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Abstract

Pentagon–hexagon-patches are connected bridgeless plane graphs with all bounded faces
pentagons or hexagons, all interior vertices of degree 3 and all boundary vertices of degree 2 or 3.
In this paper we determine the minimum and maximum possible boundary lengths min(h, p) and
max(h, p) of pentagon–hexagon-patches withh hexagons andp ≤ 6 pentagons and determine
which intermediate values can occur. We show that the minimal boundary length is obtained by
arranging faces in aspiral fashion starting with the pentagons, while the maximum boundary length
is obtained in cases where theinner dual is a tree. © 2003 Elsevier Science Ltd. All rights reserved.
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Introduction

Harary and Harborth [9] have given explicit formulae for possible boundary lengths
of patches withp = 0 that are isomorphic to a subgraph of the hexagonal lattice
(these structures are calledhexagonal animals). Their result found various applications
in theoretical chemistry, especially the theory ofbenzenoids, where it was e.g. used
to determineconstant isomer series, that is series of chemical formulae of the type
Cx1 Hy1,Cx2 Hy2, . . . with a constant number of benzenoids for every formula in the series
(see e.g. [4] or [5]).

After the discovery of the fullerenes [10], that is carbon molecules with the bonding
structure of a cubic plane graph with all faces hexagons and pentagons, the interest in
planar polycyclic hydrocarbons with a limited number of pentagons besides the usual
hexagons increased. The result proven in this paper allows us to determine constant
isomer series of hydrocarbons with up to six pentagons and is the basis of an efficient
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Fig. 1. Two small patches with the same boundary and different number of faces.

construction algorithm for the enumeration of planar polycyclic hydrocarbons with at most
six pentagons (see [2]).

Another important application of this result is for a special class of fullerenes
themselves: tubetype fullerenes or nanotubes are fullerenes that are—although
topologically spherical—geometrically of the shape of a long tube. They consist of a long
tubular body made up of only hexagons and are capped on each side with a patch containing
hexagons and exactly six pentagons. These nanotubes are the by far most promising class
of fullerenes for possible applications, (see e.g. [11, 12]). The nanotube caps can be
chosen in a way that they contain a pentagon in their boundary and the vertices have,
alternately, degrees 2 and 3 (only counting edges belonging to the cap) except at possibly
two places where two vertices with the same degree—once both of degree 2 and once both
of degree 3—follow each other. Except for its length, the structure of the tubular body is
completely determined by the boundary structure of the caps. The length of the boundary
in the case of an alternating boundary, respectively the two lengths between the special
places are invariants of the nanotube called thetube parameters. The tube parameters
have an effect on some chemical and physical properties of the nanotube (see e.g. [6]).
In order to classify all possible nanotubes with given tube parameters up to different tube
lengths, it is important to know all possible caps for these tubes (see [3, 6]). In fact the
statement above assumes that for given parameters there is just a finite number of such
caps. Without the requirement of a pentagon in the boundary, this is obviously false: we
can add arbitrarily many hexagon rings without changing the boundary structure of the cap.
But even with the requirement of a pentagon in the boundary the number of faces inside a
cap is not determined by its boundary structure, as can be seen at the operation described
in Fig. 1 which is known as theEndo-Kroto C2 insertion. If we could e.g. repeatedly
apply this or another operation (see [1]) with the same effect to a cap without touching
the pentagon in the boundary of the cap, the number of faces inside a cap for given
parameters would not be bounded and therefore we would also have an infinite number
of caps.

The result proven in this paper can be used to determine an upper bound on the number
of faces inside a cap with given parameters in the following way: forp < 6 pentagons
we prove an upper bound for the number of faces inside any patch with given boundary
length. Inserting a vertex into a boundary edge of a pentagon in the boundary of a cap, we
get a patch with a boundary length that is one larger than the boundary length given by the
parameters of the cap, and that contains exactly five pentagons and the same number of
faces as the cap. So the upper bound for the number of faces for this new boundary length
and p = 5 is also an upper bound for the number of faces inside a cap with the given
parameters.
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Due to lack of space we have to omit some proofs or details of proofs, which are not
difficult, but must be carefully worked out. The nontrivial ones can be found in [8].

