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Abstract

A 2-cell embedding of an Eulerian digraph in a closed surface is said to be directed if the boundary
of each face is a directed closed walkGn We prove Kuratowski-type theorems about obstructions
to directed embeddings of Eulerian digraphs in the plane.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Unlessstated otherwise, all digraphs considered will be connected but may have loops
as well as parallel (that is, multiple) arcs. For any two vertieedv of a digraphG,
the ymbol uv will denote the set of all arcs ifs that originate fromu and terminate at
v (shortly,u — v arcs, or arcs fronu to v); at is simply the set of all loops af. We
sometimes writaiv for an arc belonging taiy. For anarca € Uv, thecontraction of a
results in the digraph, denoted By/a, that isobtained fromG by identifyingthe vertices
u andv, discardinga from the arc set, and forming loops out of all arcdiimandvd. If
u andv are distinct vertices and only one arc is containediiru vl, then his arcis said
to besimple. If a andb are arcs ofG suchthata < Uv andb e v0 then the seta, b} is
called adigon (between u and v). If there b a thrd arcc # a, b betweeru andv, we say
that the digor{a, b} is braced (by c). A pair of parallel arcs are said to formbad-digon.
The justification for the use of the adjective “bad” will become evident.
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Fig. 1. A directed planar embedding of an Eulerian digraph.

A digraph is Eulerian if at each vertex, the indegree and outdegree are the same.
(Eulerian digraphs have a directed closed walk that uses every arc exactly once.) We say
that an Eulerian digrapls is directed planar if G can be embedded (that is, “drawn”
without crossings) in the plane in such a way that the boundary walk of each face is a
directed closed walk inG. (See L] for a discissionof directed embeddings of Eulerian
digraphs in other surfaces). Such an embedding is then catliedcéed planar embedding
of G. For example,Fig. 1 gives the essentially unique directed planar embedding of an
Eulerian digraph with four vertices and eight arcs.

Observe that in a directed planar embeddof an Eulerian digraph, at each vertex
the arcs pointing into the vertex have to atiate with those pointing out. Further, faces
of a directed planar embedding fall into twtasses according to the orientation of their
boundary walks (clockwise andunterclockwise). Equivalently, the faces of a directed
embedding can be properly two-coloured—say, white and black—such that the directed
boundary walks of all black (white) faces areasrted clockwise (counterclockwise).

In the context of directed embeddings it is natural to introduce a partial order on the set
of all Eulerian digraphs in such a way thaetbrder‘respects” the embeddings in some
sense. We shall thefore say that an Eulerian digraphis aweak minor of an Eulerian di-
graphG if H can be obtained fror® by a non-empty sequence of the following operations:

e Contraction of an arc.
e Deletion of aloop.
e Discarding a digon.

Itis obvious that, in a directed planar embedding of an Eulerian dig&jghmontraction
of any arca results again in a direetl planar embedding d&/a. If a directed planar
embedding of5 contains a looj then its deletion leads to a directed planar embedding of
G —a. This is true evenfitheloopa did not bound a face in the original embedding; in this
case we perform “Whitney flip” on the block of the graph that lies inside of this non-facial
loop. In fact,G is directed planar if and only i6 — a is directed planar. For digons, we
have a sirilar situation:

Lemmal. Let {a, b} denote a digon in an Eulerian digraph G. If G is planar, then
G —{a, b} isplanar. Additionally, if {a, b} isbraced by an arc c, then G — {a, b} isdirected
planar if and only if G is directed planar.
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Fig. 2.G — {a, b} is directed planar it is directed planar.

X ) E{a’b}

Fig. 3. If {a, b} is a braced digon, the@ is directed planar if and only & — {a, b} is directed planar.

Proof. If G is directed planar, then ardicted planar embedding & — {a, b} is obtained
by reversing (if necessary) the ordering of a subsequence of arcs at lzotiv (see
Fig. 2). (This type of operation is sometimes referred to as a “Whitney 2-flip”.)

