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Abstract

A 2-cell embedding of an Eulerian digraph in a closed surface is said to be directed if the boundary
of each face is a directed closed walk inG. We proveKuratowski-type theorems about obstructions
to directed embeddings of Eulerian digraphs in the plane.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Unlessstated otherwise, all digraphs considered will be connected but may have loops
as well as parallel (that is, multiple) arcs. For any two verticesu andv of a digraphG,
the symbol −→uv will denote the set of all arcs inG that originate fromu and terminate at
v (shortly,u → v arcs, or arcs fromu to v); −→uu is simply the set of all loops atu. We
sometimes writeuv for an arc belonging to−→uv. For anarc a ∈ −→uv, thecontraction of a
results in the digraph, denoted byG/a, that isobtained fromG by identifyingthe vertices
u andv, discardinga from the arc set, and forming loops out of all arcs in−→uv and−→

vu. If
u andv are distinct vertices and only one arc is contained in−→uv ∪ −→

vu, then this arcis said
to besimple. If a andb are arcs ofG suchthata ∈ −→uv andb ∈ −→

vu then the set{a, b} is
called adigon (between u and v). If there is a third arcc �= a, b betweenu andv, we say
that the digon{a, b} is braced (by c). A pair of parallel arcs are said to form abad-digon.
The justification for the use of the adjective “bad” will become evident.
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Fig. 1. A directed planar embedding of an Eulerian digraph.

A digraph is Eulerian if at each vertex, the indegree and outdegree are the same.
(Eulerian digraphs have a directed closed walk that uses every arc exactly once.) We say
that an Eulerian digraphG is directed planar if G can be embedded (that is, “drawn”
without crossings) in the plane in such a way that the boundary walk of each face is a
directed closed walk inG. (See [1] for a discussionof directed embeddings of Eulerian
digraphs in other surfaces). Such an embedding is then called adirected planar embedding
of G. For example,Fig. 1 gives the essentially unique directed planar embedding of an
Eulerian digraph with four vertices and eight arcs.

Observe that in a directed planar embedding of an Eulerian digraph, at each vertex
the arcs pointing into the vertex have to alternate with those pointing out. Further, faces
of a directed planar embedding fall into two classes according to the orientation of their
boundary walks (clockwise and counterclockwise). Equivalently, the faces of a directed
embedding can be properly two-coloured—say, white and black—such that the directed
boundary walks of all black (white) faces are oriented clockwise (counterclockwise).

In the context of directed embeddings it is natural to introduce a partial order on the set
of all Eulerian digraphs in such a way that the order“respects” the embeddings in some
sense. We shall therefore say that an Eulerian digraphH is aweak minor of an Eulerian di-
graphG if H can be obtained fromG by a non-empty sequence of the following operations:

• Contraction of an arc.
• Deletion of a loop.
• Discarding a digon.

It is obvious that, in a directed planar embedding of an Eulerian digraphG, a contraction
of any arca results again in a directed planar embedding ofG/a. If a directed planar
embedding ofG contains a loopa then its deletion leads to a directed planar embedding of
G −a. This is true even if theloopa did not bound a face in the original embedding; in this
case we perform “Whitney flip” on the block of the graph that lies inside of this non-facial
loop. In fact,G is directed planar if and only ifG − a is directed planar. For digons, we
have a similar situation:

Lemma 1. Let {a, b} denote a digon in an Eulerian digraph G. If G is planar, then
G −{a, b} is planar. Additionally, if {a, b} is braced by an arc c, then G −{a, b} is directed
planar if and only if G is directed planar.



C.P. Bonnington et al. / European Journal of Combinatorics 25 (2004) 877–891 879

Fig. 2.G − {a, b} is directed planar ifG is directed planar.

Fig. 3. If {a, b} is a braced digon, thenG is directed planar if and only ifG − {a, b} is directed planar.

Proof. If G is directed planar, then a directed planar embedding ofG − {a, b} is obtained
by reversing (if necessary) the ordering of a subsequence of arcs at bothu and v (see
Fig. 2). (This type of operation is sometimes referred to as a “Whitney 2-flip”.)

SupposeG − {a, b} is directed planar and{a, b} is braced by an arcc. Then we may
introduce the digon{a, b} into the planar embedding by placing it alongside the arcc while
preserving directed planarity (seeFig. 3). �

By the above, we see that directed planarity is preserved under the weak minor ordering.
An EuleriandigraphG is said to be anobstruction to directed planarity (under the weak
minor order) if G does not have a directed planar embedding yet each of its weak minors
does.

