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Abstract

We present a simple linear time algorithm for unit interval graph recognition. This algorithm
uses 3 LBFS sweeps and then a very simple test to determine if the given graph is a unit
interval graph. It is argued that this algorithm is the most easily implementable unit interval
graph recognition algorithm known.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

One of the most elegant algorithms in graph theory is the chordal (a graph with
no induced cycle of size greater than three) graph recognition algorithm by Rose et al.
[20]. This paper introduced the notion of Lexicographic Breadth First Search (LBFS),
a modi9cation of Breadth First Search (BFS) where ties are broken by favouring
vertices with the earliest visited neighbours. As in Korte and M@ohring [11], we say
that x and y disagree on z if exactly one of x; y is adjacent to z. LBFS produces
an ordering (v1; v2; : : : ; vn) of V such that if there are 16 i¡ j ¡k6 n such that
vj; vk disagree on vi, then the leftmost vertex on which they disagree is adjacent to vj.
The algorithmic details are presented in Section 2. Rose et al. showed that a graph is
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chordal if and only if the ordering of V produced by any LBFS is a Perfect Elimination
Ordering, namely an ordering v1; v2; : : : ; vn of V such that for all i; 1¡i6 n; (N (vi)∩
{vj | j6 i}) is a clique. Recently considerable success has been achieved in developing
easily implementable linear time multi-sweep LBFS algorithms to recognize various
families of graphs such as interval graphs [4], cographs [1] and bipartite permutation
graphs [2]. Our paper continues this approach by presenting a simple 3-sweep LBFS
algorithm to recognize unit interval graphs.

A unit interval graph (uig) is a graph whose vertices can be put in one-
to-one correspondence with unit length intervals of the real line such that two
vertices are adjacent if and only if the corresponding intervals intersect.
Roberts [18,19] has shown that uigs are equivalent to proper interval graphs (no
interval may properly contain another interval) and indi2erence graphs (there exists a
positive number � and an assignment of reals f(x) to the vertices in V such
that xy∈E whenever |f(x) − f(y)|6 �). These equivalences as well as others are
captured in the following theorem.

Theorem 1 (Roberts [18,19]). The following are equivalent:
1. G(V; E) is a unit interval graph.
2. G(V; E) is a proper interval graph.
3. G(V; E) is an indi2erence graph.
4. G(V; E) is an interval graph with no induced K1;3.
5. There is an ordering of V such that for all v∈V , N [v] (the closed neighbourhood

of v) is consecutive (“the neighbourhood condition”).
6. There is an ordering of V such that vertices contained in the same maximal

clique are consecutive (“the clique condition”).

Subsequently, Looges and Olariu [14] presented another equivalent ordering condi-
tion.

Theorem 2 (Looges and Olariu [14]). G(V; E) is a uig if and only if there is an order-
ing of V such that for all x¡y¡z; xz ∈E ⇒ xy; yz ∈E (“the 3-vertex condition”).

Note that the “3-vertex condition”, the “neighbourhood condition” and the “clique
condition” are equivalent in the sense that any ordering of V that satis9es one of the
conditions also satis9es the other two. Thus, for convenience, we will often switch
amongst them. For example, the proof of correctness of our algorithm will use the
“3-vertex condition” whereas the implementation will use the “neighbourhood
condition”.

The 9rst linear time recognition algorithm of uigs seems to be that of Looges and
Olariu [14]. This algorithm 9rst recognizes whether the given graph is an interval
graph and then proceeds to determine if it is a unit interval graph. Since it is based on
interval graph recognition, this algorithm is not simple. Deng et al. [5] presented the
9rst direct uig recognition algorithm, direct in the sense that they did not 9rst recognize
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whether the graph is an interval graph. This algorithm is based on local tournaments
and is more complicated than two subsequent algorithms. The 9rst, by Corneil et al.
[3], uses BFS to 9nd a “left-anchor” and then starts another BFS from this vertex. The
vertices in each BFS layer are then ordered by nondecreasing order of the number of
adjacencies to the following BFS layer minus the number of adjacencies to the previous
BFS layer. Bucket sort is used to provide this ordering. It is then determined if the
overall ordering of V satis9es the “neighbourhood condition”. The second algorithm,
by de Figueiredo et al. [6] does a single LBFS and then uses this order to construct
an ordering of V that satis9es the “clique condition”.

