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Abstract

Independence polynomials of graphs enjoy the property of essentially being closed under
graph composition (or ‘lexicographic product’). We ask here: for higher products of a graph G
with itself, where are the roots of their independence polynomials approaching? We prove that
in fact they converge (in the Hausdorff topology) to the Julia set of the independence
polynomial of G, thereby associating with G a fractal. The question arises as to when these
fractals are connected, and for graphs with independence number 2 we exploit the Mandelbrot
set to answer the question completely.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

For a graph G and non-negative integer k, let i; be the number of independent sets
of vertices in G of cardinality k. The independence polynomial of G is the generating
polynomial ig(x) = Zﬁ:o irxk for the sequence {i;}, where f is the largest k for
which i, >0 (the independence number of G).

Independence polynomials are particularly well behaved with respect to
lexicographic product. For two graphs G and H, let G[H] be the graph with vertex
set V(G) x V(H) and such that vertex (a, x) is adjacent to vertex (b, y) if and only if
a is adjacent to b (in G) or @ = b and x is adjacent to y (in H). The graph G[H] is the
lexicographic product (or composition) of G and H, and can be thought of as the
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Fig. 1. The graph P5[P,].

graph arising from G and H by substituting a copy of H for every vertex of G. The
graph P;[P,], for example, is shown in Fig. 1. A more general version of Theorem 1.1
was proved in [10], but for completeness we provide a short direct proof.

Theorem 1.1. The independence polynomial of G[H] is given by

i) (x) = ig(ig(x) — 1). (1)

Proof. By definition, the polynomial i(G,i(H,x) — 1) is given by

Be Br \*
il (Z if’x’) : 2)

J=1

where ¢ is the number of independent sets of cardinality & in G (similarly for if7).

Now, an independent set in G[H] of cardinality / arises by choosing an
independent set in G of cardinality k, for some k€{0,1, ..., [}, and then, within
each associated copy of H in G[H], choosing a non-empty independent set in H, in
such a way that the total number of vertices chosen is /. But the number of ways of
actually doing this is exactly the coefficient of x/ in (2), which completes the
proof. [

As is the case with chromatic polynomials (cf. [7,16]), matching polynomials
[11,12] and others, it is natural to consider the nature and location of the roots.
Interesting in their own right, they can shed some light on the underlying
combinatorics as well. It was conjectured in [6], for instance, that the independence
vector (iy, i1, ..., ig) of any well-covered graph is unimodal (i.e., first non-decreases,
then non-increases), and some partial results in that regard have been obtained via
roots of independence polynomials [6]. Further results on independence polynomials
and their roots can be found in [6,10,13,14].

It is easily verified that lexicographic product is an associative operation, and so
we may speak of powers G* = G[G[G--]] x of a graph G without ambiguity

N —

(G' = G). For G = P53, a path on three vertices, the independence roots of G!! are
shown in Fig. 2. It appears that the independence roots of G* are approaching a
fractal-like object as k— oco. We ask:
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Fig. 2. The independence roots of G'!, where G = P;.

Question 1.2. For a graph G, what happens to the roots of the independence
polynomials iz (x) as k— o0?

A complete answer to Question 1.2 was provided by one of the authors in his
Ph.D. thesis [15], where a fair amount of technical detail arose from the fact that
independence polynomials are not quite closed under composition (cf. Eq. (1)). We
can avoid this complication here by working with a slightly modified independence
polynomial. Specifically, as there is but one independent set of cardinality 0 (the
empty set), every independence polynomial has constant term 1. Define the reduced

independence polynomial of G as the function f5(x) = ig(x) — I, that is, fg(x) =
Zl/i:l irx*. Eq. (1) then has the simple form

S (x) = f6(fu(x)).