The main result of this paper was already announced by the first author at the
Colloquium on Combinatorics 1995 in Braunschweig. Later it was independently proven
by the third author in her diploma thesis [8] supervised by the second author. The present
paper is the result of merging the two approaches.

Basic definitions and results

A pentagon–hexagon-patch is a 2-connected plane graph with all bounded faces
pentagons or hexagons, all vertices not in the boundary of the unbounded face (we will just
call this the boundary) of degree 3 and all vertices in the boundary of degree 2 or 3. Since
there will be no danger of misunderstandings, we will call pentagon–hexagon-patches just
patches. A patch withh hexagons andp pentagons is called an(h, p)-patch. An(h,0)-
patch that is isomorphic to a subgraph of the hexagonal lattice is called a (hexagonal)
animal.

Since in 2-connected graphs all face boundaries are cycles, every vertex of degreek ∈
{2,3} is contained in exactlyk pairwise distinct faces, one of them possibly unbounded.

For a patchP we denote the cardinality of the set of vertices ofP by v(P), of the set of
edges bye(P) and of the set of bounded faces byf (P). For edgese and facesf we write
e ∈ f to denote thate is an edge in the boundary off . Theinner dual of a patch is its dual
graph with the vertex corresponding to the outer face removed. The distanced( f, f ′) of
two bounded facesf, f ′ in a patchP is the graph distance of the corresponding vertices in
its inner dual.

A boundary face is a face that shares an edge with the unbounded face. Byremoving a
boundary face f , we mean constructing the graph obtained by removing all those vertices
and edges that belong exactly to the bounded facef and the unbounded face. The resulting
graph may be disconnected, but all connected components are patches.

The boundary length b(P) of an (h, p)-patchP is defined as the number of vertices
(or equivalently edges) in the boundary ofP.

For a setP̄ of patchesP1, . . . , Pk let b(P̄) = ∑k
i=1 b(Pi ). If for 1 ≤ i ≤ k the patch

Pi is an(hi , pi )-patch andh1 + · · · + hk = h, p1 + · · · + pk = p, then P̄ is called an
(h, p)-patchset.

For i = 2,3 let vi (P) denote the number of vertices ofP with degreei andvi,b(P)
denote the number of boundary vertices ofP with degreei . By definition we have
v2(P) = v2,b(P) andb(P) = v2,b(P)+ v3,b(P).

Lemma 1. For an (h, p)-patch P we have v2,b(P) − v3,b(P) = 6 − p and b(P) =
2v3,b(P)+ 6 − p.

Proof. Summing up the vertices of all bounded faces separately, vertices of degree 2 are
counted once, boundary vertices of degree 3 are counted twice and interior vertices are
counted 3 times. We getv(P) = (6h + 5p + v3,b(P) + 2v2,b(P))/3.

Summing up all edges of all bounded faces, boundary edges are counted once and
interior edges are counted twice, soe(P) = (6h + 5p + v3,b(P)+ v2,b(P))/2.
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Finally we havef (P) = p + h. Inserting these expressions into the Euler formula for
bounded faces, that isv(P) − e(P)+ f (P) = 1, after some elementary computations we
get the result of the lemma.

The second equation now follows fromb(P) = v2,b(P)+ v3,b(P). �

The boundary sequences(P) of a patchP is the undirected cyclic sequence given by
the degrees of the vertices in cyclic order around the patch.

Corollary 2. The boundary sequence of every (h, p)-patch with p < 6 contains a
subsequence 22.

Remark 3. Let P be an(h, p)-patch with fb > 1 boundary faces. Thenv3,b(P) ≥ fb

andv3,b(P) = fb if and only if every boundary face has a connected intersection with the
boundary.

Proof. Fix a rotation direction around the boundary and letψ denote a mapping from
the set of 3-valent boundary vertices to the set of boundary faces with the image of every
boundary vertex with valency 3 the boundary face neighbouring it in this rotation direction.
This gives a surjective map provingv3,b(P) ≥ fb which is bijective if and only if every
boundary face has a connected intersection with the boundary.�

Remark 4. For p ≤ 6 there are no(h, p)-patches withb(P) < 5.

