit. Since
we intend to study the circles i& combinatorially in terms of their circuits, it will be
important that no two circles have the same circuit. To ensure this, we shall require that the
topology onG satisfies the follwing condition:

For everycircle D € G, theunion U C(D) of its edges is dense iD. (1)

Thus every circlé is the closure ifG of its circuitC, and isthereforeuniquely determined
by C.

Let us cal a family (Cj)ije| of circuitsthin if no edge lies inC; for infinitely manyi,
and let thesum};, C; of these @cuits be the set of those edges that lieQnfor an
odd number of indices. We now déine thecycle space(G) of G as the set of sums of
circuits inG; this is a sibspace of the edge space®just as in the finite case. Bection 6
we show that, for the topology considered in this pap@G) is closed also under infinite
sums.

Finally, atopological spanning treef G is a path-connected subgebf G that contains
all the vertices and ends &, contains every edge of which it contains an inner point, and
does not contain a circle. Note th#tis closed inG. Its subsetT N G is a subgraph of
G but need not be connected. (However, topological spanning trees for which this is the
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case, i.e. wher@ N G is an odinary spanning tree db, may beof particularinterest.)
We wiite E(T) for the set of all edges contained Th For ewery edgee = xy not in
E(T), Lemma 2.1lensures thal contains a (unique) arc betwegrandy, and soT U e
contains a unique circlB. We call every suctD afundamental circleandits circuitCe a
fundamental circuiof T.

Wewill use the following standard lemma about infinite graphs; the proof is not difficult
and is included in3, Lemma 1.2].

Lemma 2.2. Let U bean infinite set of vertices in a connected graph G. Then G contains
either a ray R with infinitely many disjoint U-R paths or a subdivided star with infinitely
many leaves in U. [

Let X be a Hausdorff space. We denote the closure of &set X by cl(Y). Given
a opological rayR in X, an infhite sequence, Xo, ... of distinct points, and for all
Xi ¢ Rdisjointx;—R arcsQ; such that the sequence consisting of the preimages under the
homeomorphisni0, 1) — R of the endpoints omR of these paths and the preimages of
all x; on R converges to 1, we call the union Bfwith all the Q; atopological combn
X with back Randteeth x, X, . .. (including thex; on R). A topologicalRXo-starin X is
any unionS of ®g arcs inX meeting pairise exactly in their firspoint. This point is the
centreof S, the other endpoints of those arcs ardemvesLemma 2.2hus states that, for
every infnite setU of vertices,G contains either a topological comb with teetH.n(and
back a ray) or a topologicaly-star with leaves inJ.

The following lemma generalizdsemma 2.2to arbitrary path-connected Hausdorff
spaces. We omit its straightforward proof, which is similar to thatefmma 2.2

Lemma 2.3. Let U bean infinite set of points in a path-connected Hausdorff space X.
Then X contains either a topological comb with all its teeth in U or a topologieastar
with all its leaves inU. O

A rooted (ordinary) spanning tree of G is normalif the endverttes of every edge
of G are comparable in the tree order inducedlhysee [l]. Countable connected graphs
are easily seen to have normal spanning trees, but not all uncountable ones @pfaee [
details. For our purposes, we shall need the following existence theorem of Hjlin [

Lemma 2.4. Every connected graph containing no subdivision af, kKas a normal
spanning tree. In particular, every connected graph in which every end is dominated by
at most one vertex has a normal spanning tree.

The usefulness of normal spanning trees is based on the following easy lemma:

Lemma25 ([7]). Let x3,x2 € V(G), and let T be a normal spanning tree of G. For
i = 1,2let [x;] denote the path in T that joing %o the rootof T. Then[x1] N [x2]
separates X from x in G.

We now define the topology @p on G that is standard in the literature f@ =
G U 2(G). We rekr to [2] and, especially, Polatl§] for more background on dp.
Consider a finite seX € V(G) U E(G).

For every endv of G there is exactly one compone@tof G — X that contains a tail
of every ray inw; we saythat w belongsto C. Ends or vertices belonging to different
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components oG — X areseparatedby X. Wheny is either an end or a vertex @ — X,
we write Cg (X, y) for the component ofs — X to whichy belongs, andEg (X, y) for the
set of edges that either jolbg (X, y) to vertices inX or else are edges X incident with
Cc (X, y). The ends ofC correspond naturally to the ends®fbelonging toC, andwe do
not normally distinguish between them. Finally, we define

C:=Cs(X,y) =CURC)UE'(X,y) € G,

whereE’(X, y) is the unon of any maximal set of internally disjoint half-edgesv] C e
with e € E(X, y),z € & andv € V(C). (ThusE'(X, y) contains two half-edges for every
edgee € X joining two vertices ofC and one for every other edge E(X, y).) WhenU

is aunion of components d& — X, we sinilarly write U for any union of set€, one for
each componer@ C U.

Now let Top denote the topology oG that is generatedybthe open sets of the
1-complexG and all sets of the forrﬁg(s, w) with S a finite set of vertices. Thus for
each end, the seth(S, w) are the basic open neighbourhoodsoft is not difficult to
check B] that Top satisfies all our earlier requirements Gn In paticular, Top satisfies
(1), so the @rcles inG correspond bijectively to its circuits. Whe is locally finite and
connected@ is compact under @p.

We close his section with a general observation concernirgp that we have found
surgrisingly difficult to prove:

Theorem 2.6. When G is locally finite, evgrclosed onnected subset d& is path-
connected.

Note thatG is locally path-connected and so every open connected sub&ispath-
connected (even i& is not locally finite). Theorem 2.6s a special case dfheorem 5.3
to be proved below. We expect that it extends to séthat are neither open nor closed,
butour proof of Theorem 5.3lepends on the assumption théats closed.

WhenG has vertices of infinite degre& can have closed connected subsets that are
not path-connected. For example dfis obtained from a rayR by adding a new vertex
x and infinitely manyx—R paths of length 2 that meet only i then deéting from these
paths the edges incident wiRiresults in a subspace & that is connected (because every
neighbourhood of the unique end contains a taiRadnd almost all the neighbours gj
butnot path-connected.

3. Cyclesand treesin the standard topology
Let G be a locally finite graph, and considér:= G U 22(G) with Top. Here are some
results concernintpfinite cycles inG that we would like to generalize sensibly to graphs

that are not locally finite.

Theorem 3.1. The fundamental circuits of any topological spanning tree@fgpan its
cycle spac€(G).
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Fig. 3. The edgexy is the sum of all the facial cycles.

This is the locally finite case afheorem 6.below. It was proved in4] for end-faithful
spaning trees of3, i.e. for topological spanning tre@sc G suchthatT NG is connected
(cf. Theorem 7.3

Cycle-cut orhogonalityin finite graphs generalizes too:

Theorem 3.2 ([4]). C(G) consists of precisely those sets of edges that meet every finite
cut in an even number of edges.

Nash-Williams [L2] proved thathe edge set of any graph (not necessarily locally finite)
decomposes into fite circuits if (and only if) the graph has no odd cut. If the entire edge
setE = E(G) is an element of(G), then his implies with Theorem 3.2that E is a
sum of disjoint (finite) circuits. For arbitrary elements @fG) this is no longer clear
(even admitting infinite circuits in the sum), since the graph ®(G) induced by an
infinite circuit is jug a dispint union of rays, which has lots of odd cuts. The fact that
arbitrary elements of (G) have disjoint-circuit decompositions is one of the main results
of [5]:

Theorem 3.3 ([5]). Every element af(G) is aunion of disjoint circuits.

How do the above results generalize to graphs that are not locally finite? Consider
the plane graptG shown inFig. 3. There, the finite circuits bounding a face form a
family in which the edgexy occurs in one circuit and every other edge occurs in two
circuits. So these circuits sum to the single edge-which would thus be an (unwelcome)
element o2 (G) according to the definition given Bection 2 (Theunwelcomeness is not
just a matter of taste: of the above three theorems @dhlyorem 3.2yeneralzes to this
graph.)