In this paper, we will answer Question 1.2 for the reduced independence polynomial
fo(x), and indicate what small amendments to the result provide the answer for
ig(x). The organization of the paper is as follows. Section 2 contains relevant
background material from iteration theory. Incidentally, while Theorem 2.3 will
have most direct application for us, it cannot (as far as the authors are aware) be
found explicitly in the literature. In Section 3, we prove the main result (Theorem
3.3), which describes precisely where the reduced independence roots of powers G¥
are approaching, and in what sense they do so. The upshot is an association of a
fractal with G. We are led to ask for when these fractals are connected, and prove a
result (Theorem 3.8) which implies that there are many connected graphs with
disconnected fractals. In Section 4, we exploit the Mandelbrot set to decide which
graphs of independence number 2 have a connected fractal, and we employ a



212 J.I. Brown et al. | Journal of Combinatorial Theory, Series B 87 (2003) 209-230

different technique in Section 5 to answer the same question for some families of
graphs of arbitrarily high independence numbers.

2. Background: Julia sets and iteration of polynomials

The field of complex analytic dynamics entails a study of iterating rational
functions over the Riemann sphere C,, = Cu{c0} endowed with the spherical
metric. Since we will be working exclusively with polynomials in this paper,
we can get by with C together with the absolute value metric | - |, which measures
the distance between two points z and w as |z —w|. Except where otherwise
stated, any definition or assertion made in this section can be found in Beardon’s
book [1]; much of the information can also be found in the works of Blanchard [2]
and Brolin [5].

For a polynomial f and positive integer k, denote by /¥ the map fofo---of. Set
fc’(0> as the identity map, andfo(*k) asf‘”“l)of"(*l)o---ofo(”), wherefo(*l) is the set-
valued inverse of f | i.e., for ASC, f°"V(4) = {zeC:f(z) e A}. (The symbol - in the
exponent serves to distinguish a composition power from a multiplicative one.)

2.1. Forward orbits

For a point zyeC, its forward orbit with respect to f is the set

0" (z0) = {/**(z0) }Zo-

Definition 2.1. For a polynomial f its filled Julia set K(f) is the set of all points z
whose forward orbit ¢ (z) is bounded in (C, | - |). Its Julia set J( f) is the boundary,
OK(f), and its Fatou set F(f) is the complement of J(f) in C.

The Julia set of £(x) = 3x* + 9x? + 7x is shown (in black) in Fig. 3. A method for
generating pictures of Julia sets is suggested by Theorem 2.2.

For the remainder of this section, we shall assume that f is a polynomial of degree
at least 2.

As it turns out, F(f) is an open subset of (C,|-|), while J(f) is compact in
(C, |- ). The latter implies that Julia sets of polynomials are bounded in (C, | - |). The
set J(f) is infinite; in fact, J(f) is a perfect set in that it is equal to its set of
accumulation points. The sets K(f), J(f) and F(f) are each completely invariant
under £, that is, if A is any one of those sets, then f(4) = 4 = f°“V(4). Further, for
any positive integer k, F(f°*) = F(f) and J(f°%) = J(f).

Periodic points play an important role in iteration theory. A point z, is a periodic
point of f if, for some positive integer k, fOk(zo) = z9. The smallest such k is the
period of zy (and if k = 1 then zj is, of course, a fixed point of ). The forward orbit of
a periodic point zy is a cycle; if k is the period of the cycle, then the number
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Fig. 3. Julia set of 3x3 4+ 9x? + 7x.

A= (f°%(z9) is the multiplier of the cycle, and is independent of the choice of z
from the cycle. The cycle is

(i) attracting if 0<|A| <1,
(ii) repelling if |2|>1,
(ii1) rationally indifferent if A is a root of unity, and
(iv) irrationally indifferent if |A] = 1 but 4 is not a root of unity.
A basic (and non-trivial) fact is that
(i) attracting cycles lie in F(f),
(i) repelling cycles lie (and are dense) on J(f),
(iii) rationally indifferent cycles lie on J( f), and
(iv) an irrationally indifferent cycle may lie in either F(f) or J(f).

2.2. Backward orbits
For zyeC, its backward orbit with respect to f is the set
0 (z0) = |J /"7 (=0).
k=0
A polynomial f has at most one exceptional point whose backward orbit is finite. For

example, if f(x) = x" then 0 is exceptional as O~ (0) = {0}. In general an exceptional
point, if it exists, lies in F(f). The following fundamental result implies that the
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backward orbit of any non-exceptional point accumulates on J( /). The symbol Cl
denotes topological closure.

