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Abstract

Independence polynomials of graphs enjoy the property of essentially being closed under

graph composition (or ‘lexicographic product’). We ask here: for higher products of a graph G

with itself, where are the roots of their independence polynomials approaching? We prove that

in fact they converge (in the Hausdorff topology) to the Julia set of the independence

polynomial of G; thereby associating with G a fractal. The question arises as to when these

fractals are connected, and for graphs with independence number 2 we exploit the Mandelbröt

set to answer the question completely.
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1. Introduction

For a graph G and non-negative integer k; let ik be the number of independent sets
of vertices in G of cardinality k: The independence polynomial of G is the generating

polynomial iGðxÞ ¼
Pb

k¼0 ikxk for the sequence fikg; where b is the largest k for

which ik40 (the independence number of G).
Independence polynomials are particularly well behaved with respect to

lexicographic product. For two graphs G and H; let G½H� be the graph with vertex
set VðGÞ � VðHÞ and such that vertex ða; xÞ is adjacent to vertex ðb; yÞ if and only if
a is adjacent to b (in G) or a ¼ b and x is adjacent to y (in H). The graph G½H� is the
lexicographic product (or composition) of G and H; and can be thought of as the
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graph arising from G and H by substituting a copy of H for every vertex of G: The
graph P3½P2�; for example, is shown in Fig. 1. A more general version of Theorem 1.1
was proved in [10], but for completeness we provide a short direct proof.

Theorem 1.1. The independence polynomial of G½H� is given by

iG½H�ðxÞ ¼ iGðiHðxÞ 	 1Þ: ð1Þ

Proof. By definition, the polynomial iðG; iðH; xÞ 	 1Þ is given by

XbG

k¼0
iG
k

XbH

j¼1
iH
j xj

 !k

; ð2Þ

where iG
k is the number of independent sets of cardinality k in G (similarly for iH

k ).

Now, an independent set in G½H� of cardinality l arises by choosing an
independent set in G of cardinality k; for some kAf0; 1; y; lg; and then, within
each associated copy of H in G½H�; choosing a non-empty independent set in H; in
such a way that the total number of vertices chosen is l: But the number of ways of

actually doing this is exactly the coefficient of xl in (2), which completes the
proof. &

As is the case with chromatic polynomials (cf. [7,16]), matching polynomials
[11,12] and others, it is natural to consider the nature and location of the roots.
Interesting in their own right, they can shed some light on the underlying
combinatorics as well. It was conjectured in [6], for instance, that the independence
vector ði0; i1; y; ibÞ of any well-covered graph is unimodal (i.e., first non-decreases,

then non-increases), and some partial results in that regard have been obtained via
roots of independence polynomials [6]. Further results on independence polynomials
and their roots can be found in [6,10,13,14].
It is easily verified that lexicographic product is an associative operation, and so

we may speak of powers Gk ¼ G½G½G?��|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl} k of a graph G without ambiguity

ðG1 ¼ GÞ. For G ¼ P3; a path on three vertices, the independence roots of G11 are

shown in Fig. 2. It appears that the independence roots of Gk are approaching a
fractal-like object as k-N: We ask:

Fig. 1. The graph P3½P2�:
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Question 1.2. For a graph G, what happens to the roots of the independence

polynomials iGkðxÞ as k-N?

A complete answer to Question 1.2 was provided by one of the authors in his
Ph.D. thesis [15], where a fair amount of technical detail arose from the fact that
independence polynomials are not quite closed under composition (cf. Eq. (1)). We
can avoid this complication here by working with a slightly modified independence
polynomial. Specifically, as there is but one independent set of cardinality 0 (the
empty set), every independence polynomial has constant term 1: Define the reduced

independence polynomial of G as the function fGðxÞ ¼ iGðxÞ 	 1; that is, fGðxÞ ¼Pb
k¼1 ikxk: Eq. (1) then has the simple form

fG½H�ðxÞ ¼ fGð fHðxÞÞ:

In this paper, we will answer Question 1.2 for the reduced independence polynomial
fGðxÞ; and indicate what small amendments to the result provide the answer for
iGðxÞ: The organization of the paper is as follows. Section 2 contains relevant
background material from iteration theory. Incidentally, while Theorem 2.3 will
have most direct application for us, it cannot (as far as the authors are aware) be
found explicitly in the literature. In Section 3, we prove the main result (Theorem

3.3), which describes precisely where the reduced independence roots of powers Gk

are approaching, and in what sense they do so. The upshot is an association of a
fractal with G: We are led to ask for when these fractals are connected, and prove a
result (Theorem 3.8) which implies that there are many connected graphs with
disconnected fractals. In Section 4, we exploit the Mandelbröt set to decide which
graphs of independence number 2 have a connected fractal, and we employ a
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Fig. 2. The independence roots of G11; where G ¼ P3:
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different technique in Section 5 to answer the same question for some families of
graphs of arbitrarily high independence numbers.

2. Background: Julia sets and iteration of polynomials

The field of complex analytic dynamics entails a study of iterating rational
functions over the Riemann sphere CN ¼ C,fNg endowed with the spherical
metric. Since we will be working exclusively with polynomials in this paper,
we can get by with C together with the absolute value metric j � j; which measures
the distance between two points z and w as jz 	 wj: Except where otherwise
stated, any definition or assertion made in this section can be found in Beardon’s
book [1]; much of the information can also be found in the works of Blanchard [2]
and Brolin [5].

For a polynomial f and positive integer k; denote by f 1k the map f 3f 3?3f : Set

f 1ð0Þ as the identity map, and f 1ð	kÞ as f 1ð	1Þ3f 1ð	1Þ3?3f 1ð	1Þ; where f 1ð	1Þ is the set-

valued inverse of f ; i.e., for ADC; f 1ð	1ÞðAÞ ¼ fzAC : f ðzÞAAg: (The symbol 3 in the
exponent serves to distinguish a composition power from a multiplicative one.)