SupposeG — {a, b} is directed planar anfh, b} is braced by an arc. Then we may
introduce the digofa, b} into the ganar embedding by placing it alongside the awehile
preserving directed planarity (sé&. 3). [

By the above, we see that directed planarity is preserved under the weak minor ordering.
An EuleriandigraphG is said to be ambstruction to directed planarityunder the weak
minor order) if G does not have a directed planartedding yet each of its weak minors
does.

It is immediate fromLemma land the discussion preceding that an obstrucBdmas
no loops or braced digons. Howevér may have parallel arcs (bad-digons) as we will
dismver.

Before we proceed to the presentation of tiestructions, we r@lout another type of
substructure from all directed planar digraphs:

Lemma 2. Suppose G is a Eulerian digraph with a pair of bad-digons {uv, uv} and
{wu, wu} meeting a vertex u, where v and w are distinct vertices, and suppose further
that u has no other incident arcs (that is, indequ) = outdedu) = 2). Then G is directed
non-planar.

Proof. The arcs incident withu must dternate cyclically(uv, wu, uv, wu). If G were
planar, then the bad-digdnv, uv} would form a closed curve in the plane. By the Jordan
curve theorem, the pair of ar¢au, wu} must both lie on the same side on the bad-digon
{uv, uv}, forcing the four arcs at to violate the directed embedding requiremerit]
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u

Fig. 4. The grapHK3.

2. Aninfinite family of obstructionsunder the weak minor order

In this section we identify a particular infinite family of obstructions to directed
planarity under the weak minor order. We begin with a number of preliminary results.

For any dgraphG we denote byG the underlying simple undirected graph obtained
from G by ignoring edge directions and defey multiple edges and loops. We say
a digraphG is k-connected if G is k-connected. This definition is motivated by the
observation that a directed planar digra®thas essentially a unique directed embedding
(up to the placement of the loops) if and onlyﬁﬁs 3-connected. (Recall that an undirected
planar 3-connected graph has a unique embedding in the plane.)

Lemma 3. For any obstruction G under the weak minor order, G is 3-connected or
isomorphic to Ks.

Proof. The arguments are routine (in essenice same as when reducing the classical
Kuratowskitheorem to 3-connected graphs, sé¢ &nd we leave them to the reader]

For anys > 2, letK3 denote the digraph on the three vertioes, w with exactlys arcs
fromu to v, fromv to w, andfrom w to u. (SeeFig. 4). Clearly,K3 is an obstruction under
the weak minor order for each> 2. Indeed, contraction of ararc yields a directed planar
graph with two vertices, and no digons or loops exist that may be deletatna 2mplies
that K§ is directed non-planakFig. 5 gives the essentially unique directed embedding of
K2 (which isin the torus).

The following lemma implies that the only obstruction with parallel arcs (bad-digons)
isK3, s> 2.

Lemma 4. Let G bean obstruction to directed planarity under the weak minor order and
supposethat G isnot K, s > 2. Then G isloopless, and for any pair of adjacent vertices

uandv, |Uy| < 1and|v0| < 1.

Proof. If there is a braced digon betwearandv, thenLemma limplies thatG is not an
obstruction that is, not minimal). Hence there is either a single digon betweandv,
or (without loss of generality)u_ﬂ = 0. Suppose thaftl| = s > 2. According to
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Fig. 5.K2 is directed non-planar.

Lemma 3the digraphG — {u, v} is connected, antlence it contains a spanning trée
Contraction of the arcs of yields a digraptG’ on three vertices. After removal of loops
and digons fronG’ (which preserves the Eulerian property) we obtain the digkaptvith
s > 2, a contradiction.

It follows that|m>1| <1 and|v_ﬁ| < 1 for any mir of verticesu, v € G, as rguired. [

We now preset our first main result.

Theorem 1. Let G be an obstruction under the weak minor order and suppose that Gis
planar. Then G is K3S for somes > 2.

Proof. By Lemma 3 G andG are 3-connected and henGehas at least three vertices. If
G has exactly three vertices, then it must contain some parallel ardsefByna 4 G must
be K3 for somes > 2. In the fdlowing we assume the® has at least four vertices and
derive a contradiction.