Theorem 2.2. (cf. Beardon [1]). For a polynomial | of degree at least 2,

(i) if zo is non-exceptional then J( )= Cl(O (zp));
(i) if zoeJ(f) then J(f) = CI(O (20)).

Intuitively, as J(f) is a repelling set for f, it is somehow attracting for f o(=1),
Instead of looking at the entire inverse orbit O~!(zg), we could ask whether the sets

o0 (z0) converge (in some sense) to J(f). Indeed, they do: Hickman [L5]
established the following result, of which we will make important use in Section 3.
The Hausdorff metric measures the distance between two compact subsets 4 and B of
(C,|-|) as h(A4, B) = max(d(A, B),d(B, A)), where d(A4, B) = max,e 4 Minyep |a — b|.
Since the sets f o(=k) (zo) are finite, they are necessarily compact.

Theorem 2.3. (Hickman [15]). Let f be a polynomial, and zy a point which does not lie
in any attracting cycle or Siegel disk of f. Then

Jim £ (z) = J(1),

where the limit is taken with respect to the Hausdorff metric on compact subsets of

(C,[-D)-

We need not discuss Siegel disks here; it suffices to mention that they are contained
in F(f). As attracting cycles also lie in F(f), it follows immediately from Theorem
2.3 that limy_ . f°¥(z0) = J(f) for any point zyeJ(f). For the sake of
completeness, the proof of Theorem 2.3 (extracted from [16]) is included in
Appendix A.

2.3. Conjugacy

A Mobius map is a rational map of the form

az+b
PO =
where a, b, ¢ and d are fixed complex numbers. The condition ad — bc#0 ensures
that ¢ is one to one and thus invertible. Two polynomials f and g are conjugate if
there exists a Mobius map ¢ such that

g=¢ofop™ V.
It follows easily that, for any positive integer k,
gok — (]’)C>f0k0(]50(71)7

an important property of conjugacy. Julia sets of conjugate polynomials are related
in the following manner.

ad — bc+#0,
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Theorem 2.4. (cf. Beardon [1]). If g = ¢ofo¢p°"V for some Mobius map ¢, then
F(g) = ¢(F(f)) and J(g) = ¢(J(f)). The sets J(g) and J(f) are then said to be
analytically conjugate, as are F(g) and F(f).

3. Independence fractals of graphs: a general theory

We set out now to describe just where the reduced independence roots of powers

G* (i.e., the roots of fg = f5°F) of a graph G are approaching as k — 0. The upshot
will be an association of a fractal with G. For each k> 1 the set, Roots ( fz ), of roots
of fs+ is a finite—and therefore compact—subset of (C,| -|). We ask then whether
the limit of the sequence {Roots (fs)} exists in general, with respect to the
Hausdorff metric (cf. Section 2) on compact subsets of (C,| - ). In fact, it does.

Definition 3.1. The independence fractal of a graph G is the set
F(G) = klim Roots (fgx). (3)
o
That # (G) actually exists for every graph G is part of Theorem 3.3, the main

result of this section. We begin with a simple but important characterization of the
right-hand side of Eq. (3). For each k>2, associativity of graph composition allows

us to write G¥ = G*~'[G], and Proposition 1 then implies that
Jex = ferofa,

which in turn leads to the relation
Roots (fgx) =fa" " (Roots (fgu1))-

Also, note that
Roots (fa) =/6"""(0).

Hence,

Proposition 3.2. For each k=1, we have

Roots (fg) = f6°9(0). (4)
Therefore,
7(G) = lim f5°79(0). (5)

An application of Theorem 2.3 will then complete the picture; Theorem 3.3
answers completely our question in general. For the graph G = K, fs(x) = x and
Jfor(x) = x for all k, whence Z#(G) = {0}.