In [5], we dealt with this phenomenon by restricting the notion of the cycle space,
disallowing sumns in wthich infinitely many terms share a vertex. With this restriction,
Theorem 3.3generalizes to arbitrary infinite graphs, whildeorem 3.2adapts with a
trivial modification. ButTheorem 3.1no longer works for all topological spanning trees:
in the graph ofFig. 4, al fundamental circuits of the topological spanning tieeontain
X, butno finite sum of these circuits gerates the ffinite circuit E(Ry Q.

This problem is not easily overcome just by allowing more sums in the definition of
C(G). Indeed, any sun}_ Ce of fundamental circuits yielding (Ry Q would hae to be
over precisly the edge® € R, because these are the edgefRgfQthat are not iril . But
clearly) o.r Ce = E(XyR # E(RyQ), no mater whether this sum is a legal element of
C(G) or not.

As soon as we identify the enrawith the vertexx dominaing it, however, the problem
disappears: now is no longer a topologicapanning tree (becausey Ris now a circle
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Fig. 4. The circuitE(Ry Q) is not a sum of fundamental circuits.

contained inT), but T — xy is a topological spanning tree, and its fundamental circuits
generate all circuits, including(Ry Q).

In this paper we show that, for all graplia not containing the trivial obstruction
of Fig. 3, identifying every end with the (unique) vertex dominating it yields the ‘right’
space for our desired generalizationTdieorems 343.3 we prove tlat all three theorems
continue to hold in this spac(é, even with the original (unrestricted) definition of the cycle
space that includes arbitrary sums of thin families of circuits.

Because of the unavoidable problems associated Righ3, we will only consider
graphs which satisfy the following condition:

No two vertices are joined by imfitely many independent paths (2

(Some additional motivation for why such graphs may be interesting will be given at the
end of this section.)

We remak that all the blocksB of a graph stisfying (2) are countable. Indeed, by
Lemma 2.4 B has a normal spanning trée and ths must be locally finite: it is a vertex
of infinite degree inT, thenits finite down-closurgt] separate® into infinitely many
componentslemma 2.%, and by the 2-connectedness®infinitely many of these send
edges to the same two verticegtri. Then hese two vertices are joined by infinitely many
independent paths, contradictirg).(

Although all our results will technically be true for any graph satisfyi?)g to make
them interesting we may wish to impose the following stronger condition:

No two vertices are joined by infinitely many edge-disjoint paths 3)

(Fig. 5 shows that this is indeed stronger, i.e. th&) [does not imply 8). Note that by
the (straightforward) infinite alogue of Menger’s theorem, conditia®) (resp. condition
(3)) implies that every pair of non-adjacent vertice$3o€an be separated by finitely many
vertices (resp. @ges).)

The possible justification for imposing)(lies in the fact that for graphG satisfying @)
butnot (3) our quotient spacé may contain circles consisting only of ends and vertices—
in which case 1) fails, different circles may have the same circuit, and there may be no
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Fig. 5. A graph that satisfie@) butviolates @).

topological spanning tree. In the proof of the following lemma we exhibit such a graph,
which is essentially the graph &ig. Swith x andy identified. See the start &ection 4
for aformal definition ofG if desired.

Proposition 3.4. There exists a countable graph G satisfyif®) for whichG contains a
circle consisting only of vertices and ends.

Proof. Consider the binary tre& whose vertices are the finite 0-1 sequences and where
each sequence is adjacent to its two one-digit extensions. The efglsafespond to the
infinite 0—1 sguences, which we view as binary expansions of the reals in [0, 1]. Our aim
istoturn this Cantor set into a copy of [0, 1] by identifying the pairs of ends that correspond
to the same rational € [0, 1], i.e. by identifying every two ends of the forsiL000. . . and
s0111...for somes € T,. Toachieve this identification, we join the vertexo every such
pair of ends by a couple of fans, so thaGrthese ends will both get identified wighand
hence with each other.

Formally, we join each finite sequenses T to all sequences of at least + 2 digits
that begin withsl and theeafter contain only 0s, and to all sequences of at Igshst 2
digits that begin withsO and theeafter contain only 1s. Finally, we add a new vertex
joined to all sequences cdssing only of G&s oronly of 1s §ig. 6).

Any two vertices of this grapt are separated by the finite vertex set consistinganrid
their common initial segments, so the graph satis@®d{(is easily checked that mapping
0 and 1 tox and every other element of [0, 1] to its corresponding end or identified pair of
ends is a homeomorphism between [0, 1] with 0 and 1 identified and the set of all vertices
and ends irG (after idenification). O

Since any topological spanning tree of a graph must contain all its vertices and ends,
everyG as inProposition 3.4alils to have a topological spanning tree. Thus:

Corollary 3.5. There exists a connected countable graph G satisf@)guchthaté has
no topological spanning tree.[

We shall pove below thatg), urlike (2), sufficesto imply (1) for G (Section 4, and
that all suchG have topological spanning treeSection 5.
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Fig. 6. A graph whose ends form a circle in the identification topology.

We close his section with an observation that may lend some unexpected relevance to
graphs satisfyingd). In every infinite graph, being linkkby infinitely many edge-disjoint
paths is an equivalence relation on the grrset. Now it nay be of interest to study the
guotient graph obtained by identifying each eglénce class into one point. (For example,
this is a central tool in Nash-Williams's celebrated proof of his cycle decomposition
theorem 12].) All such quotient graphs satisfg).

4. Theidentification topology

In this section, we first define the identification topologyHPmore formally, and then
prove some basic facts about it.

Let G = (V, E) be an infinite graph, fixed throughout this and the next section. Put
2(G) =: 2, and let?’ C 2 denote the subset of those ends that are not dominated by any
vertex. (Weremark that these apecisely the ends d& that correspond to its ends in the
topological sense of Freudenth8l];[see B].) Given a vertex € G, we wite {2, for the
sd of ends it dominates. As always in the rest of the paper when we consider the topology
IToprto bedefined now, we assume that

every end of G is dominated by amost one vertex ()

Note that @) implies (1). Let G be the quotient space obtained fr@nendowed with
Top by identifying every vertex with all the ends it dominates. When two poinise G
are thus identified, we call themquivalent As usua) we wite 7 : G — G for the
canonical projectionending each point o to its equivalence class. The (identification)
topology ofG, which is the finest topology on the gBtthat makesr continuous, will be
denoted by I'DP. Recall that a seN < G is open if and only ifr ~1(N) is open inG,
or equivalently if and only ifN = 7 (U) for some open sdt) G that is closed under
equivalence.

By (1), no two vatices of G are equivalent, so the identification does not alteiVe
may thus viewG U {2’ as the point set o6, and inparticular denote every equivalence
class which is not a singleton by the unique vertex it contains. For the rest of this
paper,
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G will always denote the space GfU {2 endowed with DP;
G will always denote the space 6fU 2’ endowed with I'DP.

Note that if no end ofG is dominated (in particular, iG is locally finite) thenG andG
coincide.
Let us collect some facts aboBtandG. Recall that ifG is locally finite, thenG (= G)
is compact. WherG has a vertex of infinite degree, however, then nei@enor G is
compact. For example, i6 is obtained from a rayR by adding a new vertex and
infinitely manyx—R edges, then the sét C G obtained fromG by deleting a closed
interval l¢ in the interior of everyx—R edgee is open. ButN can be combined with an
open interval around eadh to anopen cover of5 that has no finite subcover. However, if
G is 2-connected and satisfie® (thenthe sibsetV U 2’ of Gis compact. (By the remark
following (2), G has a locally finite normal spanning tree, which can be used to show that
V U 2 is a conpact subset o6 (seeSection . But everyopen cover oV U 2 ¢ G
corresponds via ~! to anopen cover o U 2 ¢ G, and theefore has a finite subcover.)
Using sraightforward topological arguments one can show thag just as inG, every
arc whose endpoints are vertices or ends, and similarly every circle, includes every edge of
which it contains an inner point.

Lemma4.1. For every vertexw € G, the set2, of ends dominated hyis closed inG.