Proof. Assume the contrary and letP be a counterexample with minimum number of
faces. Forb(P) < 5 not all vertices of a face can be boundary vertices, so there is an
interior vertex and thereforeh + p ≥ 3. Since forv3,b(P) = 0 the patchP would be a
single face that is smaller than a pentagon and byLemma 1we havev2,b(P) ≥ v3,b(P),
we have 1≤ v3,b(P) ≤ 2. Forv3,b(P) = 1 there would be a single facef in the boundary
with the face boundary not a cycle, so this can’t occur. Forv3,b(P) = 2 we would have a
boundary length of four and two boundary facesf, f ′ with together at most 12 edges. So at
most four edges are neighbouring other faces thanf, f ′. Removingf, f ′ would leave a set
of nonempty smaller patches with sum of boundary lengths at most four—each of them in
contradiction to the minimality ofP. �

Corollary 5. For p ≤ 6 two bounded faces in an (h, p)-patch can share at most one edge.

Proof. If two bounded facesf, f ′ would share more than one edge, these edges could not
share a vertex, since this would be a vertex of degree 2 that is not in the boundary of the
patch or the boundary of one of the faces would not be a cycle.

So there are at most eight edges in the boundary off and f ′ that they do not share
and that form at least two cycles—at least one of them with at most four edges and an
(h, p)-patch in the interior. This is in contradiction toRemark 4. �

Remark 6. Given an(h, p)-patch P, in which all faces contain boundary edges and a
face f in P. Then there is a facef ′ in P with maximum distance fromf and at most two
nonboundary edges.

Proof. The situation where the maximum distance is 0 or 1 can be easily checked by hand,
so assume a maximum distanced ≥ 2.
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Fig. 2. An example situation for the proof of Remark 6.

Take an arbitrary face g with maximum distance from f . If g has at most two edges
not in the boundary we have found the face, so assume g has at least three edges not in
the boundary. Let h, h′, h′′ be three corresponding faces in clockwise direction around g
starting after a boundary edge. The fact that h, h′, h′′ must be pairwise distinct follows
immediately from the condition that there are no faces without boundary edges.

An example situation like this is pictured in Fig. 2. In general the edges along which
h, h′, h′′ are adjacent to g do not have to follow each other in the boundary of g. Since
h′ and g both have boundary edges, removing h′ and g disconnects the patch—especially
the faces h and h′′. Since d ≥ 2, f /∈ {h, h′, h′′, g}, so without loss of generality assume
that f is not in the same component H as h. Since h′ is neighbouring g, d( f, h′) ≥ d − 1,
and since all paths to faces in H must pass through g or h′, all faces in H must be
neighbouring h′. In fact shortest paths must all pass through h′ and all faces in H have
distance d . In particular, since H is not empty, d( f, h′) = d − 1. But in this situation one
can easily see that one of them (the first one in counterclockwise direction starting at a
boundary edge of h′) must have at most two edges not in the boundary. �
We define

min (h, p, k) = min {l ∈ N | ∃(h, p)-patchset P̄ with k elements and b(P̄) = l}
max (h, p, k) = max {l ∈ N | ∃(h, p)-patchset P̄ with k elements and b(P̄) = l}.

For min (h, p, 1),max (h, p, 1) we will also write min (h, p),max (h, p).
The fact that patches are 2-connected implies the following remark:

Remark 7. The inner dual of patches is connected.

Remark 7 makes it easy to determine max (h, p, k):

Lemma 8. For an (h, p)-patchset P̄ with k (nonempty) elements we have b(P̄) =
max (h, p, k) if and only if the inner dual of every patch in P̄ is a tree. In this case
b(P̄) = 4h + 3 p + 2k.