Theorem 3.3. The independence fractal 7 (G) of a graph G# K, is precisely the Julia
set J(fg) of its reduced independence polynomial fg(x). Equivalently, 7 (G) is the
closure of the union of the reduced independence roots of powers GX, k=1, ..., w.
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Proof. If G has independence number 1, then G =K, for some n>2, and
fo(x) =nx, whose Julia set is {0} (as any non-zero point has an un-
bounded forward orbit). Now, G¥ = K for all k, and fg(x) = n¥x, whose set of
roots is {0}. The union and limiting root set is therefore {0} = J( fs), and the result
holds.

If G has independence number at least 2, then f(x) has degree at least 2. Since
fo(x) = Z/If:o irx*, we have that f5(0) = 0 and f5(0) = i; = |V(G)|>1. Thus, 0 is a
repelling fixed point of fg(x), and therefore lies in J( fg(x)). In particular, zp =0
satisfies the hypothesis of Theorem 2.3 (cf. the remarks immediately following that
theorem), and so

klil‘{}c 16"TR(0) = I (fo). (6)

The left-hand side is .7 (G), by Eq. (5). That #(G) = CI({J,>, Roots (fs+)) then
follows from Eq. (4) and Theorem 2.2 (ii), together with the facts that 0eJ( fs) and
7(G)=J(fg)- O

Some remarks are in order.

Remark 1. Since f5(0 )7 0, we have 0ef;°"! ( ). Applying fGO 1 to both sides
yields f6°V(0) =/6°(0), and, by induction, f5° ¥ (0)=fc°"* 1) (0) for all k.
Hence, for all k£, Roots ( fgr1)2Roots (fgr).

Remark 2. For the ‘usual’ independence polynomials ig(x) =fg(x)+ 1, the
limiting root set is .#(G) = limg_ . f¢°¥ (1), which always contains F(G) =
J(fc). The containment is proper exactly when ig has —1 as a root of multiplicity at
least 2, since then —1 is an attracting fixed point of f;. The situation there is that
Roots (igi1)2Roots (ig) for all k, and #(G) is partitioned by the set,
Uik=1 Roots (ig), and its set of accumulation points, J(f). However, the ‘new’
independence roots at each step, namely Roots (ig+i)\Roots (i), converge to
precisely Z (G) = J(fg). All of these assertions are proved in [15], where .#(G) is
called the independence attractor of G, while # (G) is denoted by .7 (G) and (as here)
is the independence fractal of G.

Remark 3. Actually, the connection between % (G) and .#(G) described in Remark 2
fails to hold precisely when G is empty, where there are no new independence roots at
any step. Indeed, for G = K, we have ig(x) = (1 + x)", and since for each k, G¥ =
Ky, ig(x)=(1+ x)"k, whose only root is —1. Thus, #(G)={-1}. Here,
F(G)EF(G): If n=1 then for all k, G*= K1 and fg(x) =x, whence
Z(G) = {0}; if n>1 then the roots of fs = (1 +x) " — 1 become dense on the
circle |z+ 1] = 1 as k— oo, and by Theorem 3.3, 7 (G) is precisely that circle, which
is also J((I +x)" —1).
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Since empty graphs have been analyzed completely in Remark 3, and, moreover,
are the only source of discrepancy for the connection between Z (G) and #(G)
described in Remark 2:

We will assume henceforth that G is a non-empty graph.

Now, as Julia sets are typically fractals, we are in essence associating a fractal
Z (@) with a graph G. The question arises as to the possible connections between the
two objects. How are graph—theoretic properties encoded in the fractals? What does
Z (@) say about G itself? In particular, in the sections which follow we will come
across independence fractals that are connected, and others that are disconnected.
We ask here:

Question 3.4.. For which graphs G is & (G) connected?

Remark 4. Even for the usual independence polynomials, Question 3.4 is the right
one to ask: When —1 has multiplicity at most 1 as a root of ig, then .#(G) and 7 (G)
are equal anyway [15]. Moreover, when i has —1 as a root of multiplicity at least 2,
then the nature of the resulting partition of .#(G) (described in Remark 2)
immediately implies that .#(G) is disconnected. What is more interesting is whether
its set of accumulation points (equivalently, the limiting set for the new independence
roots at each step), Z (G) = J(f¢), is connected.