Proof. Consider any poink € cl(f2,); we shav thatx € (2,. Clearlyx is an ad; pick
arayR € x. For every fhite setS € V(G — v), sone endw € (2, belongs toC(S, x).
Sincev sends an infinite fan te it must lie inC(S, x), and soG — S contains a—R path.
Choosing asS the vertex sets of suitable initial segmeRsof R together with any—R’
paths already found, we may thus construct an infinit fan inductively. Hencex € (2,,
as claimed. O

Recall that acutin G is the setF of all edges between the two (non-empty) classes of
some bipartition o¥.

Lemma4.2. Let F C E be afinite cutin G and let D be a component of-GF. ThenD
is closed under equivalence, i.e. every set of the to() is open inG. If x, y € V U £’
belong to different components of G F, then eery x—y arc A inG contains an edge
from F.

Proof. Let Sbe the set of all endvertices outsibeof edges fromF. ThenSis finite and
D isa mmponent ofc — S. Sincethere are only finitely many edges betwegandD, no
end belonging td is dominatedy a vertex outsid®, and all @ds dominated by vertices
in D belong toD. ThusD is closed under equivalence, and hem‘£)) is open inG.

To prove the second claim, suppose t#atioes not contain an edge frof ThenA
avoids F. Let Ny be a set of the fornC(F x) and letNy be a union of set®, one for
every componenD # C(F, x) of G — F, such hat Nx and Ny are disjoint. Then both
Nx andNy are closed under equivalence. Hendéy) ands (Ny) are non-empty disjoint
open subsets d whose union containd, a ontradiction to the connectednessif [

Lemma4.3. If G saisfies(3) and x, y € V U {2 are distinct, then x can be separated
from y in Ghy finitely many edges.
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Proof. The lemma clearly holds when bothandy are vertices: just take as the separator
the elges of any maximal set of edge-disjoxty paths. Now suppose thate (', and

let Sbe a finite set of veices separating fromy in G. As no vertg dominatex, there is

for everyz € Sa finite setS; of vertices inC(S, x) that separatesfrom x in the subgraph

of G induced byz and all the vertices i€ (S, x). ThenS = | J,.5 S separatex from S

in G. As G satisfies 8), there is dinite setF C E separatingsfrom S'in G. ThenF also
separatex fromy, as deged. [

In Proposition 3.4ve oonstructed a grap® that satisfiesd) but for whichG contains
a circle whose circit is empty. The following result, which by continuity is an immediate
consequence dfemmas 4.2and 4.3, shows that such circles cannot occuiGf satisfies
(3). Indeed, all graph& satisfying @) also s#éisfy (1) under ITop;

Corollary 4.4. Suppose that G satisfi¢3), and letx y € V U (2". Then br every x—y arc
A in G theunion of all edges contained in A is dense in A. Similarly, for every circle D in
G theunion| J C(D) ofits edges is dense in D.0J

The following lemma is an analogue bémma 4.2for finite vertex separators. As a
corollary of this lemma we obtain a weakening @brollary 4.4 for arbitrary graphss
satisfying(t): for every arcA in G the set of itgpoints inG, i.e. of its non-ends, is dense
in A.

Lemma4.5. Let Sbe a finite set of vertices of G. Then for every component D of &

every set of the fornfr(ﬁ)\s isopen inG. If x, y € V U £’ belong to distinct components
of G — S then gery x—y arc inG neets S.

Proof. By Lemma4.] every set 6 the form D\Usesﬁs is open inG, andit is
clearly closed under equivalence. So its imaged)\Sin G is open inG.

For the seand part of the lemma one shows as in the prodferhma 4.2Zhat anyx—y
arc avoidingS cannot be connected (a contradiction]]

Corollary 4.6. For every arc A inG the set A\ G is dense in A. O

Our next aim is to prove thab is Hauslorff. In the proof of this result we will use a
normal spanning tree @, which weknow to exist by(1) andLemma 2.4

We need some more notation. Given a rooted ffeand a vertext € T, we write [t]
for the unique path ifT that joinst to the root. We say that lies above tif t € [t'],
and denote byt] the sibtree of T induced by all vertices above(includingt itself).
Now suppose thal is anormal spanning tree of a gra@h UsingLemma 2.50ne easily
shows that every end of G contains exactly one ralg, < T starting atle root ofT; in
particular digoint rays of T belong to distinct ends d&. (Sonormal spanning trees are
end-faithful; seeSection 7)

Given avertexx on R, we write X R, for the subray ofR, induced by all its vertices
above x, andXR, for the rayx R, — x. We say tlat an endw of G lies abovea vertex
x € Gifallits rays have a tail inx]; by Lemma 2.5this is he case if and only iX lies on
R.. Note hat if x andy are neighbours oR,, andy lies abovex, thenC([x], w) consists
of the subgraph ofs induced byl y| together withall the ends of that lie abovey in T.
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Note also that an end lies above any vertex that domieatit, and that a vertex dominates
w if and only if it has a neighbour abovdor every vertexz € R,,.

Given avertexx € G, anyunion of half-edge$x, z) C e, one for every edge at x,
will be called anopen star around x

Theorem 4.7. G is Hausdorff.

Proof. We have to shovthat for every two distinct points of, y € G there aralisjoint
open neighbourhoods aroumdand y. We only consider the case that bathandy are
vertices ofG; theother cases are trivial or similar. So we have to find disjoint openigets
andNy in G suchthatx € Ny, y € Ny, andboth N andNy are closed under equivalence.
(Thenm (Nx) andx(Ny) are disjoint open neighbourhoodsofindy in G. ) Let us first
constructNy.

We may asume thas is connected; then biemma 2.4it has anormal spanning
treeT. Givenan endw of G, let R,, denote the unique ray if that belongs ta and starts
at the roottg of T.

For every end € (2 define verticeg, ands, on R, as follows. Sincev ¢ 2, andf2y
is closed inG (Lemma 4.}, there exists a vertety, € X R, such tfat neithery nor an end
from !Zy lies abovd,, in T. Since novertex in[t,1\{X} dominatesy, there exits a vertex
s» € &, R, suchthatG contains no edge betwe¢s, | and[t,1\{x} (Fig. 7).

]
to

Fig. 7. Constructind\yx in the proof ofTheorem 4.7

Let N be the union of an open star arourdand sets of the forn€( [Sv], ), one
for eachw € . ThenN1lis open inG and containg? U {x}. If N1 is closed under
equivalence we séfly := N1.
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Sosuppose thaN? is not closed under equivalendg?! contains every end lying above
any of its vertices other thax, andthus N® contains all ends dominated by vertices in
N!. Herce there must be an endin N that is dominated by vertexoutsideN?®. For
every suchr’ there exists am € (X suchthatt’ lies aboves,. For everyw € (2 let
Z1 be the set of all vertices ¢ N dominating some end i€([s,]. @) < N™. Then
Zl C Is,1\[tw], by the doice ofs,. Let 21 be the set of all ends outsidé' dominated
by vettices inZ}. Let r be any end im2}, dominated by € Z1, say. Therr lies above,
andz also dominates an end € N* aboves,. As z is the only vertex dominating, no
vertex in[t,] dominates . Herce there is a vertes, € zR. C t, R, suchthatG contains
no edge betweetsrj andft,]. Let N2 be the union of open stars around the vertices in
Uwen Z and sets of the forr@({sﬂ 1), one for eachr € Uwegx

Note thatNlu N2 contains all points that are equivalent to pothlh Thus as before,
N U N2 is closed under equivalence if no endNtf is dominated by a vertex outside
N1 U N2. If such erticesz exig, then we extendN® U N2 further by adding an open set
N2 c G which cntains all ends dominated by such vertizesd open stars around these
vertices. ThusN® U N2 U N2 contains all points that are equivalent to point$ih U N2.
We conthue inthis fashion for (at most) steps ad putNy := N1 U N2 U - ... ThenNy
is closed under equivalence and it consists of an open star arotagether with a subset
of Upe, C([tu]. @).

Similarly we congruct anopen setNy € G which containsy and is closed under
equivalence, and which consists of an open star aroundgether with a subset of
Ua)/egy C(ty1, @) (wheret,, is a vertex onR,, such that neitherx nor an end from
£y lies abovd,,).