Proof. If for i = 1, 2 the number of edges that occur in exactly i bounded faces is
denoted by ei (P̄), we have e1(P̄) = b(P̄) and e(P̄) = e1(P̄) + e2(P̄). On the other
hand e(P̄) = 6h + 5 p − e2(P̄), since edges that occur in two faces are counted twice
in 6h + 5 p. So e1(P̄) = 6h + 5 p − 2e2(P̄). Since the inner dual of every patch in P̄ is
connected, we have e2(P̄) ≥ h + p − k with equality only if the inner dual of every patch
is a tree. So b(P̄) = e1(P̄) ≤ 6h + 5 p − 2(h + p − k) = 4h + 3 p + 2k.
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Since patches with the inner dual being a tree can easily be constructed, the lemma is
proven. �

Lemma 9. Let P be an (h, p)-patch with at least one internal face and all boundary faces
hexagons. Then P− denotes the set of patches obtained by removing all boundary hexagons
and we have b(P−) ≤ b(P)− 2(6 − p).

We have b(P−) = b(P)−2(6− p) if and only if every boundary hexagon shares exactly
two edges with other boundary hexagons.

Proof. The subgraph of the inner dual that is induced by the vertices corresponding to
boundary hexagons is a connected graph and since there is an internal face it has at least
one cycle. This implies that with hb the number of hexagons in the boundary it has at
least hb edges. The corresponding edges in the patch have boundary hexagons on both
sides.

The set of boundary edges of P− is the set of edges that belong to a boundary hexagon
of P and to a nonboundary face. So we get b(P−) ≤ 6hb − 2hb − b(P). By Lemma 1
b(P) = 2v3,b(P) + 6 − p, so b(P−) ≤ 4hb − (2v3,b(P) + 6 − p).

By Remark 3 we have v3,b(P) ≥ hb and therefore b(P−) ≤ 4v3,b(P) − (2v3,b(P) +
6 − p) = 2v3,b(P)− (6 − p) = b(P)− 2(6 − p).

All inequalities become equalities if the requirements of the second part are fulfilled (the
boundary hexagons form a cycle, so each boundary hexagon has a connected intersection
with the boundary).

On the other hand if all inequalities become equalities, each boundary hexagon has
a connected intersection with the boundary and is therefore neighbouring at least two
other boundary hexagons: in the case of a hexagon with only one neighbouring bound-
ary hexagon, this is the only neighbouring face and would have a disconnected intersection
with the boundary, since there must be more than two faces. But then the first equality can
only be fulfilled if all boundary hexagons are neighbouring exactly two other boundary
hexagons, which completes the proof of the second part. �

Lemma 10. For all k > 1, p ≤ 6, h + p ≥ k we have min (h, p, k) > min (h, p, k − 1).

Proof. Assume a set of patches P1, . . . , Pk with a total of h hexagons, p pentagons and∑k
i=1 b(Pi ) = min (h, p, k) is given. If two of the patches have a boundary edge with both

endpoints of degree 2, then we can identify the patches along these boundary edges and
obtain a set of k − 1 patches with the same number of pentagons and hexagons but shorter
boundary sum. By Corollary 2 such an edge always exists in patches with less than six
pentagons.

So the only remaining case is that we have k = 2, p = 6 and all six pentagons are
in the same patch, without loss of generality P1, which has a boundary with boundary
sequence (2, 3)n for some n ≥ 2. By Lemma 1 we have b(P2) ≥ 6. Arranging � f (P2)

n �
rings of n hexagons each around P1, we get a patch with the same boundary sequence and
length as P1. Adding the remaining f (P2)− n� f (P2)/n� hexagons in an incomplete (but
connected) ring, we have a patch with h hexagons, six pentagons and boundary length at
most b(P1)+ 2 < b(P1)+ 6 ≤ b(P1)+ b(P2). �
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Spirals

A spiral is an (h, p)-patch in which the faces can be numbered from 1 to h + p in a way
that for 1 < m ≤ h + p face m has a connected intersection with the subgraph induced by
the faces 1 . . .m − 1 which includes an edge of face m − 1 and for m > 2 an edge of the
smallest of the faces sharing a vertex with face m − 1 that is in the boundary of the patch
induced by the faces 1 to m − 1. Such a numbering is called a spiral numbering. A special
class of spirals has also been studied in the context of fullerenes. Most fullerenes can be
described as a spiral with p = 11 and the unbounded face a pentagon or p = 12 and the
unbounded face a hexagon (see [7]).