Following Thomassen'’s proof of Kuratowski’s theorem fro#, the 3-connected planar

graphé contains an edgav whose contraction results in a 3-connected grééhBy
Lemma 4 G either has a simple arc betweemndv, or thedigon{uv, vu}. Let G’ denote
the Eulerian digrgh obtained by contracting an arc betweeandv, and remweing any
resulting loop (when the digokuv, vu} exists). By minimality, G’ is a directed planar
Eulerian digraph. It has an essentially unique directed embedding in the plane.

Let w be the vetex of G’ obtained by the identifying of the verticesand v. Our
strategy ig0 expandw back to our arc or digon betweerandv, and show thathis yields
a directed planar embedding &f, or thatG contains a weak minor that is non-planar. Both
situations lead ta contradiction.

Now, sinceG’ is 3-connectegcthe planar embedding o6’ — w induced by the unique
embedding of5’ has a face boundary cydzsuchthatw is incident with only vertices of
Cin G'. Let P, be a minimal subpath af that contains all the neighbours of Likewise,
let P, be a minimal subpath df that contains all the neighbours of By Thomassen’s
proof of Kuratowski’s theoremd], we can assume th&, and P, are internally disjoint
(for otherwiseG would contain a homeomorph &3 3). The pathsP, and Py may meet
at one or both end-vertices, but no others.

Suppose thaP, and P, have no vertices in common. We claim ti@athas a directed
planar embedding. The rotation of the afos this embedding at each of the vertices of
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P,

Fig. 6. G with the arc or digon betweamandv removed.

G other thanu andv is identical to the rotation inhie directed planar embedding Gf.

In G’ the arcs that were incident witln occur consecutivelyn the rotation atw (since
V(Py) NV (P,) = @. Likewise, the arcs that were incident withoccur consecutively

in the rotation atw. We order tle arcs au andv according to this order induced hy

in G’. At this point we have a planar embedding @fwith the arc ordigon betweernu

andv removed, with the property that every face is a directed walk, except possibly the
face f with u andv on the boundary (se€ig. 6). If the boundary off is a directed walk,
thenu andv must have a digon between them, which can be easily inserted to give a
directed planar embedding &. Otherwise, the boundary of must consist of the union

of two directedpaths, with only the vertices andv in comnon. It remains to insert the

arc betweemn andv: sinceG is Eulerian, the introduction of this arc across facereates

a directed planar embedding &

Now, suppose thaP, and P, have an end vertex in comnon. The method of proof
is similar to that of the above case. Howeveis now concerable hat the rotation of the
arcs atx induced by the planar directed embeddingséfcannot be applied to the arcs at
X in G. This stuation can only occur when a simple axdetweernx andu, and a snple
arcb betweenx andv create a digon irG’ which is “flipped” in the planar enbedding
of G'. Fig. 7illustrates an example of this situation. It is worth noting that if eitheu of
or v are joined tox by a digon, then the rotation atin G can be made to correspond to
the rotation inG’. Without loss of generality, we assurae= xu (i.e. directedx to u) and
b =wx.

We claim thatG is not minimal directed non-planar. Firstly, if all arcs other ttzib,
uv or vu are part of a digon, the@ is a directed cycle. In fact, sin€® is directed planar,
C must be directed from sothat subpattP, of C is followed byP,. Now delete all digons
except for one atl (to a vertexx’ € V(P,)) andone atv (to a vertexx” € V(P,)); we
may assume the ends of these digons do not coincidd~{ge8).

By 3-connectivity, there is a tree it containing all vertices other thag v andx”.

Contract all edges of this tree to a vertek and ontact the arwx” to a vertexx”.

The result is an Eulerian digraph such that™'| — |x"v| = 2, andju’v| — |vu’| = 2.
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P,

Fig. 7. The arcs andb are flipped.

Fig. 8. All but one digon deleted from eachwandv.

Removing redundant digons &twe obtain a graph satisfying the hypothesek@mma 2
and therefore is directed non-planar. He®&#es not minimal, a contradiction.