It is immediate fromLemma 1and the discussion preceding that an obstructionG has
no loops or braced digons. HoweverG may have parallel arcs (bad-digons) as we will
discover.

Before we proceed to the presentation of theobstructions, we rule out another type of
substructure from all directed planar digraphs:

Lemma 2. Suppose G is a Eulerian digraph with a pair of bad-digons {uv, uv} and
{wu, wu} meeting a vertex u, where v and w are distinct vertices, and suppose further
that u has no other incident arcs (that is, indeg(u) = outdeg(u) = 2). Then G is directed
non-planar.

Proof. The arcs incident withu must alternate cyclically(uv,wu, uv,wu). If G were
planar, then the bad-digon{uv, uv} would form a closed curve in the plane. By the Jordan
curve theorem, the pair of arcs{wu, wu} must both lie on the same side on the bad-digon
{uv, uv}, forcing the four arcs atu to violate the directed embedding requirement.�
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Fig. 4. The graphK s
3.

2. An infinite family of obstructions under the weak minor order

In this section we identify a particular infinite family of obstructions to directed
planarity under the weak minor order. We begin with a number of preliminary results.

For any digraphG we denote byĜ the underlying simple undirected graph obtained
from G by ignoring edge directions and deleting multiple edges and loops. We say
a digraphG is k-connected if Ĝ is k-connected. This definition is motivated by the
observation that a directed planar digraphG has essentially a unique directed embedding
(up to the placement of the loops) if and only ifĜ is 3-connected. (Recall that an undirected
planar 3-connected graph has a unique embedding in the plane.)

Lemma 3. For any obstruction G under the weak minor order, Ĝ is 3-connected or
isomorphic to K3.

Proof. The arguments are routine (in essence the same as when reducing the classical
Kuratowskitheorem to 3-connected graphs, see [4]) and we leave them to the reader.�

For anys ≥ 2, let K s
3 denote the digraph on the three verticesu, v,w with exactlys arcs

from u to v, from v to w, andfrom w to u. (SeeFig. 4). Clearly,K s
3 is an obstruction under

the weak minor order for eachs ≥ 2. Indeed, contraction of anyarc yields a directed planar
graph with two vertices, and no digons or loops exist that may be deleted.Lemma 2implies
that K 2

3 is directed non-planar.Fig. 5 gives the essentially unique directed embedding of
K 2

3 (which isin the torus).
The following lemma implies that the only obstruction with parallel arcs (bad-digons)

is K s
3, s ≥ 2.

Lemma 4. Let G be an obstruction to directed planarity under the weak minor order and
suppose that G is not K s

3, s ≥ 2. Then G is loopless, and for any pair of adjacent vertices
u and v, |−→uv| ≤ 1 and |−→vu| ≤ 1.

Proof. If there is a braced digon betweenu andv, thenLemma 1implies thatG is not an
obstruction (that is, not minimal). Hence there is either a single digon betweenu andv,
or (without loss of generality)|−→uv| = 0. Suppose that|−→vu| = s ≥ 2. According to
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Fig. 5. K 2
3 is directed non-planar.

Lemma 3the digraphG − {u, v} is connected, andhence it contains a spanning treeT .
Contraction of the arcs ofT yields a digraphG′ on three vertices. After removal of loops
and digons fromG′ (which preserves the Eulerian property) we obtain the digraphK s

3 with
s ≥ 2, a contradiction.

It follows that|−→uv| ≤ 1 and|−→vu| ≤ 1 for any pair of verticesu, v ∈ G, as required. �

We now present our first main result.

Theorem 1. Let G be an obstruction under the weak minor order and suppose that Ĝ is
planar. Then G is K s

3 for some s ≥ 2.

Proof. By Lemma 3, G andĜ are 3-connected and henceG has at least three vertices. If
G has exactly three vertices, then it must contain some parallel arcs. ByLemma 4, G must
be K s

3 for somes ≥ 2. In the following we assume thatG has at least four vertices and
derive a contradiction.