Hell et al. [10] have studied the problem of recognizing and representing a dynam-
ically changing uig. Now, the input is a series of modi9cations (either addition or
deletion of vertices or edges) to be performed on a graph and the goal is to maintain a
representation of the graph resulting from each modi9cation (if it is a uig) or to detect
that it is no longer a uig. Their algorithm requires O(d+log n) steps per modi9cation,
where d denotes the number of edges involved in the modi9cation. (Thus if the mod-
i9cation involves a vertex, d is the degree of the vertex; if the modi9cation involves
an edge, d = 1.)

Our algorithm uses three LBFS sweeps and then, as in [3], tests to see if this order
satis9es the “neighbourhood condition”. The 9rst sweep is an arbitrary LBFS to 9nd
a “left-anchor”. The following two LBFS sweeps, with a speci9c tie-breaking rule,
provide an ordering of V that satis9es the “neighbourhood condition” if and only if
G is a unit interval graph. As will be seen later, given a particular implementation
of LBFS, one immediately has an implementation of the tie-breaking LBFS. Thus, the
new algorithm is considerably simpler than the two previous algorithms by avoiding
the need to sort the vertices of each BFS layer by degree diOerences (as in [3]) and
by avoiding the construction of the ordering of V satisfying the “clique condition” (as
in [6]).

Before presenting the algorithm we introduce some notation and de9nitions.
For a vertex v∈V; N (v) (the open neighbourhood) denotes the set of vertices adja-
cent to v. N [v] (the closed neighbourhood) denotes N (v) ∪ {v}. Throughout the
paper, for S a subset of vertices of a graph G(V; E), S will denote both the subset
as well as G[S], the graph induced on S; the meaning will be clear from the
context.

2. The algorithm

We 9rst describe the two versions of LBFS that will be used in the uig recognition
algorithm. The 9rst allows arbitrary tie-breaking and the second uses the ordering from
a previous LBFS to break ties.

Let G(V; E) be a connected graph and let u be a vertex of G. We now reproduce
the details of the “generic” LBFS [20]. We warn the reader that our LBFS ordering of
the vertices of the graph may seem “backwards” compared to the ordering produced
by other LBFS descriptions.
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Procedure LBFS(G; u);
{Input: a connected graph G(V; E) and a distinguished vertex u of G;
Output: a numbering �u of the vertices of G}
begin

label(u)← |V |;
for each vertex v in V − {u} do

label(v)← � (the empty list);
for i ← |V | downto 1 do begin

pick an unnumbered vertex v with lexicographically the largest label; (?)
�u(v)← |V |+ 1− i; {assign to v number |V |+ 1− i}
for each unnumbered vertex w in N (v) do

append i to label(w)
end

end; {LBFS}
In an LBFS � with two arbitrary vertices x and y, if vertex x is visited before y, i.e.
x¡� y we say that x occurs before y in � or that x is visited before y or that x is
to the left of y. As mentioned above, this generic LBFS algorithm allows arbitrary
choice of a vertex in step (?). We call the set of tied vertices encountered in step (?)
a slice and denote it by S. Unless explicitly stated otherwise we also let V itself be
considered as a slice, i.e. all vertices of G are considered tied before the 9rst vertex
is chosen.

We now describe a variant of LBFS that is used in the multisweep LBFS recog-
nition algorithm for interval graphs [4]. In particular, it uses the ordering produced
by a previous LBFS to break ties in step (?). This variant has been independently
investigated by Simon [21] and Ma [15].