It remains to show thally and Ny are disjoint. First note that ¢ Ny since for each
o' € {2y, x does not lie above, in T. Similarly, y ¢ Ny. Let usnow show that for all
w € f ando’ € 2y we haveC([tw1 w) N C([t 1, ') = @. Everyvertex and every
end in C(t,], w) lies abovet,, in T and so does an endvertex of every (half) edge in
C({tw], w); and the sam is true forw’. As by definition none oft,, t,, lies above the
other, it fdlows thatff([tw], w) and é(ﬁw/], o) are disjoint. Thereforéy and Ny are
disjoint if the open stars aroundandy were chosen small enough]

We monclude this section by provingrise simpé lemmas to be used iBection 5

Lemma 4.8. Suppose that G satisfi¢g) and has distinct verticesixxz, ... any three
of whichlie on a common arc ifG. Then tlere exists a subsequence af Xy, ... which
converges irG to an endof G.

Proof. Suppose not. Since all the verticgs must lie in the same component Gf we

may assume thab is connected. Thehemma 2.2implies thatG contains a subdivided
infinite starSwith leaves in{x1, X2, .. .}. (Indeed,G cannot contain a raRR with infinitely
many{xi, Xz, .. .}—R paths, since then the starting vertices of these paths would converge
to the end ofG containingR.) Let X denote the set of leaves 8f and lets be thecentre

of S. Suppose first that one compon&hbf G —s contains infinitely many vertices froix.
ApplyingLemma 2.2again to the grap@ and the seKNV (C) =: X" wefind asubdivided
infinite starS' in C whose leaves lie iiX’. It is now easy to find infiitely many internally
disjoint paths inG betweers and the centre o8, which contradicts our assumption that
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G satisfies 2). Therefore there are infinitely many component&of s each containing a
vertexfrom X. Letx, X/, x” € X be vertices from different components®f— s, and let
Abe an arc irG containing them. Thei has a subarc which avoid$ut joins two of the
threepointsx, x’, x”, a @ntradiction toLemma 4.5 [

Lemma4.9. Suppose that G satisfi€®). Let x, X2, ... and yi, Yo, . .. be sequences of
distinct vertices of G which i corverge to endsx and wy, respectively. Suppose that
for every k> 1 there exists an arc JAin G containing all the points x yi, ..., Xk, Yk in
that order. Thenvy = wy.

Proof. Suppose thatvx # wy and letS be a finite set bvertices of G separatingvy
from wy in G. By considering subsequences we may assumexha C(S, wx) and
yi € C(S wy) foralli > 1. Then the ar@\s.+1 contains a subarc which avoi@but joins
X toy; forsomei < |§| + 1, contradicting.emma 4.5 [

Our last lemmahows that ifG satisfies 2) then every topological ray i6 converges:
Lemma4.10. Suppose that G satisfie®), and lets : [0,1) — R < G be a

homeomorphism. Thencan be extended to a continuous njapl] — G.

Proof. UsingCorollary 4.6, we can find a sequencE = (xi, X2, ...) of points inRN G
whose images under—! converge to 1. Clearly the lemma holds if all but finitely many
of the x; lie on a common edge. We may therefore assume that eyeiy a vertex.
By Lemma 4.8 some sbsequence of converges irG to an endw of G. We shav that
putting o (1) := 7 (w) makess continuous (at 1).

Let N be an open neighbourhood f1) = 7 (w) in G and S a finite set of vertices
suchthat7(C(S, w)) € N. By Lemma4.57(C(S, w) U E(S, w))\Sis open inG, and
the frontier of this set isontained in the finite se. As R has arlfirarily late pointsx; in
7 (C(S, w)), this imdies thatR has a final segment im(é(S, w)), as reuired. O

Lemma 4.10mplies that for every topological rag in G thereis aunique pointp G
suchthat RU {p} is a topological path irnG. We will call p theendpointof R.

5. Treesand pathsin the identification topology

In Section 3we saw that eveif our graphG = (V, E) satisfies 2), it may still happen
thatG has no topological spanning tre€drollary 3.5). We now show that a topological
spanning tree does exist if we strengthen our assumptioB)db((3). To do so, we shall use
Zorn’s lemma to show that the set of path-connected subspaGebas a minimal element
with respect to edge-deletiohémma 5.}, which is then easily seen to be a topological
spaning tree.

Let us recall some nati@n. A subsequence’ of a given (transfinite well-ordered)
sgyuenceX is cofinalin X if for everys € X there is an element of” thatdoes not
strictly precedes. Given a (gaph-theoretical) rooted tréeandi > 0, theith levelof T is
the set of all its vertices at distanic&om the root ofT .

The following lemma has been abstracted from the proofhebrems 5.5.3and6.3
and will be used in all those proofs.
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Lemma5.1. Assume that G satisfi€8), andletx y € VU (2. Suppose thatA, ) <y iS a
(transfinite) sequence of x—y arcs@ Then there is a topological x—y path P (Banda
dense subset*Pof P such that P € G and for all points pe P* the arcs A containing

p form a cofinal subsequence O&,)« <, . In particular, for every edge e whose interior
meets P the arcs Acontaining e form a cofinal subsequenc&Af)q <y .

Proof. We may asume tha6 is connected and consider only the case #hat e V; the
other cases are similar. #f is a successor ordinal, say= g + 1, then byCorollary 4.6
we can seP = Ag. Thus we may assume thatis a limit ordinal. ByLemma 2.4 G has
anormal spanning tre€. Let uscall a pointp € G goodif the arcsA, containingp form
a cofnal subsequence 0A, )<, . To construct our topologicat—y pathP, we shall first
assign to every rational € [0, 1] agood pointo (r) € G. We then &tend this map to a
continuous maypo, 1] — G, whose image will be the desired topological p&th

Puto(0) .= x ando (1) := v, and letry,r2, ... be an enumeration ab, 1) N Q. We
define our partial mapping in at mostw steps, so that after stepits domain is a closed
subset of [0, 1] containing.

If xy is an elge of G and theA, consisting ofxy form a cofinal subsequence of
30 = = (Aw)a<y, then leto:[0,1] — xy C G be a homeomorphism sending 0o
and 1 toy. (So inthis case we takay for P.) Otherwig we defines only atry. Our
candidates fotr (r1) are all the good vertices € V\{x, y}. SinceG satisfies 2), there
is a finite setS C V separating« fromy in G — xy. By Lemma 4.5 S meets every arc
A, not consisting oky, so there is aleast one cadidate foro (r1). From amongst all the
candidates we choose a vertexat the lowest possible level df, seto(r1) = z1, and
defineX? to be the cofial subsequence df° consisting of allA, containingz; .

Next we @nsidetrro. For exanple, let us asume that, € (0, r1). If Xxz; is an elge of G
and if the subsequen@fZl of X1 consisting of allA, with x A,z; = xz1 is cofinal in X1,
we defines on (0, r1) so as to sengD, r1] continuously and bijectively ontez; and put
22 .= E)%Zl. Otherwise we just choose a good vertexds,). Thistime ourcandidates for
o (rp) are the verticeg for which the subsequen(ﬁ c Ylofall A, withz € XAy 21 is
cofinal in 21, (As X1 is cofinal in 29, all these candiates fow (r2) are good vertices.) As
before there is at least one candidate. From amongst all the candidates we choose a vertex
2, at the lowest possible level df, andputo (r2) = z2 and 2 := X2 . As bebre, £2 s
cofinal in £ and hence iZ° = (Ay)a<y -

Now consider the first rationalin ri,ro, ... for which o (r) is not yet defined. Since
the curent domain ofr is closed in [0, 1] and its frontier consists of rationals, there are
rationalsgqi < r < gz suchthato is already defined on botly andg, butnot yet on any
point in (g1, g2). For all A, in 32 we consider th segments (q1) Ayo (g2) and extend
o as before, either as a homeomorphism betweeng,] and the edge (g1)o (g2) or by
choosing a good vertex agr). We conthue inthis fashion for at mosd steps until we
have definedr on [0, 1] N Q. Let X be the domain o&. Then X contains all rationals
in [0, 1] and, for each irrationad € X, o(q) is an innerpoint of an edge contained in
o (X). Moreover,o is injective onX. In what fllows we will extendo to a continuous
map[0, 1] — G by sending the points dD, 1]\ X to suitabé ends of G (or to vertices
dominding them). Aso (X) 2 o ([0, 1] N Q) consists of good points; ([0, 1]) will then
be a topological patl as desired.
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Let | be the set of all pointp € [0, 1] for which there exists a sequenge< gz < - - -
of rationals converging top swh that eacho(qj) is a vertex. Forp € 1, let Qp
denote the set of sequenee@), o (02), . . . of vertices corresponding to such sequences
g1 < g2 < --- of rationals. 8nilarly, let I’ be the set of all pointp € [0, 1] for which
there exist a sguencay; > qp > - - - of rationals converging t@ such that eacly () is
avertex. Fomp € |, let Q/p denote the set of sequenea@)1), o (02), . . . corresponding to
such squences; > g2 > ---. Note hat[0, INX S I N 1",

Let us prove the following:

For everyp e | all the sequences i@, converge inG to a single
enga)p. Similarly, for everyp € |’ all the sequences i@’p converge (%)
in G to a shgle endw,.