Following Thomassen’s proof of Kuratowski’s theorem from [4], the 3-connected planar

graphĜ contains an edgeuv whose contraction results in a 3-connected graphĜ′. By
Lemma 4, G either has a simple arc betweenu andv, or thedigon{uv, vu}. Let G′ denote
the Eulerian digraph obtained by contracting an arc betweenu andv, and removing any
resulting loop (when the digon{uv, vu} exists). By minimality,G′ is a directed planar
Eulerian digraph. It has an essentially unique directed embedding in the plane.

Let w be the vertex of G′ obtained by the identifying of the verticesu and v. Our
strategy isto expandw back to our arc or digon betweenu andv, and show thatthis yields
a directed planar embedding ofG, or thatG contains a weak minor that is non-planar. Both
situations lead toa contradiction.

Now, sinceĜ′ is 3-connected, theplanar embedding of̂G′ − w induced by the unique
embedding ofĜ′ has a face boundary cycleC suchthatw is incident with only vertices of
C in Ĝ′. Let Pu be a minimal subpath ofC that contains all the neighbours ofu. Likewise,
let Pv be a minimal subpath ofC that contains all the neighbours ofv. By Thomassen’s
proof of Kuratowski’s theorem [4], we can assume thatPv and Pu are internally disjoint
(for otherwiseĜ would contain a homeomorph ofK3,3). The pathsPv and Pu may meet
at one or both end-vertices, but no others.

Suppose thatPu and Pv have no vertices in common. We claim thatG has a directed
planar embedding. The rotation of the arcsfor this embedding at each of the vertices of
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Fig. 6.G with the arc or digon betweenu andv removed.

G other thanu andv is identical to the rotation in the directed planar embedding ofG′.
In G′ the arcs that were incident withu occur consecutivelyin the rotation atw (since
V (Pu) ∩ V (Pv) = ∅. Likewise, the arcs that were incident withv occur consecutively
in the rotation atw. We order the arcs atu andv according to this order induced byw
in G′. At this point we have a planar embedding ofG with the arc ordigon betweenu
andv removed, with the property that every face is a directed walk, except possibly the
face f with u andv on the boundary (seeFig. 6). If the boundary off is a directed walk,
then u andv must have a digon between them, which can be easily inserted to give a
directed planar embedding ofG. Otherwise, the boundary off must consist of the union
of two directedpaths, with only the verticesu andv in common. It remains to insert the
arc betweenu andv: sinceG is Eulerian, the introduction of this arc across facef creates
a directed planar embedding ofG.

Now, suppose thatPu and Pv have an end vertexx in common. The method of proof
is similar to that of the above case. However,it is now conceivable that the rotation of the
arcs atx induced by the planar directed embedding ofG′ cannot be applied to the arcs at
x in G. This situation can only occur when a simple arca betweenx andu, and a simple
arc b betweenx andv create a digon inG′ which is “flipped” in the planar embedding
of G′. Fig. 7 illustrates an example of this situation. It is worth noting that if either ofu
or v are joined tox by a digon, then the rotation atx in G can be made to correspond to
the rotation inG′. Without loss of generality, we assumea = xu (i.e. directedx to u) and
b = vx .

We claim thatG is not minimal directed non-planar. Firstly, if all arcs other thana, b,
uv or vu are part of a digon, thenC is a directed cycle. In fact, sinceG′ is directed planar,
C must be directed fromx sothat subpathPu of C is followed byPv. Now delete all digons
except for one atu (to a vertexx ′ ∈ V (Pu)) andone atv (to a vertexx ′′ ∈ V (Pv)); we
may assume the ends of these digons do not coincide (seeFig. 8).

By 3-connectivity, there is a tree in̂G containing all vertices other thanx , v andx ′′.
Contract all edges of this tree to a vertexu′, and contact the arcvx ′′ to a vertexx ′′′.
The result is an Eulerian digraph such that|−−→vx ′′′| − |−−→x ′′′v| = 2, and|−→u′v| − |−→vu′| = 2.
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Fig. 7. The arcsa andb are flipped.

Fig. 8. All but one digon deleted from each ofu andv.

Removing redundant digons atx weobtain a graph satisfying the hypotheses inLemma 2,
and therefore is directed non-planar. HenceG is not minimal, a contradiction.