Procedure LBFS+ (G; �):
For this LBFS procedure, one previous LBFS ordering � is needed. In the LBFS
procedure at step (?), let S be the set of vertices with the lexicographically largest
label. Now v is chosen to be the vertex in S that appears last in �.

We now show how these two versions of LBFS are used to recognize unit interval
graphs.

The uig recognition algorithm
{Input: a connected graph G(V; E);
Output: A statement declaring whether or not G is a uig}
1. Do an arbitrary LBFS �.
2. LBFS+ (G; �) yielding sweep �+.
3. LBFS+ (G; �+) yielding sweep �++.
4. If �++ satis9es the “neighbourhood condition”, then conclude that G is a unit

interval graph; else, conclude that G is not a unit interval graph.
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Fig. 1. The bull.

To illustrate various aspects of this algorithm consider the “bull” presented in
Fig. 1 and the following three LBFS sweeps performed by the algorithm:

�: c [b d] a e,
�+: e d [b c] a,
�++: a b [c d] e.
Note that the parentheses indicate the nontrivial slices in each sweep. When applied

to �, LBFS+ 9rst chooses e, the last vertex in �. Once the slice S = {b; c} is encoun-
tered, b is chosen 9rst since it is the last S vertex in �. It is easy to see that the �++

ordering of V satis9es the “neighbourhood condition” and thus we conclude that G is
a uig. Note that this example shows that the third sweep is required. The ordering in
�+ does not satisfy the “neighbourhood condition” since ab∈E but ac 
∈ E thereby
showing that N [a] is not consecutive.

As shown in [3], for G a uig, it is easy to use the ordering of the vertices in �++

to produce a representation of G by unit intervals in which every endpoint is rational,
with its denominator not exceeding n.

3. Correctness and linear time implementation of the algorithm

First, we state an important theorem about the role of LBFS on chordal graphs.

Theorem 3 (Rose et al. [20], The P3 rule). Let � be an LBFS of a chordal graph G
and let u, v, w be vertices of G with v adjacent to u and w and such that u¡� v and
w¡� v. Then vertices u and w must be adjacent.

To simplify our notation we let ¡+ denote ¡�+ and ¡++ denote ¡�++ . In prepa-
ration for the proof of correctness of the algorithm, we state a number of facts about
uigs; all of these are easy to prove and most are well known. The 9rst holds for interval
graphs and is proved in [4]. The proof for unit interval graphs is easier and follows from
the manner in which LBFS chooses vertices as well as Facts 5 and 8 mentioned below.

Fact 4 (Corneil et al. [4]). Suppose �+ starts with vertex u and ends with vertex v.
Then �++ starts with v and ends with u.

Since LBFS is a speci9c form of BFS, we will refer to the BFS layers of both �+

and �++. In particular, we let L+
i (respectively, L++

i ) denote the ith BFS layer of �+
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(respectively, �++) where L+
0 = {u} and L++

0 = {v}. Suppose dist(u; v) = k; we let
P denote the set of vertices that are on a shortest u; v-path.

Fact 5 (Corneil et al. [3]). Each of L+
i ; L++

i ; 06 i6 k is a clique.

Fact 6.

x∈L++
i ; 06 i6 k ⇒ x∈

{
L+

k−i if x∈P;

L+
k−i+1 if x 
∈ P:

Proof. This follows from a straightforward induction argument.

The next fact captures the “neighbourhood nesting” of vertices in a BFS layer in
�++; a similar result holds for �+ but is not needed in our proof of correctness.

Fact 7 (Corneil et al. [3]). ∀x; y∈L++
i ; 0¡i¡k,

1. (L++
i−1 ∩ N (x)) ⊆ (L++

i−1 ∩ N (y)) or (L++
i−1 ∩ N (y)) ⊆ (L++

i−1 ∩ N (x)),
2. (L++

i+1 ∩ N (x)) ⊆ (L++
i+1 ∩ N (y)) or (L++

i+1 ∩ N (y)) ⊆ (L++
i+1 ∩ N (x)),

3. (L++
i−1 ∩ N (x)) ⊂ (L++

i−1 ∩ N (y)) ⇒ (L++
i+1 ∩ N (x)) ⊇ (L++

i+1 ∩ N (y)),
4. (L++

i+1 ∩ N (x)) ⊂ (L++
i+1 ∩ N (y))⇒ (L++

i−1 ∩ N (x)) ⊇ (L++
i−1 ∩ N (y)).