Hence we now assume (without loss of generality) that there exists a simple arc from
v to a vertexx’ # x in P, such that all other neighbours af betweenx andx’ in P,
are joined by a digon to (seeFig. 7). Let Q denote the subpath ¢, from x to x. By
3-connectivity, there is a tree G containingu and all neighbours of other than those

in Q. Contract all edges of this tree to a verte) and all elges inQ to a vertexx”.
—

The result is an Eulerian digraph such that”| — |x"v| = 2, and|u’v| — |uU/| = 2.

Removing redundant digons atwe obtain a graph satisfying the hypotheseké@mma 2

and therefore is directed non-planar. He®&es not minimal, a contradiction.
Therefore, we conclude thé contains 3 vertices and I3 for somes > 2. [

Lemmab. Let G bean obstruction under the weak minor order and suppose that Gisnot
planar. Then G is either Ks or a supergraph of Kz 3.
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Fig. 9. Obstructions based dfx.

Proof. By Kuratowski's theoremd], G contains a subgraph homeomorphidtgor K3 3.
If G containsKs and has exactly five vertices, thé = Ks. If G has more than five
vertices, then there exists an a¥dn G such that, if H = G/e, thenH still contains a
subdivision ofKs and hencés is not minimal.

If G contains ndKs, thenG contains a subdivision df3 3. By an agument sinflar to
that for Ks we may assume th& has exactly six vertices. Since arc-deletion is not a weak
minor operationé may be a proper supergraphiétz. O

3. Thecomplete set of obstructions under the weak minor order

Here we present, in the form of figures, the complete set of obstructions under the weak
minor order.
The main result of this section is the following.

Theorem 2. An Eulerian directed graph G has a directed planar embedding if and only if
none of the graphs K3, s > 2 (Fig. 4), {21, ..., £24 (Fig.9) and 64, ..., O (Fig. 10) isa
weak minor of G.

Proof. Clearly, if any of the digraphs shown Figs. 4 9 and10 is a weakminor of G,
thenG has no directed planar embedding.
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Fig. 10. Obstructions based & 3.

Hence assume th& has no directed planar embedding. Of all of the weak mino€, of
choose a weak minavl that is minimal. IfM is planar, then by.emma 1M = K3 for

somes > 2. If M is not planar, then bemma 5M is eitherKs or a supergraph df3 3.
We first onsider the case wheM = Ks. We shov thatM is one of 24, ..., 24 in Fig. 9
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Since M is Eulerian, indegree equals outdegree at each vertex. The simplest case is
when each pair of vertices is joined by a digon. Siités not planarM is not directed
planar, but every weak minor &l is directed planar. fis is obstruction?; in Fig. 9.

Next we consider the case where a painv of verticesis joined by a simple arav.
SinceM is Eulerian, there mat be aother vertexw that is adjacent from by the smple
arcvw. Contnuing in ths fashion we see that the ane lies on a directed cycle of simple
arcs.

If this directed cycle is a triangle and iflather adjacencies are by means of digons,
then contracting any arc or deleting angain leads to a directed planar graph. This is
obstruction(2, in Fig. 9.

There are two other possibilities for a directed cycle containing theiardf uv lies
on a directed quadrangle and all other adjaitehare digons, then we have obstructizyn
in Fig. 9. The final K5 obstruction is whereiv lies on a diread pentagon and all other
adjacencies are digons. This is obstructignin Fig. 9.

If there are two directed triangles and alher adjacencies ardgons, then one of
the five vertices lies on both directedaingles. If the directed triangles axgz andxuv,
contracting the digon betwesnandu or the digon betweenandv produces two parallel
arcs between two vertices (i.e. a bad-diganjl so the resulting digraph is not directed
planar. ThusM is not an obstruction.

The next possibility having the correct degrees is to have a directed triangle and a
directed quadrangle and three digons. If we assume the triangle is diregtednd
the quadrangle is directedtyzv, then ontracting the arcxv produces a bad-digon
(contradictingLemma 4. And finally if all arcs are simig, then we have two directed
pentagons and they axg'zuv andxuyvz. Again, contractlngxz we obtain a bad-digon.

Now suppose thaM is a sipergraph ofKz 3. If M = K33 and each adjacency is a
digon, then every weak minor & is directed planar anifl is obstruction®; in Fig. 10.