Hence we now assume (without loss of generality) that there exists a simple arc from
v to a vertexx ′ �= x in Pv such that all other neighbours ofv betweenx and x ′ in Pv

are joined by a digon tov (seeFig. 7). Let Q denote the subpath ofPv from x to x ′. By
3-connectivity, there is a tree in̂G containingu and all neighbours ofv other than those
in Q. Contract all edges of this tree to a vertexu′, and all edges inQ to a vertexx ′′.
The result is an Eulerian digraph such that|−→vx ′′| − |−→x ′′v| = 2, and|−→u′v| − |−→vu′| = 2.
Removing redundant digons atx weobtain a graph satisfying the hypotheses inLemma 2,
and therefore is directed non-planar. HenceG is not minimal, a contradiction.

Therefore, we conclude thatG contains 3 vertices and isK s
3 for somes ≥ 2. �

Lemma 5. Let G be an obstruction under the weak minor order and suppose that Ĝ is not
planar. Then Ĝ is either K5 or a supergraph of K3,3.
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Fig. 9. Obstructions based onK5.

Proof. By Kuratowski’s theorem [3], Ĝ contains a subgraph homeomorphic toK5 or K3,3.
If Ĝ containsK5 and has exactly five vertices, then̂G = K5. If Ĝ has more than five
vertices, then there exists an arce in G such that, if H = G/e, then Ĥ still contains a
subdivision ofK5 and henceG is not minimal.

If Ĝ contains noK5, thenĜ contains a subdivision ofK3,3. By an argument similar to
that forK5 we may assume thatG has exactly six vertices. Since arc-deletion is not a weak
minor operation,Ĝ may be a proper supergraph ofK3,3. �

3. The complete set of obstructions under the weak minor order

Here we present, in the form of figures, the complete set of obstructions under the weak
minor order.

The main result of this section is the following.

Theorem 2. An Eulerian directed graph G has a directed planar embedding if and only if
none of the graphs K s

3, s ≥ 2 (Fig. 4), Ω1, . . . ,Ω4 (Fig. 9) and Θ1, . . . ,Θ6 (Fig. 10) is a
weak minor of G.

Proof. Clearly, if any of the digraphs shown inFigs. 4, 9 and10 is a weakminor of G,
thenG has no directed planar embedding.
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Fig. 10. Obstructions based onK3,3.

Hence assume thatG has no directed planar embedding. Of all of the weak minors ofG,
choose a weak minorM that is minimal. If M̂ is planar, then byLemma 1M̂ = K s

3 for

somes ≥ 2. If M̂ is not planar, then byLemma 5M̂ is eitherK5 or a supergraph ofK3,3.
We first consider the case when̂M = K5. We show that M is one ofΩ1, . . . ,Ω4 in Fig. 9.
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Since M is Eulerian, indegree equals outdegree at each vertex. The simplest case is
when each pair of vertices is joined by a digon. SinceM̂ is not planar,M is not directed
planar, but every weak minor ofM is directed planar. This is obstructionΩ1 in Fig. 9.

Next we consider the case where a pairu, v of verticesis joined by a simple arcuv.
SinceM is Eulerian, there must be another vertexw that is adjacent fromv by the simple
arcvw. Continuing in this fashion we see that the arcuv lies on a directed cycle of simple
arcs.

If this directed cycle is a triangle and if all other adjacencies are by means of digons,
then contracting any arc or deleting any digon leads to a directed planar graph. This is
obstructionΩ2 in Fig. 9.

There are two other possibilities for a directed cycle containing the arcuv. If uv lies
on a directed quadrangle and all other adjacencies are digons, then we have obstructionΩ3

in Fig. 9. The final K5 obstruction is whereuv lies on a directed pentagon and all other
adjacencies are digons. This is obstructionΩ4 in Fig. 9.

If there are two directed triangles and allother adjacencies are digons, then one of
the five vertices lies on both directed triangles. If the directed triangles arexyz andxuv,
contracting the digon betweeny andu or the digon betweenz andv produces two parallel
arcs between two vertices (i.e. a bad-digon)and so the resulting digraph is not directed
planar. ThusM is not an obstruction.

The next possibility having the correct degrees is to have a directed triangle and a
directed quadrangle and three digons. If we assume the triangle is directedxuz and
the quadrangle is directedxyzv, then contracting the arcxv produces a bad-digon
(contradictingLemma 4). And finally if all arcs are simple, then we have two directed
pentagons and they arexyzuv andxuyvz. Again, contractingxz we obtain a bad-digon.