A spiral with h hexagons and p pentagons together with a spiral numbering in which
the pentagons get numbers 1, . . . , p is called a spiral Sh,p . The reader can easily convince
himself that for arbitrary h ∈ N and p ≤ 6 spirals Sh,p exist and are uniquely determined
up to isomorphisms. This justifies the notation the spiral Sh,p as long as properties
are discussed that are invariant under isomorphisms. For p > 6 this result does not
hold. A detailed proof can be found in [8]. By definition a spiral Sh,p contains spirals
S0,1, . . . , S0,p−1 and S0,p, S1,p, . . . , Sh−1,p as subspirals.

In the following lemma we list some useful properties of spirals:

Lemma 11. Given a spiral Sh,p, p ≤ 6. Then

(a) If h + p > 2 every face has at least two nonboundary edges.

(b) There is n, 0 ≤ n < h + p so that the faces numbered 1, . . . , n are interior faces and
there is a cyclic order around the boundary so that the boundary faces are numbered
n + 1, . . . , h + p.

(c) For every n there is h so that for all h′ ≥ h the face numbered n is an interior face
of Sh′,p.

(d) If face 1 is interior and there is a face f with exactly two nonboundary edges, then
f is numbered h + p.

(e) If face 1 is interior and there is no face with exactly two nonboundary edges, every
boundary face is neighbouring exactly two other boundary faces.

Proof. (a) This is a direct consequence of the definition for h + p > 2.

(b) This can be proven by induction on the number of faces using the requirements for
the position of the last face and the boundary structure of spirals in the induction
step. This result is closely related to the existence of spirals. We leave the proof to
the reader.

(c) Assume the contrary and let n be a minimal number so that this is not true.
Furthermore let Sh,p be a spiral so that all faces numbered 1, . . . , n − 1 are interior
faces. By (b) for all h′ ≥ h in Sh′,p face h′ shares a boundary vertex with face n and
therefore face h′ + 1 shares an edge with face n in Sh′+1,p. But this would require an
infinite number of edges of face n.

(d) Checking for every p the smallest case with face 1 interior by hand, we can proceed
by induction: given a spiral Sh+1,p . All faces with number smaller than h + p − 1
have at least three nonboundary edges by the induction hypotheses. Face h + p has at
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least two nonboundary edges in Sh,p (part (a)) and must share at least one additional
edge with face h + p + 1—so face h + p + 1 is the only candidate for only two
nonboundary edges.

(e) Assume there is a boundary face g neighbouring three other boundary faces h, h′, h′′
in clockwise direction around g starting at a boundary edge of g. Removing g and
h′ disconnects the spiral and without loss of generality assume face number 1 is in
another component than the component H containing h. Note that face 1 is neither
g nor h′, since face 1 is an interior face. For every interior face n, face 1 can be
connected to face n by a path through the (interior) faces 1, 2, . . . , n (part (b)), so
all faces in H ∪ {g, h′} must be boundary faces. By Remark 6 there is a face f ′
at maximum distance from g in H ∪ {g, h′} with at most two nonboundary edges.
If f ′ �= h′, f ′ also has at most two nonboundary edges in Sh,p , so f ′ = h′ and
all other faces in H ∪ {g, h′} are neighbouring g. But similar to the last step in the
proof of Remark 6 one can see that one of them must have at most two nonboundary
edges—again a contradiction. �

Theorem 12.

b(Sh,0) = 2�√12h − 3�
b(Sh,1) = 2�

√
10h + 25

4 + 1
2� − 1

b(Sh,2) = 2�√8h + 16�
b(Sh,3) = 2�

√
6h + 81

4 + 1
2� − 1

b(Sh,4) = 2�√4h + 25�
b(Sh,5) = 2�

√
2h + 113

4 + 1
2� − 1

b(Sh,6) =
{

10 if h
5 ∈ N

12 else.

Proof. We will give the proof only for b(Sh,1). For the other cases the proofs are very
similar, though some of them are a bit more technical in detail. They can be looked up
in [8].