We will prove momentarily that, in fact, every graph—with the exception of
complete graphs—is contained, as an induced subgraph, in a graph with the
same independence number, having a disconnected independence fractal.
The following result from iteration theory, which links the critical points
of a polynomial to the connectivity of its Julia set, will be useful. A totally
disconnected set is one whose components (maximal connected subsets) contain just
one point.

Theorem 3.5. (cf. Beardon [1]).Let f be a polynomial of degree at least two.

® Jts Julia set J(f) is connected if and only if the forward orbit of each of its critical
points is bounded in (C,| - |).

® [ts Julia set J(f) is totally disconnected if (but not only if) the forward orbit of each
of its critical points is unbounded in (C,|-|).

With Theorem 3.5 at hand, we prove:

Theorem 3.6. Every graph G with independence number at least two is an induced
subgraph of a graph H with the same independence number, whose independence fractal
is disconnected.

Proof. Since f;(x) has degree at least 2, a simple argument using the triangle
inequality shows that there exists a real number R>1 such that |z|>R=
IfG(2)| >2]|z|, which implies that the forward orbit of z is unbounded in (C, |- |).
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Now, not every critical point of f¢ is a root of f;. Indeed, for a root r of both f,
and fg, its multiplicity as a root of f is one greater than its multiplicity as a root of
f&- Butdegfe = degfl + 1, and so, if every critical point of f; were a root of f, then
in fact f; must have only one critical point ¢, and fg(x) = a(x + ¢)’. But we know
that x|fg(x), and so ¢ = 0 and f5(x) = ax?. This could only be the case if f =1,
which it is not.

Let ¢ then be a critical point of f; for which f;(¢) = w#0, and choose a positive
integer p large enough that |p-w|>R. For the graph G[K,], we have fsx,(x) =
J6(px), a critical point of which is ¢/p. But then fgx)(c/p) = f6(c) =w, and
lfG[Kp]Ok(W” = |f6°*(pw)| > o as k— oo. Hence, by Theorem 3.5, the graph G[K,)],
which has independence number f, and of which G is an induced subgraph, has a
disconnected independence fractal. [

We proved that G[K,] has a disconnected independence fractal for all
sufficiently large p. In fact, the same is also true of K,[G], for since fx, (x) = px,
we have:

Theorem 3.7. For a graph G and positive integer p,
Jx,16)(px) = p - f6(px) = p - faix,) (%)

That is,
Jx,16)°¢ = $f6ik,)

where ¢ is the Mobius map x+— px. Hence,
7 (K,[Gl) = p- 7(G[K,)).

The last line follows directly from Theorem 2.4 on Julia sets of conjugate
polynomials, and tells us that the independence fractal of K,[G] is a mere scaling
of that of G[K,]. Thus, the former set must also be disconnected for all sufficiently
large p, and so we have the following result, which at the very least suggests
that graph connectedness and connectedness of independence fractals are not
related.

Theorem 3.8. If G is a graph with independence number at least 2, then for all
sufficiently large p, the join of p copies of G has a disconnected independence fractal.

Graphs with independence number 1 are not very interesting, since fx, (x) = nx,
whose Julia set is just {0}. For graphs with independence number 2, we can exploit
the Mandelbrét set to decide when their independence fractals are connected; this is
the subject of Section 4. In Section 5, we will analyze two families of graphs with
arbitrarily high independence numbers.
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4. Graphs with independence number 2

For a graph G with independence number 2, having n vertices and m non-edges
(i.e., G has exactly m edges), its independence polynomial is

fo(x) = mx?* + nx. (7)

The Mandelbrot set . is the set of all complex numbers ¢ for which the Julia set of
the polynomial x? + ¢ is connected. For any other value of ¢, J(x?+ ¢) is not only
disconnected, but totally disconnected, as x>+ ¢ has only one critical point (cf.
Theorem 3.5). Julia sets of this type are often called fractal dust. A plot of the
Mandelbrét set (a subset of the complex c-plane) is shown in Fig. 4. A well-known
fact (cf. [10]) is that .# is contained in the disk |¢|<2.