Now suppose thatM̂ is a supergraph ofK3,3. If M̂ = K3,3 and each adjacency is a
digon, then every weak minor ofM is directed planar andM is obstructionΘ1 in Fig. 10.

Consider a vertexx of M. If there is a simple arc from x to another vertex, that arc
must lie on a directed cycle consisting of simple arcs sinceM is Eulerian. If the cycle is a
quadrangle and all other adjacencies are digons, thenM is obstructionΘ2 in Fig. 10. If the
cycle is a hexagon and the remaining three adjacencies are digons, assume that the hexagon
is xaybzc. Then contracting the digonsxb andyc produces a bad-digon. These are all the
possibilities forM Eulerian andM̂ = K3,3.

If M̂ is K3,3 plus one edge, then inM that edge mustbe a simple arc between two
vertices in the same partite set, since if it were a digon we could delete it and still have
a non-planar digraph. Suppose that the arc isxy and that the other vertex in the partite
set isz. If a, b, c are vertices in the other partite set, what are the possibilities forM to be
Eulerian?

It cannot happen thatax , bx , cx , ya, yb andyc are all simple arcs. One ofax , bx , cx
must be simple, and one ofya, yb, yc must be simple. Without loss of generality, assume
thatax is simple. We now consider the case whenya is simple, so thatxya is a directed
triangle. This forcesaz to be a digon. If all adjacencies atb andc are digons, we obtain
obstructionΘ4 shown inFig. 10. If bz or zb is a simple arc, then contractingby andaz or
az andbx produces a bad-digon. Ifbx or xb is a simple arc, then contractingbz andaz or
contractingby produces a bad-digon. If there exists a digon betweeny anda, thenza must
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Fig. 11.M̂ is K3,3 with two additional edges.

be a simple arc. Then one ofbz, cz must be a simple arc. Assume thatbz is simple. Then
yb must be simple and all other adjacencies are digons. This is obstructionΘ3 in Fig. 10.

The next possibility is thatM̂ is K3,3 with two additional edges. We first observe that
both must be in thesame partite set because if they are in different sets, there will be aK4
and contracting the arc between two vertices ofM̂ that are not in thisK4 results in a K5.
We also observe that the additional adjacenciesmust be simple arcs or we could delete
them and obtain a non-planar digraph. The situation then is as depicted inFig. 11. Note
also that it cannot occur that all arcs inFig. 11are simple, sinceM is Eulerian.

If ay or ya is simple, contractingax or az produces a bad-digon. The analysis is
analogous if the vertexa is replaced withb or c. Hence all adjacencies betweeny and
a, b, c must be digons.

If zc is simple, thencx must besimple, and thenxyzc is a directed quadrangle. Suppose
thatbz andza, or az andzb, are simple arcs. Then either contractingby or ay produces a
bad-digon. Thusaz andbz are digons. The analysis is similar ifz is replaced withx , and
we conclude that all adjacencies other than those in the directed quadrangle are digons.
This is obstructionΘ5 in Fig. 10. A similar argument shows that ifzb is a simple arc, then
so isbx and obstructionΘ5 results. The remaining possibility is thatza andax are simple
arcs and the obstruction obtained is stillΘ5.

Finally, we consider the case wherêM is K3,3 plus three edges. InM, the three
additional adjacencies must be simple arcs and they must form a directed triangle, since
if two of them are adjacent from (or to) the same vertex, contracting the third leads to a
bad-digon (seeFig. 12).

If cz or zc is a simple arc, then contractingcy or cx produces a bad-digon. Ifaz or za is
simple, then contractingay or ax yields a bad-digon. An analogous argument shows that
all adjacencies other than the directed trianglexyz must be digons. This is obstructionΘ6
in Fig. 10. �

4. The strong minor order and associated obstruction

We now present a further set of minor operations for Eulerian digraphs which preserve
directed planarity.
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Fig. 12.M̂ is K3,3 with three additional edges.

Fig. 13. SlicingG at v.

4.1. Slice

Supposeu and v are vertices in an Eulerian digraphG where all out-arcs fromv

terminate atu (and nouv arc exists). Letw denote the origin of an arcwv terminating
atv. Let G′ denote the Eulerian digraph obtained fromG by removing onevu arc,wv, and
inserting awu arc. Then we sayG′ is obtained fromG by aslice (atv) (seeFig. 13).