Consider a vertex of M. If there is a anple ac from x to another vertex, that arc
must lie on a directed cycle casng of simple arcs sinch is Eulerian. If the cycle is a
guadrangle and all other gtencies are digons, thé is obstruction®; in Fig. 10. If the
cycle is a hexagon and the remaining thre@adpcies are digons, assume that the hexagon
is xaybzc. Then contracting the digonsg andyc produces a bad-digon. These are all the
possibilities forM Eulerian andvl = Ka,3.

If M is K33 plus one edge, then iM that edge musbe a simple arc between two
vertices in the same partite set, since if it were a digon we could delete it and still have
a non-planar digraph. Suppose that the argysand that the other vertex in the partite
setisz. If a, b, c are vertices in the other partite set, what are the possibilitiesifto be
Eulerian?

It cannot happen thatx, bx, cx, ya, yb andyc are all simple arcs. One @i, bx, cx
must be simple, and one g8, yb, yc must be simple. Without loss of generality, assume
thatax is simple. We now consider the case whgemis simple, so thakya is a directed
triangle. This forcesz to be a digon. If all adjacencies latandc are digons, we obtain
obstruction®,4 shown inFig. 10. If bz or zb is a simple arc,iten contractindpy andaz or
az andbx produces a bad-digon. bk or xb is a simple arc,iten contractindpz andaz or
contractingoy produces a bad-digon. If there exists a digon betweanda, thenza must
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Fig. 11.M is K3 3 with two additional edges.

be a simple arc. Then one bz, cz must e a simple arc. Assume thiaz is simple. Then
yb must be simple and all other adjacessare digons. This is obstructié in Fig. 10.

The next possibility is thai is K3 3 with two additional edge We first observe that
both mug be in thesame partite set because if they are in different sets, there wilkhe a
and contracting the arc between two verticed/othat are not in thid4 restuts in aKs.
We also observe that the additional adjacenciasst be simple arcs or we could delete
them and obtain a non-planar digraph. The situation then is as depicted.ibl. Note
also that it cannot occur that all arcshig. 11 are simple, sincd is Eulerian.

If ay or ya is simple, contractingx or az produces a bad-digon. The analysis is
analogous if the vertea is replaced withb or c. Hence all adjacencies betwegrand
a, b, c must be digons.

If zc is simple, thercx must besimple, and theryzc is a drected quadrangle. Suppose
thatbz andza, or az andzb, are simple ars. Then either contractifgy or ay produces a
bad-digon. Thusz andbz are digons. The analysis is similarzfis replaced withx, and
we conclude that all adjacems other than those in the dated quadrangle are digons.
This is obstructiorfs in Fig. 10. A similar argument shows that @b is a simple arc, then
so isbx and obstructiorfs results. The remaining possibility is thzé andax are simple
arcs and the obstruction obtained is sfil.

Finally, we consider the case whehé is K33 plus three edges. IM, the three
additional adjacencies must be simple arcd ey must form a directed triangle, since
if two of them are adjacent from (or to) themsa vertex, contracting the third leads to a
bad-digon (se€ig. 12).

If cz orzcis a simple arc lten contractingy or cx produces a bad-digon. &z or za is
simple, then ontractingay or ax yields a bad-digon. An analogous argument shows that
all adjacencies other thahe directed triangleyz must be digons. This is obstructias
in Fig.10. O

4. The strong minor order and associated obstruction

We now presat a further set of minor operations for Eulerian digraphs which preserve
directed planarity.
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Fig. 12. M is K3,3 with three additional edges.

w w

Fig. 13. SlicingG atv.

4.1. Sice

Supposeu and v are vertices in an Eulerian digrafh where all out-arcs fromv
terminate au (and nouv arc exiss). Letw denote the origin of an ar@v terminating
atv. Let G’ denote the Eulerian digraph obtained fr@by removing oneu arc,wv, and
inserting awu arc. Then we sa%’ is obtained fromG by adlice (atv) (seeFig. 13).