We only consider the case thate |; theother case is siitar. Consider any finite set
U c (0,1) NQ, and letr; be the last element &f in our enumeration of0, 1) N Q. Then
every A, with o € X' contains all the points of (U U {0, 1}), in the order induced by
[0, 1] ando. Lemma 4.8therefore implies thizevery sguence inQ, has a subsequence
which converges iiG to an end ofG. Lemma 4.9shows thathese ads are the same for
all such subsequences and all choices of sequene@g;im paticular, everysequence in
Qp must itself converge to this single end. This completes the proefof

We now etendo to all of [0, 1] by settingr (p) := m(wp) for all p € [0, 1]\ X. Thus if
wp € 2’ theno (p) = wp, while otherwises (p) is the ungue vertex dominatingp. This
completes the definition ef.

Forour proofthatr is continuous we need the following assertions aboyp all [0, 1]:

If p¢ Xthenwp = w),.
If pe |l NQ (and thusy (p) is a vertex) them (p) dominatesop. (%)
If pe1’NQ (and thusr (p) is a vertex) thew (p) dominatesy,.

We only consider the case thgt ¢ X; the other cases are similar. Suppose that
wp # a)’p. Sincep ¢ X, and after any finite number of steps in the inductive defini-
tion of o the set ofpoints in [0, 1] for whicho was 4gill undefined was open and the
frontier of this set consisted of rationals, there is a sequetisg, o (Sp), . .. in @ with
the pioperty that for every > 1 there areationalsgl, g? suchthatq! <s < p < g?
and such that whes was defined fors it had previously been defined forqil andqi2 but
not for any point in(ql, g?). Theno (g1) ando (g?) are vertices, the pointg < g3 < - -
converge top from below, andqf > q22 > ... converge top from above. By choosing
a subsequence if necessary we may further assumeqﬂﬂai q22 > .... Then he se-
quences (g). o (q3). . . . lies in Qp while o/(92). o/(q). .. . lies in Q},. Now (x) implies
thato(q%), a(qzl), ... converges tawp, while o(qf), a(q22), ... converges t(w’p. Let Sbhe
afinite set of vertices separatiiag, from a)’p in G. Then br all but fintely manyi we have
o (ql) € C(S, wp) buto (g?) € C(S, w}), andhence every arc of the form(g) Axo (G?)
meetsS (Lemma 4.%. Hence for all but finitely many some vertex inS was a cadi-
date foro(s). But since, by(x), the sguenceo(s1), o(sp), ... converges tavp in G,
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eventally the verticesr (§) lie at a highe level of T than all the vertices fron, contra-
dicting the definition ot (5) for theses . This mmpletes the proof of«x).

Let us nowshow thato: [0, 1] — G is continuous. This is clear at points €
[0, 2]\ (1 Ul"). Indeed, for all suclp, thepointo (p) is either an innepoint of an edge con-
tained ino ([0, 1]) or a vertex incident with two edges containedifo, 1]) or,if p= 10, 1,
an endvertex of an edge containedsi({0, 1]). So suppose thap € | U I’. We will only
consider the case that¢ X, the remaiing cases being similar. L&d be an open neigh-
bourhood ot (p) in G. Then here is a fiite setS of vertices such that(é(s, wp)) € N.
We have to showthat there gist pointsa < p < b suchthat(a,b) € o~X(N). If
not, then there exists a sequenger,, ... of reals converging tq whose images un-
dero all lie outsiden(é(S, wp)). We mayassume that these(r;) are not inner points
of edges. Indeed, as is injective onX, only finitely many such edges can have an end-
vertex in S, and so all kt finitely many of ther; whose image is an inner point of an
edge can be replaced by a rational whose imagen endvertex of that edge lying out-
sideSU C(S, wp) and hence outsid;e(é(s, wp)). Thus in particular ne; is an irrational
contained inX. We may een assume that every s rational: ifr; € [0,1]\X < | then
wr; ¢ C(S, wp) (@so (1) ¢ n(é(S, wp))), SO by(x) we may replace with a rational close
to it whose image ia vertexoutsideSU C(S, wp). Butnow the sequence(ry), o (rz), . ..
has a subsequence @, or Q/p not converging tawp = a)’p (cf. (xx)), in violation
of (x). O

Theorem 5.2. If G is connected and satisfi€3), thenG has a topological spanning tree.

Proof. Let X be the set of all path-connected subspace& aff the form G\I% with

F C E. ThenX is non-empty sincés € X. Let X be ordered by inclusion, and let us
use Zorn's lemma to show that has a minimal element. LéXy )<, be a (well-ordered)
descending chain i, say X, = é\léa. (Thus(Fu)a<y is an ascending chain of subsets
of E.)

Let us show tha := (,_, X« € &. Clearly X = G\F with F = U<y Fe- In
particular,V U ' € X. To shav that X is path-connected, let, y be distinct points in
VU IneveryX, there is a topologicat—y path, which bytemma 2.landTheorem 4.7
contains arx—y arc A,. By Lemma 5.1these yield a topologicat—y path P in G that
avoids F and hence lies itX. We have lhus shown that every descending chaitkifas a
lower bound, and hence that has a minimal element.

It remains to show thaf is a topological spanning tree @&. If not, thenT contains a
circle D. By Corollary 4.4, D contains an edge But thenT \&is still path-connected and
hence contained i, contradicting the minimality ofT. [

Let us reappljremma 5.1to prove the following:

Theorem 5.3. If G is countable and satisfig), then eery closed connected subseGof
is path-connected.

Proof. Suppose thaX < G is closed and connected, but not path-connected. It is easily
seen that there are, y € V U {2’ lying in different path-components f. Lete;, e, ...

be an enumeration of all the edges G with & ¢ X, andletzy, 2y, ... be an enumeration

of all the vertices ofG outsideX. LetGj =G —{eq, ..., 9} —{z1,...,Z}.
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Suppose thak andy belong to the same component @f for all i. Then eachG;
contains arx—y arc A; that is a finite path or the closure of a ray or a double ray, and
by Lemma 5.1there is a topologicax—y path P in G with a dense subsd?* suchthat
P* C G and every point fronP* lies in A; for infinitely manyi. ThenP* C X and, asX
is closed,P € X. This mntradicts the choice of andy.

So there exists ansuchthatx andy belong to different components &;. We will
show that this implies thaX cannot be connected (a contradiction). Fut= {e1, ..., g}
andS = {z1,...,z}. Let Cx andCy denote the components &; with x € Cx and
y € Cy. By makingF smaller (an repacingG; with a supergaph) we may assume that
every @lge inF joins Cy to Cy. From the itterior of every edgee € F pick a pointa® not
in X. Let S be the union ofS with the set of endveices of eiges fromF outsideCy.
DefineS; correspondingly. By emma 4.5 every set dthe form 7(CO\S is open inG.
Slnce no end belonging tGy is dommated by a vertex i§\S, we haven(CX)\S( =
n(CX)\S Let Nk be the set of the form(CX)\Swh|ch oontainse’for every edge joining
Cx to Sand which contains the half-ed§e a®) < e with c € C for everye € F. Define
Ny correspondingly. By our assumption &n every componen€ of G; other tharCy, Cy
is a mmponent ofG — S. For evey suchC let Nc be the set of the form(C)\S which
containse’for every edges joining C to S. Let Nj, be the union oy, all the Nc_and the
interiors of all the edges iG[S]. ThenNy and Ny are disjoint open subsets &f whose
union containsx, contradicting the connectedness)Qf O

It is not hardto show thatG is locally path-connected. This implies that every open
connected subset & is path-connected. We expect tidteorem 5.2xtends to connected
subsets that are neither closed nor open, but have been unable to prove this.