For b(Sh,0) see also [9].
Let a spiral Sh,1 be given. For d ≥ 0 the set of faces at distance d from the pentagon

is called the dth layer of the spiral. A dth layer is called complete, if the unbounded face
has distance more than d from the central pentagon. In a complete dth layer there are 5d
hexagons.

A (complete) side of Sh,1 in layer d is a set of d consecutively numbered faces in layer
d so that the last one can be reached from the central pentagon by a straight path in the
dual, that is a path that uses every third edge in the cyclic ordering around the vertices with
valency 6.

The existence of such layers and sides as well as the result about the number of faces
contained in them can be formally proven by discussing the boundary sequences that occur
for such spirals and how they change when faces are added. We leave the details to the
reader.
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Fig. 3. The spiral S20,1. It has two complete layers of hexagons, one complete side that does not belong to a
complete layer and two additional faces that do not belong to a complete side.

So the number h of hexagons in a spiral with l complete layers, s complete sides that
do not belong to a complete layer and a additional faces that do not belong to a complete
side is

h =
l∑

i=1

(5i)+ s(l + 1)+ a = 5
2 l2 + 5

2 l + sl + s + a.

On the other hand the length of the boundary is given by

b(Sh,1) =
{

10l + 5 if s = a = 0
10l + 2s + 7 else.

The case s = a = 0 follows directly from Lemma 9. The other case has to be deduced
from details of the boundary sequence.

In the case s = a = 0 we have

2�
√

10h + 25
4 + 1

2� − 1 = 2�
√

25l2 + 25l + 25
4 + 1

2� − 1

= 2�
√
(5l + 5

2 )
2 + 1

2� − 1 = 2�5l + 5
2 + 1

2� − 1 = 10l + 5 = b(Sh,1).

In the case (s, a) �= (0, 0) we have 0 ≤ s ≤ 4 and 0 ≤ a ≤ l, so

s2 < 5s + 10a < s2 + 2s + 10l + 6.

Adding 25l2 + 10ls + 25l + 5s + 25
4 and taking roots we get

5l + s + 5
2 <

√
10h + 25

4 < 5l + s + 7
2

and therefore

2�
√

10h + 25
4 + 1

2� − 1 = 2((5l + s + 7
2 )+ 1

2 )− 1

= 10l + 2s + 7 = b(Sh,1). �

Lemma 13. Given a spiral Sh,p, p ≤ 6. Let S+
h,p = Sh′,p be the spiral with h′ minimal so

that all h + p faces of the subspiral Sh,p are interior.
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Then S+
h,p has no boundary face with exactly two nonboundary edges and every

boundary hexagon shares exactly two edges with other boundary hexagons.
In case p < 6 we have (S+

h,p)
− = Sh,p.

Proof. In Sh′,p face 1 is interior, so by Lemma 11 only the last hexagon can have exactly
two nonboundary edges. Removing such a hexagon does not alter the set of interior faces
since all neighbouring faces still have a boundary edge. So removing this last face gives a
smaller spiral with the same set of interior faces—contradicting the minimality of h′.

By Lemma 11 this completes the first part of the proof.
By Lemma 11 there is some n so that the faces numbered n, . . . , h′ have been removed,

so (S+
h,p)

− �= Sh,p implies that there is some ha > h so that (S+
h,p)

− = Sha ,p. From the
monotonic growth of the boundary length of spirals for p < 6 it follows that ha has at
least three boundary edges in Sha ,p , since otherwise removing face ha would increase the
boundary length. So there are three pairwise different faces ha +1 < hb < hc ≤ h′ in S+

h,p
neighbouring ha along these edges.

In this case ha, ha + 1, . . . , hb, ha is a face cycle in Shb,p with all faces of Sh,p in its
interior. So these faces are already nonboundary faces in Shb,p contradicting the minimality
of h′. �

The minimality of spirals

For min (h, p) = min {l ∈ N | ∃(h, p)-patch P with b(P) = l} we want to prove the
following theorem:

Theorem 14. For p ≤ 6 we have

b(Sh,p) = min (h, p).