2.1. Forward orbits

For a point z0AC; its forward orbit with respect to f is the set

Oþðz0Þ ¼ f f 1kðz0ÞgNk¼0:

Definition 2.1. For a polynomial f ; its filled Julia set Kð f Þ is the set of all points z

whose forward orbit OþðzÞ is bounded in ðC; j � jÞ: Its Julia set Jð f Þ is the boundary,
@Kð f Þ; and its Fatou set Fð f Þ is the complement of Jð f Þ in C:

The Julia set of f ðxÞ ¼ 3x3 þ 9x2 þ 7x is shown (in black) in Fig. 3. A method for
generating pictures of Julia sets is suggested by Theorem 2.2.
For the remainder of this section, we shall assume that f is a polynomial of degree

at least 2.
As it turns out, Fð f Þ is an open subset of ðC; j � jÞ; while Jð f Þ is compact in

ðC; j � jÞ: The latter implies that Julia sets of polynomials are bounded in ðC; j � jÞ: The
set Jð f Þ is infinite; in fact, Jð f Þ is a perfect set in that it is equal to its set of
accumulation points. The sets Kð f Þ; Jð f Þ and Fð f Þ are each completely invariant

under f ; that is, if A is any one of those sets, then f ðAÞ ¼ A ¼ f 1ð	1ÞðAÞ: Further, for
any positive integer k;Fð f 1kÞ ¼ Fð f Þ and Jð f 1kÞ ¼ Jð f Þ:
Periodic points play an important role in iteration theory. A point z0 is a periodic

point of f if, for some positive integer k; f 1kðz0Þ ¼ z0: The smallest such k is the
period of z0 (and if k ¼ 1 then z0 is, of course, a fixed point of f ). The forward orbit of
a periodic point z0 is a cycle; if k is the period of the cycle, then the number
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l ¼ ð f 1kÞ0ðz0Þ is the multiplier of the cycle, and is independent of the choice of z0
from the cycle. The cycle is

(i) attracting if 0ojljo1;
(ii) repelling if jlj41;
(iii) rationally indifferent if l is a root of unity, and
(iv) irrationally indifferent if jlj ¼ 1 but l is not a root of unity.

A basic (and non-trivial) fact is that

(i) attracting cycles lie in Fð f Þ;
(ii) repelling cycles lie (and are dense) on Jð f Þ;
(iii) rationally indifferent cycles lie on Jð f Þ; and
(iv) an irrationally indifferent cycle may lie in either Fð f Þ or Jð f Þ:

2.2. Backward orbits

For z0AC; its backward orbit with respect to f is the set

O	ðz0Þ ¼
[N
k¼0

f 1ð	kÞðz0Þ:

A polynomial f has at most one exceptional point whose backward orbit is finite. For
example, if f ðxÞ ¼ xn then 0 is exceptional as O	ð0Þ ¼ f0g: In general an exceptional
point, if it exists, lies in Fð f Þ: The following fundamental result implies that the
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Fig. 3. Julia set of 3x3 þ 9x2 þ 7x:
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backward orbit of any non-exceptional point accumulates on Jð f Þ: The symbol Cl
denotes topological closure.

Theorem 2.2. (cf. Beardon [1]). For a polynomial f of degree at least 2,

(i) if z0 is non-exceptional then Jð f ÞDClðO	ðz0ÞÞ;
(ii) if z0AJð f Þ then Jð f Þ ¼ ClðO	ðz0ÞÞ:

Intuitively, as Jð f Þ is a repelling set for f ; it is somehow attracting for f 1ð	1Þ:

Instead of looking at the entire inverse orbit O	1ðz0Þ; we could ask whether the sets

f 1ð	kÞðz0Þ converge (in some sense) to Jð f Þ: Indeed, they do: Hickman [15]
established the following result, of which we will make important use in Section 3.
The Hausdorff metric measures the distance between two compact subsets A and B of
ðC; j � jÞ as hðA;BÞ ¼ maxðdðA;BÞ; dðB;AÞÞ; where dðA;BÞ ¼ maxaAA minbAB ja 	 bj:
Since the sets f 1ð	kÞðz0Þ are finite, they are necessarily compact.

Theorem 2.3. (Hickman [15]). Let f be a polynomial, and z0 a point which does not lie

in any attracting cycle or Siegel disk of f : Then

lim
k-N

f 1ð	kÞðz0Þ ¼ Jð f Þ;

where the limit is taken with respect to the Hausdorff metric on compact subsets of

ðC; j � jÞ:

We need not discuss Siegel disks here; it suffices to mention that they are contained
in Fð f Þ: As attracting cycles also lie in Fð f Þ; it follows immediately from Theorem

2.3 that limk-N f 1ð	kÞðz0Þ ¼ Jð f Þ for any point z0AJð f Þ: For the sake of
completeness, the proof of Theorem 2.3 (extracted from [16]) is included in
Appendix A.