4.2. H-bowtie

This operation is analogous to the well-known H-bowtie operation for undirected
graphs. Suppose there exist six distinct vertiagsuo, u, v, v andvz and five digons
{u1u, uus}, {uau, uuz}, {uv, vu}, {viv, vv1}, and{vov, vvp} in an Eulerian digrapiG,
such that indegu) = indedgv) = 3. Let G’ denote the Eulerian digraph obtained from
G by removing the digor{uv, vu}, identifying the veticesu andv and inserting new
digons{ujuy, upus} and{vivy, vov1} (seeFig. 14).

The remaining two operations pertain to non-separating sets of three vertices.

4.3. Split

Suppos€u, v, w} isanon-separating set of three vertices in an Eulerian dig&mnd
that the two digonguv, vu}, {uw, wu}, and the aravv exist put notvw). Let G’ be the
digraph obtained by removing the arasanduw, introducing a new arcw. Then we say
that G’ wasobtained fromG by asplit (atu) (seeFig. 15).
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Fig. 14. The H-bowtie operation atandv.

U u
—_—
v w v w
Fig. 15. SplittingG atu.

4.4. Triangle deletion

Supposgu, v, w} isanon-separating set of three vertices in an Eulerian dig@&@nd
that the digonguv, vu}, {uw, wu}, and{wv, vw} exid. Let G’ be the digraph obtained by
removing the arcsu, uw andwv. Then we ay thatG’ wasobtained fromG by removing
atriangle (seeFig. 16).

Refining the weak order by introducing teefour additional opeations yields an
alternate Kuratowski-type charactsation for directed planarity.

We say that a Eulerian digraphH is a strong minor of an Eulerian digrapit if H
can be obtained fron® by a non-empty sequence of any of the weak minor operations
along with the four operations described above. An Eulerian dig@yi said to be an
obstruction to directed planarity Under the strong minor order) if G does not have a
directed planar embeddingtyeach of its strong minors does.

Theorem 3. An Eulerian digraph is directed planar if and only if it does not contain K§
asa strong minor.

Proof. We have akeady established that any Eulerian digraph contairhﬁégas a weak
minor (and hence as a strong minor) is directed non-planar. Furtherm§rie,minimal
directed non-planar under the strong minor order since only the arc-contraction, slice, split
and triangle deletion operations can be appliedKﬁ) al resulting in a directed planar
graph.
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u u

Fig. 16. Removing a triangle froi@.

By Theorem 2adirected non-planar graph contains one of the grapkégs. 4 9 and
10 as a weak minor. It remains to show that all of these graphs (othen&tg)areduce to
K2 under the strong minor order.

Firstly, we noe that peforming a slice on the grapK3, s > 3,and deleting the resulting
digon, produces the graph;_l. Proceeding inductively, we have that all graph$, s > 3
reduce toK§ under the strong minor order.

Next, gplying an H-bowtie operation on any of the instructio®s, @, and 64
produces one of the obstructions based K& Performing selective splits on the
obstructions based dfs other than(4 can reduce them all to obstructién. Executing
two more splits on obstructiofs resuts in a graphM, such hat M = Ks and there
are just three digons forming a triangle. Now, applying the triangle deletion operation on
M yields a graphM’ with simple arcs only andl’ = Ks. Contractirg an arc inM’,
deleting a resulting digon, and contrastiogt the degree two vertex yields the strong
obstructionk 3.

Finally, we see that splitting obstructiafls (O respectively) at a vertex that is the
common neighbour of the ends of a simple arc produces the obstruatign®s).
Paforming on @3 the only possible split results in a digraph basedap with precisely
three non-adjacent digons and a directed élecyContracting an arc in each of the three
digons yieldsK 2.

Hence we haw shown thatll weak minor obstruction$l, ..., {2 and 64, ..., O
reduce to the single strong minor obstructk‘@, as reuired. O

We wmnclude by mentioning that an alternative structural method for embedding
digraphs is to force all in-arcs to appear consecutively in the cyclic rotation around every
vertex. This ype of “clustered” embedding of (not necessarily Eulerian) digraphs is the
central subject ing]. There are analogous characterisations of (clustered) planarity (see
[2]) to theones presented in this paper.
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