6. Cyclesin theidentification topology

In this section we extenilheorems 3.43.3to all graphsG satisfying @) endowed with
IToP.

Theorem 6.1. Let G be a graph satisfyin(?). Then the fundamental circuits & with
respect to any fixed topological spanning tree span its cycle spacs.

The proof of this theorem is similar to its analogue for locally finite gragh$heorem
5.1]. The following lemma ensures that sums of distinct fundamental circuits are always
well-defined.

Lemma6.2. Let G be a graph satisfyin¢?). Then the fundamental circuits & with
respect to any fixed topological spanning tree T form a thin family.

Proof. Suppose not. Then there exists an edge= xy that lies in infinitely many
fundamental circuit«Cq (i = 1,2,...). Clearlye € E(T). Let By and By be the
path-components of \& containingx andy, resgectively. SinceT contains no circle,
Lemma 2.1and Theorem 4.7mply that By and By are distinct. Clearly each joins a
vertexx; € By to a vertexy; € By. As all the g are distinct, at least one of the sets
Uy == {xi | i > 1} andUy := {y; | i > 1} is infinite. Let us assume thaly is infinite.
Apply Lemma 2.30 By andUy to obtain an infinite set);, < Uy and either a topological
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combCy C By whose set of teeth i8] or a topologicakp-starS, < By whose set of
leaves idJ;. If Lemma 2.3eturns a topological comBy, let py € Gy be the endpoint of
its back Ry (as definedn and aftelemma 4.1). By our definition of a combpy is a
limit of vertices or eds, and hence is either itself a vertex or an end; in particpjag, T.
RephcingCx with a subcomb if necessary, we may assume fhat Cy; thenRy U { px}

is an arc inBy. Let Ax be the set of all arcs i€y U {px} joining px to a both of Cy. If
Lemma 2.3returns a topologicakp-star S, let px be its centre (which may be an end),
and letAy be the set of all arcs iBx joining py to a leaf ofS;.

LetUy < Uy be the set of all; for whichx; € UL. If UJ is finite, let py be any point
in Uy, suchthat py = y; for infinitely manyi with y; € Uy. If Uy is infinite, then apply
Lemma 2.3again toBy andU,, to obtain an infinite set); < U/, and either a topological
combCy or a topologicakoe-star S, with teeth (resp. leaves) iU)’; . Define py and Ay
as earlier foix. Thus in each case we hagg € By and, ifUj is infinite, Ay consists of
arcs inBy. Let A be the {nfinite) set of all px—py arcs with a first segment idy, another
segmenequal to somes;, and, if U, was infhite, a final segment inly. Note hat every
arc in A contains a vertex oBy other thanpy; herce if px and py are both vertices an@
contains the edgeyy := pxpy, then no arc in4 meetseyy. Moreover, by onstruction of
Ay and Ay no vertex other thapy and py lies on more than finitely many arcs i

By (2), there is dinite setS of verticesseparatingpy from py in G (resp. inG — exy,
if exy exigs). By Lemma 4.5every arc ind meetsS, andhence infinitely many arcs il
share anriner vertex (a contradiction).(J

Proof of Theorem 6.1. Let T be a topological spanning tree Gf It suffices to prove the
following claim.

Every circuitC is equal to the sum of all the fundamental circuits

Cowi ()
e With e e C\E(T).

Before proving (x), let us slow how it implies Theorem6.1Let Z € C(G) be
given. By definition,Z is a sumZ = ), C; of distinctcircuits Cj. By () we have
C = ZC’eCi C'withCj == {Ce | e G\E(T)} foralli € |. LetC be the &mily | J;, Ci.
(So a fundamental circuit lying in sever@| occurs more than once i.) Then every
fundamental circui€. occurs only finitely often irC: if Ce occurs in somé; then it does
soonly once, givinge € Cj; as thefamily (Cj)i¢| is thin, this happes for only finitely
manyi. So byLemma 6.2he familyC is thin. Clearly, the circuits i€ sum toZ.

Let us row prove (x). By Lemma 6.2the family of all fundamental circuit€e with
e € C\E(T) is thin, so it suffices to show that it sums®o Thus for every edgd € G
we have to show that lies in C if and only if it lies in anodd number of the circuit€e
in (x). This is dear if f ¢ E(T). So letus asume thatf € E(T) and letB; and By
be the path-components @f\ f containing the two endvertices df, resgectively. Then
B;1 U By = T\ f (becausel is path-connected), anB; # By (becausel contains no
circle). By Lemma 6.2 the setE; of all the edges ofc betweenB; and B; is finite,
becausdc ¢ \{ f} consists of precisely those edgeg E(T) whose fundamental circu@e
containsf. We will show that|E¢ N C| is even. This will imply thatf € C if and only
if C contains an odd number of other edges frBm i.e. if and only if f lies in an odd
number of the circuit€e in (*).
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So suppose thatEs N C| is odd. LetD be a circle inG whose circuit isC. Then
the closure oD\ [ J(E+ N C) consists of subarcs dd between the endpoints of edges
in Ef N C. Since|Es N C| is odd, there must be at least one such Arwhich joins
a vertexx; € Bj to a vertexxp € Bp. Sinceany x1—Xo pathinoG contains aB1—B»
edge,E; separateg; from x, in G. But thex;—x2 arc A avoids E¢, so ths mntradicts
Lemma4.2 O

Theorem 6.3. Let G be a graph satisfyin(R). Then eery element of (G) is aunion of
disjoint circuits.

Proof. Let Z = Za<y Cy be any element of (G), the C, being drcuits in G. Every

Cy is a countable set (of edges), becauseyeedge on a circle has an inner point that
corresponds to a rational point on the tutircle. Consider the auxiliary grapH whose
vertices are th€,, and inwhich C, andC, are joined by an edge whenever they are not
disjoint. Since theC, form a thin family and are countable, so are the components.of
For each componend of H let Zp be the sum of all thos€, that are vertices oD.
ThusZp is the sum of countably many circuits, and is the disjoint union of all th&p.
Therefore, to prove the theorem far it suffices to show that eachp is aunion of disjoint
circuits. So let us prove the following claim.

LetZ' =}, Ci be the sum of countably many circuits and let
e = xybe any edge irZ’. ThenG has arnx—y arc A that contains (%)
only edges fronZ’\ {e}.

Before weprove (), let us see how iimplies thatZ’ is aunion of disjoint circuits. Let
X1Y1, X2Y2, - - . be an enumeration of all the edgesdh Apply (x) to obtain anx;—yi arc
Alin G that contain®nly edges fromz’\{x1y}. ThenA] U x1y1 is a circle inG whose
cwcunC(A/ U x1y1) =: C] containsxiyi, andZ” := Z’ + C] is a subset ofZ’ thatdoes
not containxlyl. Letx;yj be the first edge fromyys, X2yo, . .. contained inZ”, and gply
(%) to Z” andx;jy; to obtain anxj—y;j arc A, which contains only edges frord”\{x; y;}.
Again A, U xjy; is a circle inG whose circuitC(A, U xjyj) =: Cj containsx;y;. Let
Z" = Z" 4+ C; and continue in this fashion for at maststeps to ghaustz’. ThenZ’ is
the union of the disjoint circuit€], C5, ...