Fact 8. If x; y∈ S ⊂ V , a nontrivial slice of �++, then x¡++ y if and only if y¡+ x.

Proof. Clearly, any nontrivial slice of �++ must be a subset of L++
i ; (0¡i6 k) and

thus by Fact 5 is a clique. Since S is a clique, once a vertex is chosen by �++ all
remaining vertices in S get its label and remain lexicographically tied. Thus in �++,
the ordering of the vertices of S is the reversal of their ordering in �+.

Theorem 9. If G is a uig, then �++ satis<es the “3-vertex condition”.

Proof. Suppose not. In particular, suppose x¡++ y¡++ z, where xz ∈E and at least
one of xy; yz 
∈ E. Without loss of generality assume z is the rightmost such vertex in
�++ with respect to x and y. Suppose x∈L++

i . Since �++ is a BFS, if z ∈L++
i then

since L++
i is a clique (Fact 5), {x; y; z} forms a triangle. Thus z ∈L++

i+1. If y∈L++
i+1,

then yz ∈E and xy 
∈ E contradicting the P3 Rule. Thus y∈L++
i ; xy∈E and yz 
∈ E.

Since (L++
i+1 ∩ N (y)) ⊂ (L++

i+1 ∩ N (x)), by Fact 7 (L++
i−1 ∩ N (y)) ⊇ (L++

i−1 ∩ N (x)). But
since x¡++ y, LBFS forces (L++

i−1 ∩N (x)) ⊇ (L++
i−1 ∩N (y)) implying (L++

i−1 ∩N (x)) =
(L++

i−1 ∩ N (y)). Thus there is a slice S ⊆ L++
i containing x and y.

Now look at �+. By Fact 8, since x¡++ y; y¡+ x. Now x¡+ z, otherwise we
have contradicted the P3 Rule in �+. Since �+ is a BFS of G, for x to be before z
in �+, by Fact 6, x∈L++

i ∩ P and z ∈L++
i+1 \ P (i.e. both x and z are in L+

k−i). Since
x∈P, there exists z′ ∈L++

i+1 ∩ P such that xz′ ∈E. We see that yz′ 
∈ E since otherwise
y∈L++

i ∩ P which by Fact 6 implies y∈L+
k−i; but since L+

k−i is a clique, this implies
that yz ∈E.
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We 9nish the argument by showing that z ¡++ z′, thereby contradicting our choice
of z being rightmost with respect to x and y. Since z′ ∈P and z 
∈ P, (N (z)∩ L++

i+2) ⊂
(N (z′) ∩ L++

i+2). Thus by Fact 7, (N (z) ∩ L++
i ) ⊇ (N (z′) ∩ L++

i ). If (N (z) ∩ L++
i ) ⊃

(N (z′)∩L++
i ), then LBFS forces z ¡++ z′. Now assume (N (z)∩L++

i )= (N (z′)∩L++
i )

which implies there is a slice in L++
i+1 containing z and z′. By Fact 6 since z′ ∈ (L++

i+1∩P)
and z ∈ (L++

i+1 \P), we know that z′ ∈L+
k−i−1 and z ∈L+

k−i. Thus z′ ¡+ z and by Fact 8,
z ¡++ z′ as required.