2.3. Conjugacy

A Möbius map is a rational map of the form

fðzÞ ¼ az þ b

cz þ d
; ad 	 bca0;

where a; b; c and d are fixed complex numbers. The condition ad 	 bca0 ensures
that f is one to one and thus invertible. Two polynomials f and g are conjugate if
there exists a Möbius map f such that

g ¼ f3f 3f1ð	1Þ:

It follows easily that, for any positive integer k;

g1k ¼ f3f 1k
3f1ð	1Þ;

an important property of conjugacy. Julia sets of conjugate polynomials are related
in the following manner.
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Theorem 2.4. (cf. Beardon [1]). If g ¼ f3f 3f1ð	1Þ for some Möbius map f; then

FðgÞ ¼ fðFð f ÞÞ and JðgÞ ¼ fðJð f ÞÞ: The sets JðgÞ and Jð f Þ are then said to be

analytically conjugate, as are FðgÞ and Fð f Þ:

3. Independence fractals of graphs: a general theory

We set out now to describe just where the reduced independence roots of powers

Gk (i.e., the roots of fGk ¼ fG1
k) of a graph G are approaching as k-N: The upshot

will be an association of a fractal with G: For each kX1 the set, Roots ð fGkÞ; of roots
of fGk is a finite—and therefore compact—subset of ðC; j � jÞ: We ask then whether
the limit of the sequence fRoots ð fGkÞg exists in general, with respect to the
Hausdorff metric (cf. Section 2) on compact subsets of ðC; j � jÞ: In fact, it does.

Definition 3.1. The independence fractal of a graph G is the set

FðGÞ ¼ lim
k-N

Roots ð fGkÞ: ð3Þ

That FðGÞ actually exists for every graph G is part of Theorem 3.3, the main
result of this section. We begin with a simple but important characterization of the
right-hand side of Eq. (3). For each kX2; associativity of graph composition allows

us to write Gk ¼ Gk	1½G�; and Proposition 1 then implies that

fGk ¼ fGk	13fG;

which in turn leads to the relation

Roots ð fGkÞ ¼ fG1
ð	1ÞðRoots ð fGk	1ÞÞ:

Also, note that

Roots ð fGÞ ¼ fG1
ð	1Þð0Þ:

Hence,

Proposition 3.2. For each kX1; we have

Roots ð fGkÞ ¼ fG1
ð	kÞð0Þ: ð4Þ

Therefore,

FðGÞ ¼ lim
k-N

fG1
ð	kÞð0Þ: ð5Þ

An application of Theorem 2.3 will then complete the picture; Theorem 3.3
answers completely our question in general. For the graph G ¼ K1; fGðxÞ ¼ x and
fGkðxÞ ¼ x for all k; whence FðGÞ ¼ f0g:

Theorem 3.3. The independence fractal FðGÞ of a graph GaK1 is precisely the Julia

set Jð fGÞ of its reduced independence polynomial fGðxÞ: Equivalently, FðGÞ is the

closure of the union of the reduced independence roots of powers Gk; k ¼ 1;y;N:
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Proof. If G has independence number 1; then G ¼ Kn for some nX2; and
fGðxÞ ¼ nx; whose Julia set is f0g (as any non-zero point has an un-

bounded forward orbit). Now, Gk ¼ Knk for all k; and fGkðxÞ ¼ nkx; whose set of
roots is f0g: The union and limiting root set is therefore f0g ¼ Jð fGÞ; and the result
holds.
If G has independence number at least 2; then fGðxÞ has degree at least 2: Since

fGðxÞ ¼
Pb

k¼0 ikxk; we have that fGð0Þ ¼ 0 and f 0
Gð0Þ ¼ i1 ¼ jVðGÞj41: Thus, 0 is a

repelling fixed point of fGðxÞ; and therefore lies in Jð fGðxÞÞ: In particular, z0 ¼ 0
satisfies the hypothesis of Theorem 2.3 (cf. the remarks immediately following that
theorem), and so

lim
k-N

fG1
ð	kÞð0Þ ¼ Jð fGÞ: ð6Þ

The left-hand side is FðGÞ; by Eq. (5). That FðGÞ ¼ Clð
S

kX1 Roots ð fGkÞÞ then
follows from Eq. (4) and Theorem 2.2 (ii), together with the facts that 0AJð fGÞ and
FðGÞ ¼ Jð fGÞ: &

Some remarks are in order.

Remark 1. Since fGð0Þ ¼ 0; we have 0AfG1
ð	1Þð0Þ: Applying fG1

ð	1Þ to both sides

yields fG1
ð	1Þð0ÞDfG1

ð	2Þð0Þ; and, by induction, fG1
ð	kÞð0ÞDfG1

ð	ðkþ1ÞÞð0Þ for all k:
Hence, for all k; Roots ð fGkþ1Þ+Roots ð fGkÞ:

Remark 2. For the ‘usual’ independence polynomials iGkðxÞ ¼ fGkðxÞ þ 1; the

limiting root set is IðGÞ ¼ limk-N fG1
ð	kÞð	1Þ; which always contains FðGÞ ¼

Jð fGÞ: The containment is proper exactly when iG has 	1 as a root of multiplicity at
least 2; since then 	1 is an attracting fixed point of fG: The situation there is that
Roots ðiGkþ1Þ+Roots ðiGk Þ for all k; and IðGÞ is partitioned by the set,S

kX1 Roots ðiGkÞ; and its set of accumulation points, Jð fGÞ: However, the ‘new’

independence roots at each step, namely Roots ðiGkþ1Þ\Roots ðiGkÞ; converge to
precisely FðGÞ ¼ Jð fGÞ: All of these assertions are proved in [15], where IðGÞ is
called the independence attractor of G; whileFðGÞ is denoted by *IðGÞ and (as here)
is the independence fractal of G:

Remark 3. Actually, the connection betweenFðGÞ andIðGÞ described in Remark 2
fails to hold precisely when G is empty, where there are no new independence roots at

any step. Indeed, for G ¼ Kn we have iGðxÞ ¼ ð1þ xÞn; and since for each k; Gk ¼
Knk ; iGkðxÞ ¼ ð1þ xÞnk

; whose only root is 	1: Thus, IðGÞ ¼ f	1g: Here,

FðGÞD/ IðGÞ: If n ¼ 1 then for all k; Gk ¼ K1 and fGkðxÞ ¼ x; whence

FðGÞ ¼ f0g; if n41 then the roots of fGk ¼ ð1þ xÞnk

	 1 become dense on the
circle jz þ 1j ¼ 1 as k-N; and by Theorem 3.3, FðGÞ is precisely that circle, which
is also Jðð1þ xÞn 	 1Þ:
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Since empty graphs have been analyzed completely in Remark 3, and, moreover,
are the only source of discrepancy for the connection between FðGÞ and IðGÞ
described in Remark 2:

We will assume henceforth that G is a non-empty graph.