This theorem follows immediately from the next lemma, which is a bit more technical,
but states an even stronger result:

Lemma 15. For every (h, p)-patch P and spiral Sh′,p′ with p ≤ p′ ≤ 6 and h + p =
h′ + p′ we have b(P)+ p ≥ b(Sh′,p′)+ p′.

Proof. Assume that P and Sh′,p′ form a counterexample with the 3-tuple (p, p′, h)
minimal in lexicographical order, so b(P)+ p < b(Sh′,p′)+ p′.

Let fb, respectively ( fS)b denote the number of faces in the boundary of P respectively
Sh′,p′ . Since the result is obviously true for just one face, assume h + p ≥ 2.

P cannot have a pentagon in its boundary, because otherwise we could replace this
by a hexagon with the result a counterexample with the corresponding (smaller) 3-tuple
(p − 1, p′, h + 1).

By Lemma 1 and Remark 3 we get

b(P)+ p = 2v3,b(P)+ 6 ≥ 2 fb + 6.

Since boundary faces in spirals have a connected intersection with the boundary we also
get

b(Sh′,p′)+ p′ = 2v3,b(Sh′,p′)+ 6 = 2( fS)b + 6.
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From these equations we get fb < ( fS)b for our counterexample, so especially
fb < h + p, that is P has an interior face.

If fb > h′, we have also ( fS)b > h′, so Sh′,p′ has a pentagon in the boundary and
h ≥ fb > h′ which gives p ≤ p′ − 1. Since by Lemma 11 especially the pentagon p′ is in
the boundary, we can make the face p′ a hexagon with the result a spiral Sh′+1,p′−1. But this
would give a counterexample with the corresponding (smaller) 3-tuple (p, p′ − 1, h)—a
contradiction. So fb ≤ h′ and the spiral Sh′− fb,p′ is well defined.

Since the number of interior faces in Sh′,p′ is smaller than in P , where it is p + h − fb,
the spiral S+

h′− fb,p′ has more interior faces than Sh′,p′ and therefore also more faces in all.

First assume p′ < 6:
With P− the patch-set obtained by removing all fb boundary hexagons and an

(h − fb, p)-patch P ′ with b(P ′) = min (h − fb, p), using the monotonically increasing
boundary length for spirals with p < 6 Lemmas 9 and 13 give:

b(P ′)+ p ≤ b(P−)+ p ≤ b(P)+ p − 2(6 − p)
< b(Sh′,p′)+ p′ − 2(6 − p) ≤ b(Sh′,p′)+ p′ − 2(6 − p′)
≤ b(S+

h′− fb,p′)− 2(6 − p′)+ p′ = b(Sh′− fb,p′)+ p′.

So P ′ and Sh′− fb,p′ would be a counterexample with corresponding 3-tuple (p, p′, h −
fb) contradicting minimality.

In the case p′ = 6 we have b(Sh′,6)+ p′ ∈ {16, 18} for all h′, so b(P)+ p ≤ 16. Since
fb < h + p we can apply Lemma 9 and since P has no pentagon in the boundary, with
the notation above we have b(P ′) + p ≤ b(P) + p. Due to minimality, P ′ together with
Sh′− fb,6 forms no counterexample, so b(P ′) + p ≥ 16. So b(P ′) + p = b(P) + p = 16
and b(Sh′,6) + p′ = 18. Lemma 9 implies p = 6 and that each boundary hexagon of
P has a connected intersection with the boundary and therefore that b(P) = 10 and
that fb = v3,b(P). By Lemma 1 this gives fb = 5. But in this case h′ = h ≥ 5 and
b(Sh′− fb,6)+ p′ = b(Sh′−5,6)+ p′ = 18. This again contradicts the minimality of P . �

Related results

Theorem 16. For p ≤ 6 there exists an (h, p)-patch P with b(P) = b if and only if
min (h, p) ≤ b ≤ max(h, p) and b ≡ p mod 2.