To prove (%), let G’ be the subgraph o6 with the edge set J;., Ci. Let E' =
(E(G"H\Z") U {e}. Choose an enumeratiom, €1, ... of the edges inE’, with eg = e.
We shall show that for eachj > 1 there is anx—y arc Aj in G that conains only
edgesinE(G)\{ey, ..., €j}. Lemma 5.1then yields a topological—y pathP in G which
meets only the intenors of edges that lie &y for infinitely many j, andhencelie in
E(G)\E' = Z'\{e}. By Lemma 2.1andThe0rem 4.7P contains arx—y arc A, which is
as desired irg*).

So let us prove the existence of the akgs Sincethe family (Cj)i¢ is thin, we can
choose a sequencéy C X; C --- of finite subsets ofC; | i € |} such that each
Xj contains all the circuit€; containingej. With every circuitC € X; we associate
a finite auxiliary cycleC’, as fdlows. Let D be a circle inG whose circuit isC. To
form C’, we first take all the edges i@ N {ep, ..., ej} = Ec, in the same aglic order
as onD. The cbsure of D\ | Ec is a disjoint unionof closed segmentS of D, and
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we form C’ by replacing inD each of these segmenSby a new vertexxs joined to
the endpoints ofS. Thesenew vertices shall differ for distinct segmerfisand distinct
circuits C € Xj. Now let Hj be the finite graph congiag of the sum of all theC’
with C e Xj. Theddfinition of Xj implies thatZCEXjC, andhence alsd=(Hj), agrees
with Z’ on the sef{ep, ..., €j}, i.e. @ntains precisely = ey from this set. AsH; is a
finite sum of finite cycles and hence an edggiaint union of finitecycles, it contains a
finite path P! that joins the endvertices @&but does not contaie. Rephcing in Pj’ the
verticesxs and their incident edges with the corresponding circle segn&mte obtain a
topologicalx—y pathP; in G that contain®nly edges fronE (G’) and avoids the interiors
of all of ey, ..., €j. Lemma 2.land Theorem 4.7mply that P; contains the desirex-y
arcAj. O

Corollary 6.4. For every graph G satisfying2), its cycle spac@(é) is closed under
infinite sums.

Proof. Any sum of (a thin family of) elements af(G) that are each a union of disjoint
circuits can be rewritten as the sum of all these circuits, since these again form a thin
family. O

Theorem 6.5. Let G be a graph satisfying3). Then its cycle spacé’(é) consists of
precisely those sets of edges that meet every finite cut in an even number of edges.

Proof. Let F € E(G) be any finite cut inG. As in theproof of (x) in Theorem 6.1t
can be shown that every circuit medtsin an even nurber of edges. Since for every
Z=3i4GCiin C(G) only finitely many of the circuitsC; meetF, and shce finite sums
(mod 2 of even sets are exeit follows thatZ meetsF in an even nurber of edges.

For the converse implication suppose thatC E(G) meets every finite cut in an
even number of edges, and assume without loss of generality@Hatconnected. By
Theorem 5.2G has a topological spanning trde We shev that Z is equal to the sum of
all the fundamental circuitSe with e € Z\E(T). Let f be an edge of. We have to show
that f € Z ifandonly if f lies in an odchumber ofCe with e € Z\E(T). This is clear
if f ¢ E(T). So suppose thatf € E(T) and letE+ be the set of all edges i@ joining
the wo path-components of \ f. ThenEs is a cut inG, and the fundamental circuits
containingf are precisely th&€e with e € E;\{f}. Herce byLemma 6.2 E; is finite.
Thus by assumptiod meetsE ; in an evemumber of edges, i.& containsf if and only
if it contains an odd number of the other edges fr&m This is thecase if and only iff
lies on an odd number of fundamental circui® with e € Z\E(T), as rejuired. O

We remak that Theorem 6.5lso holds for graph& which only satisfy 2). Indeed, as
in the proof of Theorem 6.5t can be shown that every elementtG) meets every finite
cut in an even number of edges. The difference now is that in the proof of the converse
implication we can no longer assume ti@thas a topological spanning tree. Instead of
using such a tree, we considepee-tree T of G: a path-onnected subspace &f that
contains no circlavith a non-empty circuiand which is obtained frors by delding F
forsomeF C E(G). Thus, every topological spanning tree®fs a pretree.Corollary 4.4
implies tha for graphs satisfying3) the conerse is true, while the graph constructed in
Proposition 3.4shows thathie converse need not hold if we only assurBe But as in
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the pioof of Theorem 5.2ne can show tha® has a pre-tred whenevelG satisfies 2).
Moreover, adding an edgec E(G)\E(T) to T yields a circle inT U e containinge, but
there may be several such circles. However, they must all have the sameCicid we
may think of trese circuit<Ce as fundamental circuits. As before it can be shown that the
fundamental circuits with respect to a pre-tieef G form a thin family, so every sum of
distinct such fundamental circuits is well-defined. This again implies that for every edge
f the setEs of all edges inG joining the two path-components d’f\f is finite. (T\ f
consists of two path-components, becatise not contained in a circle iif .) Finally, as
in the poof of Theorem 6.%ne shows that i¥ € E(G) meets each finite cut i in an
evennumber of edges then is equal to the sum of alCe with e € Z\E(T), andhence
liesinC (é).

Note that the discussion in the previous paragraph also showEhbatem 6.Xemains
true for the fundamental circuits with respect to any fixed pre-tree.

7. Topological vs. end-faithful spanning trees, and their general existence problem

Our treatment of topological spanning trees has so far been motivated by the role they
can play for the study of the cycle space, which is why we considered the problem of their
exigenceonly for the relatively narrow class of graphs satisfyii). (n this sction we
consider the existence problem more generally. Unless otherwise mentioned, we assume
that any graph with ends considered is endowed with the standard topotryy T

Topological spanning trees are closely related to ‘end-faithful’ spanning trees (see
bdow), which have been widely studied in the literature. In order to put the existence
problem for topological spanning trees into context, we start by pointing out this
relationship.

Let G be any graph. Given any subgrabdhC G, there is a canonical map: 2(H) —
£2(G) taking every end oH to the end ofG that contains it as a subset (of rays).is
called end-faithfulin G if this mapn is a bijection, andopologically end-faithfuif it
is @ homeomorphism of the subspadeeH) c H and 2(G) c G. (By definition of
Top, n is always continuous.) IH is locally finite and end-faithful, it is also topologically
end-faithful (becausel is compact), but in general the latter is a stronger property.

Proposition 7.1. If T is a topological spanning tree & and the graph H:= T N G is
connected, then H is an end-faithful (ordinary) spanning tree of G.

Proof. H is clearly a spaning tree ofG; we shav thatH is end-faithful. If an endv of
G contains raysk and R’ from two distinct ends oH, we can choose them so th&tU R’
isadouble ray. TherRU R U {w} is a circle inT, a mntradiction. Hence every end &f
contains at most one end bf.

Now suppose that some ergdof G contains no end ofi . Letx be any vertex o, and
let A be anx—w arc inT (which exsts byLemma 2.). It is easy to see thah starts with
arayR C H as an initial segmen®[ Lemma 2.3]; letw’ be the end of5 containingR.
By assumptionn’ # », SOR & A. Pick a vertexy € A\R (which again exists byj,
Lemma 2.3]). Thenx Ay is not equal to the finite<—y pathin H, andhenceT contains a
circle (contradiction). [
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If the spanning treél in Proposition 7.1s not locally finite, it need not be topologically
end-faithful. For example, consider the graphobtained fromKy, by adding for every
vertexv a new ray thastarts atv but is otherwiseadisjoint from theKy, and from the
other new rays. Leb denote the end of thy, in G. Let H be any end-faithful spanning
tree of G (which is easily found), and I€T be its closure irG; this is easily seen to be
a topological spanning tree @. Theny~1(w) will have an open neighbourho@lin H
that excludesrifinitely many ends. But ifG every neighbourhood oé contains all but
finitely many ends, s9—* cannot map it intaD.