Now, as Julia sets are typically fractals, we are in essence associating a fractal
FðGÞ with a graph G: The question arises as to the possible connections between the
two objects. How are graph–theoretic properties encoded in the fractals? What does
FðGÞ say about G itself? In particular, in the sections which follow we will come
across independence fractals that are connected, and others that are disconnected.
We ask here:

Question 3.4.. For which graphs G is FðGÞ connected?

Remark 4. Even for the usual independence polynomials, Question 3.4 is the right
one to ask: When 	1 has multiplicity at most 1 as a root of iG; then IðGÞ andFðGÞ
are equal anyway [15]. Moreover, when iG has 	1 as a root of multiplicity at least 2;
then the nature of the resulting partition of IðGÞ (described in Remark 2)
immediately implies that IðGÞ is disconnected. What is more interesting is whether
its set of accumulation points (equivalently, the limiting set for the new independence
roots at each step), FðGÞ ¼ Jð fGÞ; is connected.

We will prove momentarily that, in fact, every graph—with the exception of
complete graphs—is contained, as an induced subgraph, in a graph with the
same independence number, having a disconnected independence fractal.
The following result from iteration theory, which links the critical points
of a polynomial to the connectivity of its Julia set, will be useful. A totally

disconnected set is one whose components (maximal connected subsets) contain just
one point.

Theorem 3.5. (cf. Beardon [1]).Let f be a polynomial of degree at least two.

* Its Julia set Jð f Þ is connected if and only if the forward orbit of each of its critical

points is bounded in ðC; j � jÞ:
* Its Julia set Jð f Þ is totally disconnected if (but not only if) the forward orbit of each

of its critical points is unbounded in ðC; j � jÞ:

With Theorem 3.5 at hand, we prove:

Theorem 3.6. Every graph G with independence number at least two is an induced

subgraph of a graph H with the same independence number, whose independence fractal

is disconnected.

Proof. Since fGðxÞ has degree at least 2, a simple argument using the triangle
inequality shows that there exists a real number R41 such that jzj4R )
jfGðzÞj42jzj; which implies that the forward orbit of z is unbounded in ðC; j � jÞ:
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Now, not every critical point of fG is a root of fG: Indeed, for a root r of both f 0
G

and fG; its multiplicity as a root of fG is one greater than its multiplicity as a root of
f 0
G: But deg fG ¼ deg f 0

G þ 1; and so, if every critical point of fG were a root of fG; then

in fact fG must have only one critical point c; and fGðxÞ ¼ aðx þ cÞb: But we know
that xjfGðxÞ; and so c ¼ 0 and fGðxÞ ¼ axb: This could only be the case if b ¼ 1;
which it is not.
Let c then be a critical point of fG for which fGðcÞ ¼ wa0; and choose a positive

integer p large enough that jp � wj4R: For the graph G½Kp�; we have fG½Kp�ðxÞ ¼
fGðpxÞ; a critical point of which is c=p: But then fG½Kp�ðc=pÞ ¼ fGðcÞ ¼ w; and

jfG½Kp�1
kðwÞj ¼ jfG1

kðpwÞj-N as k-N: Hence, by Theorem 3.5, the graph G½Kp�;
which has independence number b; and of which G is an induced subgraph, has a
disconnected independence fractal. &

We proved that G½Kp� has a disconnected independence fractal for all

sufficiently large p: In fact, the same is also true of Kp½G�; for since fKp
ðxÞ ¼ px;

we have:

Theorem 3.7. For a graph G and positive integer p;

fKp½G�ðpxÞ ¼ p � fGðpxÞ ¼ p � fG½Kp�ðxÞ:

That is,

fKp½G�3f ¼ f3fG½Kp�;

where f is the Möbius map x/px: Hence,

FðKp½G�Þ ¼ p �FðG½Kp�Þ:

The last line follows directly from Theorem 2.4 on Julia sets of conjugate
polynomials, and tells us that the independence fractal of Kp½G� is a mere scaling

of that of G½Kp�: Thus, the former set must also be disconnected for all sufficiently

large p; and so we have the following result, which at the very least suggests
that graph connectedness and connectedness of independence fractals are not
related.

Theorem 3.8. If G is a graph with independence number at least 2, then for all

sufficiently large p; the join of p copies of G has a disconnected independence fractal.

Graphs with independence number 1 are not very interesting, since fKn
ðxÞ ¼ nx;

whose Julia set is just f0g: For graphs with independence number 2, we can exploit
the Mandelbröt set to decide when their independence fractals are connected; this is
the subject of Section 4. In Section 5, we will analyze two families of graphs with
arbitrarily high independence numbers.
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4. Graphs with independence number 2

For a graph G with independence number 2; having n vertices and m non-edges

(i.e., %G has exactly m edges), its independence polynomial is

fGðxÞ ¼ mx2 þ nx: ð7Þ
The Mandelbröt set M is the set of all complex numbers c for which the Julia set of

the polynomial x2 þ c is connected. For any other value of c; Jðx2 þ cÞ is not only
disconnected, but totally disconnected, as x2 þ c has only one critical point (cf.
Theorem 3.5). Julia sets of this type are often called fractal dust. A plot of the
Mandelbröt set (a subset of the complex c-plane) is shown in Fig. 4. A well-known
fact (cf. [10]) is that M is contained in the disk jcjp2:

Let us then consider a polynomial of the form x2 þ c to which fGðxÞ is conjugate.
It is straightforward to check that

gG ¼ f3fG3f1ð	1Þ;

where

gGðxÞ ¼ x2 þ n

2
	 n

2

� 
2
ð8Þ

and

fðxÞ ¼ mx þ n

2
: ð9Þ

–2

–1

0

1

2

y

–2 –1
x
1 2

Fig. 4. The Mandelbröt set.
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Then

f1ð	1ÞðxÞ ¼ 1

m
x 	 n

2m
ð10Þ

and (from Theorem 2.4)

FðGÞ ¼ f1ð	1ÞðJðx2 þ cÞÞ;

where c ¼ n
2
	 ðn

2
Þ2: Thus, FðGÞ is a mere scaling and shifting of Jðx2 þ cÞ; and since

c is independent of m; the connectivity of FðGÞ depends only on how many vertices

G has; the fact that G is non-empty implies that nX3: The location ofFðGÞ; though,
depends on both the numbers of vertices and edges in G; as Theorems 4.2–4.4 imply
the following:

Theorem 4.1. If G is a non-empty graph with independence number 2 having n vertices

and m non-edges, and zAFðGÞ; then

(i) 	n
m
pRe ðzÞp0; and

(ii)
Im ðzÞ ¼ 0; unless n ¼ 3; in which case 	

ffiffiffi
3

p

2m
pIm ðzÞp

ffiffiffi
3

p

2m
:

4.1. Graphs for which b ¼ 2; n ¼ 3

There are exactly two graphs with independence number 2 on n ¼ 3
vertices, namely K12K2; the disjoint union of a point and an edge, and P3;

the path on three vertices. Their reduced independence polynomials are fK12K2
ðxÞ ¼

2x2 þ 3x and fP3
ðxÞ ¼ x2 þ 3x; thus, FðK12K2Þ ¼ Jð2x2 þ 3xÞ and FðP3Þ ¼

Jðx2 þ 3xÞ:
For either graph G; Eq. (8) says that fGðxÞ is conjugate to the polynomial gGðxÞ ¼

x2 	 3
4
: For G ¼ K12K2; Eq. (10) tells us that f1ð	1ÞðxÞ ¼ 1

2
x 	 3

4
; while for G ¼

P3; f1ð	1ÞðxÞ ¼ x 	 3
2
: Since 	3

4
lies in the Mandelbröt set, Jðx2 	 3

4
Þ is connected. By

Theorem 2.4, FðGÞ ¼ f1ð	1ÞJðx2 	 3
4
Þ; and since, for either graph G; f1ð	1Þ is a

mere scaling and shifting, FðGÞ must also be connected.

With a little work, we can determine a box containing Jðx2 	 3
4
Þ: We prove in

appendix that Jðx2 	 3
4
Þ is contained in the box ½	3

2
; 3
2
� � ½	

ffiffi
3

p

2
;
ffiffi
3

p

2
�; and that the box is

tight. Applying f1ð	1Þ to this box then gives a tight box containing FðGÞ: We have
proved:

Theorem 4.2. If G is a graph with independence number 2 on n ¼ 3 vertices, then

FðGÞ ¼ f1ð	1Þ J x2 	 3

4

� �� �
;
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where either

(i) G ¼ K12K2 and f1ð	1ÞðxÞ ¼ 1
2
x 	 3

4
; or

(ii) G ¼ P3 and f1ð	1ÞðxÞ ¼ x 	 3
2
:

Therefore, FðGÞ is connected, and

(i) FðG ¼ K12K2Þ ¼ Jð2x2 þ 3xÞD½	3
2
; 0� � ½	

ffiffi
3

p

4
;
ffiffi
3

p

4
�; while

(ii) FðG ¼ P3Þ ¼ Jðx2 þ 3xÞD½	3; 0� � ½	
ffiffi
3

p

2
;
ffiffi
3

p

2
�:

Plots ofFðK12K2Þ andFðP3Þ are shown in Figs. 5 and 6, respectively. That they
appear to have the same ‘shape’ agrees with the fact that each is just a scaling and

shifting of Jðx2 	 3
4Þ:

4.2. Graphs for which b ¼ 2; n ¼ 4

For a graph G with independence number 2 on n ¼ 4 vertices (and m non-edges),

Eqs. (8) and (9) tell us that fGðxÞ is conjugate to gGðxÞ ¼ x2 	 2 via fðxÞ ¼ mx þ 2;

that is, gG ¼ f3fG3f1ð	1Þ: Now Jðx2 	 2Þ is well known (cf. [9, p. 226]) to be the

interval ½	2; 2�; applying the map f1ð	1ÞðxÞ ¼ 1
m

x 	 2
m
to this interval gives

Theorem 4.3. If G is a graph with independence number 2 having n ¼ 4 vertices and m

non-edges, then

FðGÞ ¼ 	4
m

; 0

� �
:

–0.4

–0.2

0

0.2

0.4

–1.4 –1.2 –1 –0.8 –0.6 –0.4 –0.2

Fig. 5. The independence fractal, FðK12K2Þ:
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For example, the graph G ¼ K4 	 e has independence number b ¼ 2; n ¼ 4

vertices and m ¼ 1 non-edge. Then fGðxÞ ¼ x2 þ 4x and, from Theorem 4.3,FðGÞ ¼
½	4; 0�:

4.3. Graphs for which b ¼ 2; nX5

If G is a graph with independence number 2 on nX5 vertices, then c ¼
n
2
	 ðn

2
Þ2o	 2; which lies outside the Mandelbröt set. This implies that Jðx2 þ cÞ;

and hence FðGÞ ¼ f1ð	1ÞðJðx2 þ cÞÞ; is fractal dust. Furthermore, it is known

([5, p. 126]) that for co	 2; Jðx2 þ cÞ is real and contained in the interval ½	q; q�;
where q ¼ 1

2
þ

ffiffiffiffiffiffiffiffiffiffi
1
4
	 c

q
: With c ¼ n

2
	 ðn

2
Þ2; this simplifies to q ¼ n

2
: Applying f1ð	1Þ to

the interval ½	n
2
; n
2
� leaves ½	n

m
; 0�: We have proved:

Theorem 4.4. If G is a graph with independence number 2 having nX5 vertices and m

non-edges, then FðGÞ is a dusty subset of the interval ½	n
m
; 0�:

Since 0 is a repelling fixed point of fG; it lies in Jð fGÞ: Furthermore, since f ð	n
m
Þ ¼

0AJð fGÞ; and Jð fGÞ is completely invariant under fG (cf. Section 2), 	n
m
also lies in

Jð fGÞ: Hence, the interval ½	n
m
; 0� in Theorem 4.4 is sharp.

Theorem 4.4 applies to the graph K22K3; for example, which has
independence number b ¼ 2; n ¼ 5 vertices and m ¼ 6 non-edges.

Here, fGðxÞ ¼ 6x2 þ 5x and FðGÞ is a totally disconnected subset of the interval

½	5
6
; 0�:

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

–3 –2.5 –2 –1.5 –1 –0.5

Fig. 6. The independence fractal, FðP3Þ:
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5. The families akb and ka;b

In this section, we make use of Theorem 3.7 to reveal the connection between the
independence fractals of two seemingly different families of graphs with arbitrarily
high independence numbers.
We consider first the graphs aKb; the disjoint union of a copies of Kb: The

independence fractals of 3K2 and 4K2 are shown in Figs. 7 and 8, respectively.

Note that aKb ¼ Ka½Kb�; since fKa
ðxÞ ¼ ð1þ xÞa 	 1 and fKb

ðxÞ ¼ bx; we have

faKb
ðxÞ ¼ fKa

ðbxÞ ¼ ð1þ bxÞa 	 1

and

f 0
aKb

ðxÞ ¼ abð1þ bxÞa	1;

whose only critical point is z ¼ 	1=b: By Theorem 3.5, FðGÞ will either be
connected or totally disconnected, depending on whether the forward orbit of
z ¼ 	1=b is bounded or unbounded, respectively, in ðC; j � jÞ:
Now, faKb

ð	1=bÞ ¼ 0a 	 1 ¼ 	1: As we are considering only non-empty graphs,

bX2:

Case 1: b ¼ 2; a even. Then faKb
ðxÞ ¼ faK2

ðxÞ ¼ ð1þ 2xÞa 	 1: Now faK2
ð	1=bÞ ¼

	1; faK2
ð	1Þ ¼ ð1	 2Þa 	 1 ¼ 0; and faK2

ð0Þ ¼ 0: Hence, the forward orbit of 	1=b

converges to 0, and is therefore bounded in ðC; j � jÞ: Thus, FðaK2Þ is connected.

–0.4

–0.2

0

0.2

0.4

–1 –0.8 –0.6 –0.4 –0.2

Fig. 7. The independence fractal, Fð3K2Þ:
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Case 2: bX3; a even. Then faKb
ð	1=bÞ ¼ 	1; and faKb

ð	1Þ ¼ ð1	 bÞa 	 1X2a 	
141: And z41 ) faKb

ðzÞ4ð1þ 2zÞ1 	 1 ¼ 2z4z þ 1: Hence, the forward orbit of

	1=b is unbounded in ðC; j � jÞ; and FðaKbÞ is totally disconnected.

Case 3: aX3 odd. Then faKb
ð	1=bÞ ¼ 	1; and faKb

ð	1Þ ¼ ð1	 bÞa 	 1pð1	
2Þ3 	 1 ¼ 	2o	 1: And zo	 1 ) f ðzÞoð1þ 2zÞ1 	 1 ¼ 2z ¼ z þ zoz 	 1:
Hence, the forward orbit of 	1=b is unbounded in ðC; j � jÞ; and FðaKbÞ is totally
disconnected.

Case 4: a ¼ 1: Then aKb ¼ Kb; whose independence fractal we know is f0g; and
thus totally disconnected.
We have proved:

Theorem 5.1. The independence fractal of aKb is connected if b ¼ 2 and a is even, and

totally disconnected otherwise.

As we did for graphs with independence number 2; we can find a region inside
which FðaKbÞ lies. It lies in the disk

z þ 1

b

����
����p1

b
;

and this is a direct consequence of Theorem 5.2.

Theorem 5.2. For G ¼ aKb and all kX1; every root Fk of fGk satisfies jFk þ 1
b
jp1

b
:

–0.4

–0.2

0.2

0.4

–1 –0.8 –0.6 –0.4 –0.2

Fig. 8. The independence fractal, Fð4K2Þ:
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Proof. By induction on k: Since fGðxÞ ¼ ð1þ bxÞa 	 1; every root F1 of fGðxÞ
satisfies ð1þ bF1Þa ¼ 1; which implies that j1þ bF1j ¼ 1 and thus jF1 þ 1

b
j ¼ 1

b
; the

result is therefore true for k ¼ 1:
Now suppose the result is true for a number kX1: Since fGkþ1ðxÞ ¼ fGkð fGðxÞÞ; any

root Fkþ1 of fGkþ1ðxÞ must satisfy fGðFkþ1Þ ¼ Fk for some root Fk of fGkðxÞ: This says
that ð1þ bFkþ1Þa 	 1 ¼ Fk; and so j1þ bFkþ1j ¼ j1þ Fkj1=a and jFkþ1 þ 1

b
j ¼ 1

b
j1þ

Fkj1=a: By assumption, jFk þ 1
b
jp1

b
: Applying the triangle inequality,

Fk þ
1

b

����
���� ¼ 1

b
j1þ Fk	1j1=a

¼ 1

b
Fk	1 þ

1

b

� �
þ 1	 1

b

� �����
����1=a

p
1

b
Fk	1 þ

1

b

����
����þ 1	 1

b

����
����

� �1=a

p
1

b

1

b
þ 1	 1

b

� �� �1=a

¼ 1

b
;

and so the result holds for k þ 1 as well, completing the proof. &

The bounding disk jz þ 1
b
jp1

b
is best possible, since (as revealed in the proof of

Theorem 5.2) the roots of faKb
; itself, lie on the boundary.

Consider next the family of complete multipartite graphs Ka;b ¼ Ka; a;y; a|fflfflfflfflfflffl{zfflfflfflfflfflffl} b
:

Here, again bX2 since we are considering only non-empty graphs. Since Ka;b is

precisely the graph Kb½Ka�; we have

fKa;b
ðxÞ ¼ fKb½Ka�ðxÞ ¼ b:

fKa
ðxÞ ¼ bð1þ xÞa 	 b:

Moreover, since Ka;b ¼ Kb½Ka� and aKb ¼ Ka½Kb�; Theorem 3.7 tells us that

FðKa;bÞ ¼ b: FðaKbÞ: ð11Þ

In particular, FðKa;bÞ has the same ‘shape’ as its counterpart, FðaKbÞ: Together
with Theorems 5.1 and 5.2, Eq. (11) implies:

Theorem 5.3. The independence fractal of Ka;b is connected if b ¼ 2 and a is even, and

totally disconnected otherwise. Further, FðKa;bÞ lies in the disk jz þ 1jp1; and this

bounding disk is best possible.
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6. Concluding remarks

The relationships between a graph and its independence fractal remains a
tantalizing question. Even the restricted question of when an independence fractal is
connected seems elusive. Certainly, it does not depend on the connectivity of the
graph. We have seen, for instance, that 4K2; a disconnected graph, has a connected
independence fractal, while Theorem 3.8 guarantees the existence of many connected
graphs with disconnected independence fractals. In Section 4, we were able to
provide a complete answer for graphs with independence number 2, and it may be
possible to do something similar for graphs with independence number 3; though the
Mandelbröt set for cubics is contained in C� C [3,4] and is not well understood.
Just how much about a graph can its independence fractal tell us? Theorem 3.7

tells us that G½Kn� and Kn½G� have analytically conjugate independence fractals.

Further, since for any polynomial f and positive integer k; Jð f Þ ¼ Jð f 1kÞ (Theorem
2.4), it follows that Gk and G have identical independence fractals for any graph G:
These observations provide a partial answer to:

Question 6.1. When do two graphs G and H have analytically conjugate independence

fractals?

Finally, related to the problem of determining bounds for the roots of
independence polynomials [6,8] is that of bounding independence fractals in terms
of various graph parameters. Theorems 5.2 and 5.3 tell us that FðaKbÞ and FðKa;bÞ
lie in the disks jz þ 1

b
jp1

b
and jz þ 1jp1; respectively, while Theorem 4.1 implies that

for graphs with independence number 2 the independence fractals lie in jz þ n
2m
jp n

2m
:

It is not clear what a general result along these lines might be.

Appendix A. Proof of Theorem 2.3

We shall make use of three results in the literature.

Theorem A.1. (cf. Beardon [1, p. 71]). Let f be a rational map of degree at least two,

and E a compact subset of CN such that for all zAFð f Þ; the sequence f f 1kðzÞg does

not accumulate at any point of E: Then for any open set U containing

Jð f Þ; f 1ð	kÞðEÞDU for all sufficiently large k:

Theorem A.2. (cf. Beardon [1, p. 149]). Let f be a rational map of degree at least

two, W a domain that meets J; and K any compact set containing no exceptional points

of f : Then for all sufficiently large k; f 1kðWÞ*K :

(A domain is an open connected set.)
Recall from Section 2.1 the definition of irrationally indifferent cycles. If z0 lies on

an irrationally indifferent cycle of f with period k; and this cycle lies in the Fatou set
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Fð f Þ; then the component (i.e., maximal open connected subset) F0 of Fð f Þ
containing z0 is forward invariant under f 1k; and is called a Siegel disk. For any

point zaz0 in F0; the sequence f f 1kðzÞ; f 1ð2kÞðzÞ;yg is dense on a curve—called, an
invariant circle—lying inside F0:
In fact, a complete classification of the possibilities for periodic components of a

rational map is known; and every component C of a Fatou set Fð f Þ is eventually
periodic under f ; that is, for some j4kX0; f 1jðCÞ ¼ f 1kðCÞ: These very deep and
fascinating results were proved by Sullivan (cf. [1] for references and details), and an
immediate consequence of his work is:

Theorem A.3. If f is a polynomial, and z0AFð f Þ; then the forward orbit Oþðz0Þ ¼
f f 1kðz0Þg either

(i) converges to a periodic cycle, or

(ii) settles into a ‘periodic cycle’ of Siegel disks, becoming dense on an invariant circle

in each.

Unbounded forward orbits actually converge to the point at infinity with respect
to the spherical metric, s0: This situation is covered by (i) in Theorem A.3, sinceN is
a fixed (and thus, periodic) point of any polynomial.
With these results at hand, we can prove Theorem 2.3.