We now turn to the implementation of the algorithm. There are many linear time
implementations of LBFS described in the literature, for example see [7,8,20]. In our
discussion, we will follow the implementation presented in [8], namely one that follows
the paradigm of “partitioning”. In this scheme, we start with all vertices in the same
cell (i.e. slice) and choose an arbitrary vertex, often the 9rst vertex in the cell. As we
will see during our discussion of the implementation of LBFS+, it will be advantageous
for us to assume that the vertices already have some order. When a vertex is chosen,
i.e. is chosen as the pivot, it is placed in its own cell and invokes a partitioning of all
cells that follow it in the ordering. Under this partitioning of a cell, vertices that are
adjacent to the pivot form a new cell that precedes the cell containing the vertices not
adjacent to the pivot. After this partitioning is complete, a new pivot is chosen from
the cell immediately following the old pivot and the process of re9nement continues.
As pointed out by Lanlignel [13], one of the advantages of using this paradigm is
that we immediately have an implementation of LBFS+. Once our initial LBFS has
terminated, we merely reverse the ordering of the vertices produced by the 9rst LBFS
and run the algorithm again. Every time a slice is encountered, the last vertex from
the previous LBFS is automatically the vertex at the front of the list.

To implement the last step of the algorithm, namely the test of the “neighbourhood
condition”, as in [3], to each vertex x we assign two integers, lmn(x) and rmn(x)
storing the indices (in �++) of the leftmost (respectively, rightmost) element of N [x].
Note that by using the closed neighbourhood of x, lmn(x) (respectively, rmn(x)) is set
to the index of x if x has no neighbours to the left (respectively, to the right) in �++.
It is easy to modify the LBFS implementation to store these values. The 9nal step
consists of determining for each x whether deg(x) = rmn(x)− lmn(x). Thus we have:

Theorem 10. The algorithm can easily be implemented to run in linear time.

4. Concluding remarks

After the submission of this paper, there has been a number of further developments
concerning the recognition of uigs. In particular, a new recognition algorithm based
on “bicompatible elimination orderings” has recently appeared [17]. This algorithm,
although linear time, seems to be more diPcult to implement that the one presented
in this paper.

Recently, the concept of a “certifying algorithm” [12] has received considerable
attention. When applied to recognizing uigs, such an algorithm not only produces a
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certi9cate that the algorithm is correct if the input graph is accepted as being a uig
(i.e. it satis9es the “3-vertex condition” and thus has a uig representation) but also
produces a certi9cate that the algorithm is correct if the input graph is rejected. Such
a certi9cate of rejection is, in the case of uigs, an observed induced subgraph of the
input graph that cannot appear in any uig. The 9rst such algorithm is by Meister [16].
His uig recognition algorithm is similar to ours in that it involves 3 LBFS sweeps;
however, his algorithm uses a variant of LBFS called “min-LexBFS”. The test on
the ordering produced by the third sweep is the same as ours (i.e. the one in [3]).
Min-LexBFS can be implemented to run in linear time but does not use an “oO the
shelf” partitioning implementation, as does ours. Meister’s algorithm does, however,
produce a certi9cate if the input graph is not a uig. In particular, such a certi9cate
is either an induced cycle of size greater than 3, a claw (i.e. K1;3) or an “asteroidal
triple” (an independent triple of vertices such that between any two there is a path that
avoids the neighbourhood of the third). It seems as though Meister’s certifying step
could be applied to the present algorithm. A second certifying algorithm by Hell and
Huang [9] augments our algorithm and uses Wegner’s characterization of uigs [22],
namely that a graph is a uig iO it does not contain an induced cycle of size greater than
3, a claw, or a “3-sun” or its complement, the “net” which consists of a triangle each
of whose vertices is adjacent to a unique vertex of degree 1. Their algorithm produces
such a certi9cate if G is not a uig. Interestingly, they also show that our algorithm
can be augmented to provide a linear time certifying recognition algorithm for proper
interval bigraphs. (A bipartite graph with bipartition (X; Y ) is an interval bigraph if
each vertex v is assigned an interval Iv and x∈X; y∈Y are adjacent iO Ix ∩ Iy 
= ∅; an
interval bigraph is proper if no interval contains another.)
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