Thus, althougiH andT in Proposition 7.Xoincide as point sets (up to the bijectign
and in the topologies they induce &h the topology ofH on this set (i.e. DpPfor H) may
be finer than that of (the subspace topology frof). This can have curious effects; see
Proposition 7.4

Let us consider the converse problenfPtoposition 7.1Givenan end-faithful spanning
tree H of G, let us rder to its closure inG as the subspace d& inducedby H.
This subspace contains all the vertices and end& gbecauseH spansG and every
neighbourhood of an end contains a ve)tat is path-connected (becaus¢ is path-
connected, every end is the limit point of all its rays, dticcontains a ray from every
end), and it contains every edge of iath it contains an inner point (becausledoes). So
the only reason why this space might fail to be a topological spanning tr&isfthat it
might contain a circle—which can indeed happen (see below).

Problem 7.2. For which graphs G does every end-faithful spanning tree induce a
topological spanning tree iG?

For locdly finite graphs this is always the case:

Theorem 7.3. If G is locally finite, then a spanning tree of G is end-faithful if and only if
it induces a topological spanning tree@

Proof. We only have to show that il is an end-faithfuspanning tree ofG then its closure
in G contains no circle. If it did, then by}[ Lemma 4.3] (or byCorollary 4.4) this would
be the tosure of a circuiC in G. By [4, Theorem 5.1],C would be a sum of fundamental
circuits of H and hence contain a chord Hf, a @ntradiction. J

(The reader may wonder whether it is necessary in the prodhebrem 7.30 use the
result of 4, Theorem 5.1]. Indeed, if we extengto all of H by the identity onH, then
n . H — G is continuous and injective, and hence a topological embedding (sinise
locally finite and hencéd compact). So all we need to show is thtitself contins no
circle. But the proof of this ‘obvious’ fact, though straightforward, is already about half of
the dort proof of B, Theorem 5.1] (which is just like the proof @f) in Theorem 6.1)

In general, however, the converseRybposition 7.Xan fail:

Proposition 7.4. There is a countable graph G that has an end-faithful spanning tree
whose closure s contains a circle.

Proof. Consider the binary tre€ whose vertices are the finite 0—1 sequences and where
each sequence is adjacent to its two one-digit extensions. The efiglsafrespond to the
infinite 0—1 sequeces, which we view as binary expansions of the reals in [0, 1]JLtt
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Fig. 8.G/, and the dges ofG* atd.
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the set of all hose rationals in (0, 1) that have a finite binary expansion. Every number in
[0, 1]\ J corresponds to exactly one end©f, while everyq € J has the forng = 0.s1
and corresponds to the two ensfR000. .. ands0111.... Let G be the graph obtained
from T> by adding for eack € T> a newedgees between the verticesl 00 ands011; then
T, is an end-faithful subgraph @. For everyg = 0.s1 in J let Dgq denote the double ray
consisting of the new edg® and the two rays of» in s10000...ands01111. .. starting
at the end-points oés. Let Dg denote the double ray that is the union of the two rays
of T, starting atlhe empty sequendéand corresponding to the numbers 0 and 1.4in [
Section 5] we showathat he closureD in G of all the Dq with g € J U {0} is a circle
containing all the ends d&.

Let G’ be the graph obtained fro@ by subdividing every edge of the fores once.
Let vs denote the subdividingertex and, for eacly € J U {0}, let D& be the subdivision
of Dq contained inG'. (ThusD( = Do.) Clearly, the seD’ obtained fromD by replacing

eachDq with Dé and each end d& by its corresponding end @' is a circle inG .

Our aim now is ® add elges toG’ in order to obtain a grapls* in which G’ is end-
faithful, and which has anral-faithful spanning treéd containing all these double rays
Dg- Then he closure ofH in G* will contain D’ (replace the ends @&’ in D’ by the

corresponding ends @*), andD’ will still be a circle in G*.

To do ths, first join in G’ the vertexy to all those vertices of the forms that have
distance 3 fronDg in G’ (Fig. 8). Let Ny denote the set of all these neighbours. Then each
componenC of G’ — (Dy U Ny) is a copy ofG’, where the unique neighbotg of Dy in
C plays the role off in G’. Similarly as above, we joirtc to all those vertices i€ of the
form vs that have distance 3 from the ‘outer double ray@#-the double ray that is union
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of the two rays inl, starting atc and belonging to the ends000. . . andtc111. .. of To.
We continue in this fashion and denote the resulting grap®by

Since G* is obtained from the locally finite grap®’ by adding edged,emma 2.2
implies that every end 0G* contains a ray inG’. Moreover,it is easy to verify the
following claim.

For everyvertext of T, the setX; of all vertices ofT, abovet
together with all those vertices of the fonmfor which s lies above (*)
t in T2 has only finitely many neighbours &*(outsideXy).

Thus in particular, every two distinct rays W starting atJ can be separated B* by
finitely many vertices. Since every end @f contains such a raR C T (becausdl? is
end-faithful inG’), it follows that no end ofG* contains distinct ends d&’ as subsets.
ThusG’ is end-faithful inG*, andhenceD’ is still a circle inG*.

Let H be the subgraph d&* that consists of all the double ra% with g € J U {0},
all the edges of5* not in G’ and, for each finite sequensethe two elges joining the
endvertices011 ands100 ofes to their respective predecessafsl andsl10 in Tp. It is
easy to check thatl is a spaning tree ofG*. So it remains to show thaH is end-faithful
in G*. For this, firstnote that for every two distinct ray® andR’ of H starting atJ there
are incomparable verticesandt’ of T, (i.e. none of these vertices lies above the other in
T») such hatG*[X;] contains a tail oR andG*[ X/] contains a tail oR’. SinceG[X;] and
G[X{/] are disjoint,(x) implies thatR and R’ belong to distinct ends d&*. Thus no end
of G* contains distinct ends dfl as subsets. Furthermore, it is easily seen that for every
ray R in T there exists a ray il which is equivalent tdR in G*. As T, is end-faithful in
G*, it follows that every end o6* containsaray irH. [

Normal spanning trees, however, do induce topological spanning trees:

Proposition 7.5. Every normal spanning tree of a graph G induces a topological spanning
tree of G.

Proof. Rewrite the proof ofTheorem 7.3with [5, Lemma 4.1] replacing4, Theorem
51]. O

Proposition 7.5suggests that, in search of a conversePtmposition 7.1 instead of
focussing on the structure @& we might try to characterize the spanning trees that
induce topological spanning tredsectly (although, of course, in terms of their position
within G):

Problem 7.6. For whichend-faithful spanning treeld of an arbitrary infinite grapl is
the closure oH in G a topological spanning tree @&?

Here is amother question that we have been unable to decide:
Problem 7.7. Are thereconnected graph@ suchthatG has no topological spanning tree?

By Proposition 7.5and the results ofg], any graphG as inProblem 7.7must contain
certain substructures; in particul&,must be uncountable.

Seynour and Thomasl4] and Thomassenl5] have onstructed connected graphs that
have no end-faithful spanning tree. Fréhroposition 7.we know that for such graphs
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there can be no topological spanning tieef G suchthat T N G is connected. But there
might be other topological spanning trees, and in all the cases we looked at we managed
to find one. In particular, all the known connected graphs without end-faithful spanning
trees haveonly one end (or contain a one-endadtls graph), and for these we do have
topological spanning trees:

Proposition 7.8. If G is a connected graph with only one end, ti@rhas a topological
spanning tree.

Proof. We shall onstruct a spanning forest @whose components eacbntain a ray but
no double ray. Together with the unique endf G, this forest will form a path-connected
subspace ofs that contains no circle, because every circl&irs finite or consists of
together with a double ray.

Such a foresH is easily constructed inductively, as the union of a well-ordered chain
of subforests. We start by well-ordering the verticessofThen in the induction step we
consider the least vertexnot yet covered by our current subfor@stlf G — F contains a
ray stating atx, we add tlis ray toF; if not, we add a finitex—F path.

It is easily checked thatl has the desired properties. Indeed, every compdderfitH
contains the rayr that came with its first vertex. And every componen@of Ris rayless:
otherwise its first vertex should have started a new componeHt @fther than become
part of C. Therdore C, being a tree, contains no double ray.]

Finally, one might ask whether the topological spanning tieésat we found to exist
for G under ITop can always be chosen withn G connected:

Problem 7.9. When G is a connected graph satisfyin@®)( does G always have a
topological spanning tree whose intersection v@tlis connected?
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