Proof of Theorem 2.3. Let f and z0 be as in the statement of the theorem, and e40
given. Establishing the limit in the conclusion of the theorem is equivalent (cf. [1,
p. 35]) to proving that, for all sufficiently large k;

(i) f 1ð	kÞðz0ÞDJð f Þ þ e; and
(ii) Jð f ÞDf 1ð	kÞðz0Þ þ e;

where A þ e ¼ fz : s0ðz; aÞoe for some aAAg; the dilation of A by a ball of
radius e:

To prove (i), note first that if z0AJð f Þ then f 1ð	kÞðz0ÞDJð f ÞDJð f Þ þ e for all k:
Assume, then, that z0AFð f Þ: From Section 2.1, the periodic cycles in Fð f Þ are either
attracting or irrationally indifferent, the latter lying in Siegel disks. Thus, since z0 lies
in neither an attracting cycle nor a Siegel disk, Theorem A.3 implies that no point z

in Fð f Þ will have a forward orbit that accumulates at z0: Hence, the set E ¼ fz0g
satisfies the hypothesis of Theorem A.1, and therefore f 1ð	kÞðz0ÞDJð f Þ þ e for all
sufficiently large k:
To prove (ii), we begin by choosing a positive number doe=2; and covering Jð f Þ

with finitely many open balls of radius d (such a covering exists since Jð f Þ is
compact). The point z0 is not exceptional, since exceptional points are necessarily
periodic points in Fð f Þ: For each ball W in the covering W; Theorem A.2 implies

that for all sufficiently large k; f 1ðkÞðWÞ*fz0g; and hence f 1ð	kÞðz0Þ-Wa0: Since
there are only finitely many such balls, we then have that, for all sufficiently large
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k; f 1ð	kÞðz0Þ-Wa| for each ball W : Finally, since e42d it follows that for all such
k; f 1ð	kÞðz0Þ þ e*W*Jð f Þ:
This completes the proof. &

Appendix B. A tight box containing Jðx2 	 3
4
Þ

We give a proof of the claim in Section 4 that the Julia set of gðxÞ ¼ x2 	 3
4 is

contained in the box ½	3
2
; 3
2
� � ½	

ffiffi
3

p

2
;
ffiffi
3

p

2
�: This box is in fact best possible, as the points

73
2
and þ

ffiffi
3

p

2
i all lie in JðgðxÞÞ: the point z ¼ 3

2
is a repelling fixed point of g; and

g12ð7
ffiffi
3

p

2
iÞ ¼ gð	3

2
Þ ¼ 3

2
AJðgðxÞÞ: Since repelling fixed points of g lie JðgðxÞÞ; and

JðgÞ is completely invariant (cf. Section 2), it follows that 7
ffiffi
3

p

2
and 7

ffiffi
3

p

2
i all lie in

JðgðxÞÞ:

Lemma B.1. For gðxÞ ¼ x2 	 3
4

and z ¼ a þ biAC; if either jaj43
2

or jbj4
ffiffi
3

p

2
then

jgðzÞj43
2
:

Proof. We have

gðzÞ ¼ z2 	 3
4
	 ða2 	 b2 	 3

4
Þ þ 2abi

and so

jgðzÞj2 ¼ a4 þ b4 þ 2a2b2 þ 3
2

b2 	 3
2

a2 þ 9
16
: ðB:1Þ

Now, if jbj4
ffiffi
3

p

2
then, from (A.1),

jgðzÞj2X b4 þ 2a2b2 þ 3
2

b2 	 3
2

a2 þ 9
16

¼ð2b2 	 3
2
Þa2 þ b4 þ 3

2
b2 þ 9

16
Þ

4 ð2 � 3
4
	 3

2
Þa2 þ 9

16
þ 3

2
� 3
4
þ 9

16

¼ 9
4
;

and hence jgðzÞj43
2:

On the other hand, if jaj43
2
then, from (A.1),

jgðzÞj2X a4 	 3
2
a2 þ 9

16

¼ a2ða2 	 3
2
Þ þ 9

16

4 9
4
ð9
4
	 3

2
Þ þ 9

16

¼ 9
4
;

which also implies that jgðzÞj43
2
: &

Next, we prove:
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Lemma B.2. For gðxÞ ¼ x2 	 3
4; if zAC is such that jzjX3

2þ E for some E40; then

jgðzÞjX3
2
þ 3E:

Proof. We have

jgðzÞj ¼ jz2 	 3
4
j

X jzj2 	 3
4

X ð3
2
þ EÞ2 	 3

4

¼ 3
2
þ 3Eþ E2

4 3
2
þ 3E:

Together, Lemmas A.1 and A.2 imply:

Theorem B.3. For gðxÞ ¼ x2 	 3
4

and zAC; if either jRe ðzÞj43
2

or jIm ðzÞj4
ffiffi
3

p

2
then

jg1kðzÞj-N as k-N:

Proof. As z satisfies the hypothesis of Lemma A.1, we have jgðzÞj ¼ 3
2
þ E for some

E40: Applying Lemma A.2 to gðzÞ; we have jg12ðzÞjX3
2
þ 3E; and, by induction, we

find that jg1kþ1ðzÞjX3
2
þ 3kE for each kX1; and the conclusion of theorem

follows. &

Theorem B.3 implies that the Filled Julia set (and hence the Julia set) of gðxÞ ¼
x2 	 3

4
lies in the box ½	3

2
; 3
2
� � ½	

ffiffi
3

p

2
;
ffiffi
3

p

2
�:

Corollary B.4. The Julia set Jðx2 	 3
4
Þ is contained in the box

z : jRe ðzÞjp3

2
and jIm ðzÞjp

ffiffiffi
3

p

2

( )
:
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