4.2. H-bowtie

This operation is analogous to the well-known H-bowtie operation for undirected
graphs. Suppose there exist six distinct verticesu1, u2, u, v, v1 andv2 and five digons
{u1u, uu1}, {u2u, uu2}, {uv, vu}, {v1v, vv1}, and {v2v, vv2} in an Eulerian digraphG,
such that indeg(u) = indeg(v) = 3. Let G′ denote the Eulerian digraph obtained from
G by removing the digon{uv, vu}, identifying the vertices u and v and inserting new
digons{u1u2, u2u1} and{v1v2, v2v1} (seeFig. 14).

The remaining two operations pertain to non-separating sets of three vertices.

4.3. Split

Suppose{u, v,w} is anon-separating set of three vertices in an Eulerian digraphG, and
that the two digons{uv, vu}, {uw,wu}, and the arcwv exist (but not vw). Let G′ be the
digraph obtained by removing the arcsvu anduw, introducing a new arcvw. Then we say
thatG′ wasobtained fromG by asplit (atu) (seeFig. 15).
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Fig. 14. The H-bowtie operation atu andv.

Fig. 15. SplittingG at u.

4.4. Triangle deletion

Suppose{u, v,w} is anon-separating set of three vertices in an Eulerian digraphG, and
that the digons{uv, vu}, {uw,wu}, and{wv, vw} exist. Let G′ be the digraph obtained by
removing the arcsvu, uw andwv. Then we say thatG′ wasobtained fromG by removing
a triangle (seeFig. 16).

Refining the weak order by introducing these four additional operations yields an
alternate Kuratowski-type characterisation for directed planarity.

We say that an Eulerian digraphH is a strong minor of an Eulerian digraphG if H
can be obtained fromG by a non-empty sequence of any of the weak minor operations
along with the four operations described above. An Eulerian digraphG is said to be an
obstruction to directed planarity (under the strong minor order) if G does not have a
directed planar embedding yet each of its strong minors does.

Theorem 3. An Eulerian digraph is directed planar if and only if it does not contain K 2
3

as a strong minor.

Proof. We have already established that any Eulerian digraph containingK 2
3 as a weak

minor (and hence as a strong minor) is directed non-planar. Furthermore,K 2
3 is minimal

directed non-planar under the strong minor order since only the arc-contraction, slice, split
and triangle deletion operations can be applied toK 2

3, all resulting in a directed planar
graph.
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Fig. 16. Removing a triangle fromG.

By Theorem 2, adirected non-planar graph contains one of the graphs inFigs. 4, 9 and
10 as a weak minor. It remains to show that all of these graphs (other thanK 2

3) reduce to
K 2

3 under the strong minor order.
Firstly, we note that performing a slice on the graphK s

3, s ≥ 3,and deleting the resulting

digon, produces the graphK s−1
3 . Proceeding inductively, we have that all graphsK s

3, s ≥ 3
reduce toK 2

3 under the strong minor order.
Next, applying an H-bowtie operation on any of the instructionsΘ1, Θ2 and Θ4

produces one of the obstructions based onK5. Performing selective splits on the
obstructions based onK5 other thanΩ4 can reduce them all to obstructionΩ4. Executing
two more splits on obstructionΩ4 results in a graphM, such that M̂ = K5 and there
are just three digons forming a triangle. Now, applying the triangle deletion operation on
M yields a graphM ′ with simple arcs only andM̂ ′ = K5. Contracting an arc inM ′,
deleting a resulting digon, and contrastingout the degree two vertex yields the strong
obstructionK 2

3.
Finally, we see that splitting obstructionΘ5 (Θ6 respectively) at a vertex that is the

common neighbour of the ends of a simple arc produces the obstructionsΘ3 (Θ5).
Performing onΘ3 the only possible split results in a digraph based onK3,3 with precisely
three non-adjacent digons and a directed 6-cycle. Contracting an arc in each of the three
digons yieldsK 2

3.
Hence we have shown thatall weak minor obstructionsΩ1, . . . ,Ω4 andΘ1, . . . ,Θ6

reduce to the single strong minor obstructionK 2
3, as required. �

We conclude by mentioning that an alternative structural method for embedding
digraphs is to force all in-arcs to appear consecutively in the cyclic rotation around every
vertex. This type of “clustered” embedding of (not necessarily Eulerian) digraphs is the
central subject in [5]. There are analogous characterisations of (clustered) planarity (see
[2]) to theones presented in this paper.
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