Proof. The only if direction follows directly from the definition and Lemma 1.
The cases with b = min (h, p) are covered by spirals and for h + p ≤ 2 we have

min (h, p) = max (h, p), so there is nothing more to prove. Since for h = 0 we can check
all cases by hand, from now on we assume h ≥ 1 and h + p > 2 and will proceed by
induction on h except for some values close to min (h, p) where we will prove the result
directly:

First we will prove that for p < 6 patches with b = min (h, p)+2 with subsequence 22
of the boundary sequence exist:

For p < 6 the spiral Sh−1,p has 22 as well as 232 as subsequences of the boundary
sequence, so gluing an additional hexagon to the spiral Sh−1,p at position 22, respectively
232 of the boundary sequence—depending on whether b(Sh−1,p) = b(Sh,p) − 2 or
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Fig. 4. A (0, 6)-patch P0 and a (1, 6)-patch P1 with b(P0) = b(P1) = 12.

b(Sh−1,p) = b(Sh,p) we get a patch P ′ with b(P ′) = b = min (h, p) + 2 and sub-
sequence 22 of the boundary sequence at the new face.

For p = 6 we will prove this result for b = 12 and 14:
For the (1, 6)-patch P1 in Fig. 4 we have b(P1) = 12 and a boundarysequence

223323232323. Adding a new hexagon at the position 2332 we have a (2, 6)-patch P2
with the same boundary length and boundarysequence. This process can be repeated to
prove that for any h there are (h, 6)-patches Ph with b(P) = 12 and subsequences 232
and 22 in the boundary sequence. Adding a hexagon at a position 232 of patch Ph−1 with
P0 from Fig. 4, we obtain the same result for b = 14.

Now let min (h, p) + 4 ≤ b ≤ max (h, p), b ≡ p mod 2, and b ≥ 16 in case p = 6.
Then min (h − 1, p) ≤ b − 4 ≤ max (h − 1, p) and b − 4 ≡ p mod 2, so by induction
an (h − 1, p)-patch P with b(P) = b − 4 and subsequence 22 exists and by gluing an
additional hexagon to an edge with two endpoints of degree 2 we obtain an (h, p)-patch
P ′ with b(P ′) = b and also a subsequence 22. �

A natural question to ask is how many pentagons and hexagons can be assembled to
form a patch P not exceeding some given boundary length b. As soon as six pentagons are
allowed and b ≥ 10 no upper bound exists, so assume p < 6 pentagons are allowed. The
answer to this question is an easy corollary of the main theorem.

Corollary 17. For p < 6 let m(b, p) := max {h | ∃(h, p)-patch P : b(P) ≤ b}.
Then m(b, p) = max {h | b(Sh,p) ≤ b}.

Proof. Since for p < 6 the value of b(Sh,p) is monotonically increasing in h and
approaching infinity, for every b there is hb so that b(Shb,p) ≤ b < b(Sh,p) for all h > hb.
A patch P with h′ > hb hexagons and b(P) ≤ b would contradict the minimality of the
boundary of Sh′,p. �
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J. Bornhöft et al. / European Journal of Combinatorics 24 (2003) 517–529 529

[4] S.J. Cyvin, J. Brunvoll, Series of benzenoid hydrocarbons with a constant number of isomers, Chemical
Physics Letters 176 (5) (1991) 413–416.

[5] J.R. Dias, Benzenoid series having a constant number of isomers, Journal of Chemical Information and
Computer Science 30 (1990) 251–256.

[6] M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic
Press, 1996, ISBN 0-12-221820-5.

[7] P.W. Fowler, D.E. Manolopoulos, An Atlas of Fullerenes, Oxford University Press, 1995.
[8] J. Greinus, Patches mit minimaler Randlänge, Diplomarbeit, Bielefeld, 2001.
[9] F. Harary, H. Harborth, Extremal animals, Journal of Combinatorics, Information and System Sciences 1

(1) (1976) 1–8.
[10] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature 318

(1985) 162–163.
[11] R.F. Service, Mixing nanotube structures to make a tiny switch, Science 271 (1996) 1232.
[12] R.F. Service, Superstrong nanotubes, show they are smart, too, Science 281 (1998) 940–942.


	Pentagon--hexagon-patches with short boundaries
	Introduction
	Basic definitions and results
	Spirals
	The minimality of spirals
	Related results
	References