Let us then consider a polynomial of the form x? + ¢ to which f5(x) is conjugate.
It is straightforward to check that

96 = dpofeedp™ Y,

where

ge) =2 +5- () )
and

B(x) = mx + g 9)

-2

Fig. 4. The Mandelbrét set.
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$°V (x) :%x—% (10)

and (from Theorem 2.4)
7(G) = "I + ),

where ¢ =5 — (g)2 Thus, .Z (G) is a mere scaling and shifting of J(x? + ¢), and since
¢ is independent of m, the connectivity of # (G) depends only on how many vertices
G has; the fact that G is non-empty implies that n>3. The location of % (G), though,
depends on both the numbers of vertices and edges in G, as Theorems 4.2—4.4 imply
the following:

Theorem 4.1. If G is a non-empty graph with independence number 2 having n vertices
and m non-edges, and ze 7 (G), then

(i) —2<Re (2)<0, and

iy
) Im (z) = 0, unless n = 3, in which case —ﬁsfm (z)<£.
2m 2m

4.1. Graphs for which f =2, n=3

There are exactly two graphs with independence number 2 on n=3
vertices, namely K;wK;, the disjoint union of a point and an edge, and Pj,
the path on three vertices. Their reduced independence polynomials are fx, vk, (X) =
2x2 +3x and fp,(x) = x> +3x; thus, Z (K wk;)=J(2x>+3x) and F(P3) =
J(x? + 3x).

For either graph G, Eq. (8) says that fg(x) is conjugate to the polynomial gg(x) =
x* =3 For G =K wk>, Eq.(10) tells us that ¢V (x) = lx — 3, while for G =
Py, ¢°V(x) = x — 3. Since 3 lies in the Mandelbrét set, J(x> — 3) is connected. By
Theorem 2.4, #(G) = ¢°"VJ(x?> —3), and since, for either graph G, ¢°V is a
mere scaling and shifting, % (G) must also be connected.

With a little work, we can determine a box containing J (x2 - 3) We prove in
appendix that J (x> — 3) is contained in the box [3,3] x [-¥2, 3] and that the box is
tight. Applying $°! to this box then gives a tight box containing # (G). We have
proved:

Theorem 4.2. If G is a graph with independence number 2 on n = 3 vertices, then

ro=s((#-3)
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where either

() G=K wkK, and QSO(_I)(x) = %x — %, or
(i) G = P; and ¢°"V(x) = x — 3.

Therefore, 7 (G) is connected, and

) 7(G = K wky) = J(2x* + 3x) [3,0] x [, 3], while
() 7(G = Py) = J(x* +3x) =[-3,0] x [, 2],

Plots of 7 (K| wK,) and # (P3) are shown in Figs. 5 and 6, respectively. That they
appear to have the same ‘shape’ agrees with the fact that each is just a scaling and
shifting of J(x? —3).

4.2. Graphs for which p =2, n=4

For a graph G with independence number 2 on n = 4 vertices (and m non-edges),
Eqgs. (8) and (9) tell us that f5(x) is conjugate to gg(x) = x*> — 2 via ¢(x) = mx + 2,
that is, gg = ¢pofgo9°~". Now J(x2 —2) is well known (cf. [9, p. 226]) to be the
interval [2,2]; applying the map ¢°"")(x) = Lx — 2 to this interval gives

m

Theorem 4.3. If G is a graph with independence number 2 having n = 4 vertices and m
non-edges, then

F(G) = [%4 0}.

o L 0.4

N,
N V-

(A

Fig. 5. The independence fractal, 7 (K, wK>).
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Fig. 6. The independence fractal, # (P3).

For example, the graph G = K4 — e has independence number =2, n =4
vertices and m = 1 non-edge. Then f5(x) = x?> + 4x and, from Theorem 4.3, 7 (G) =
[747 0] .

4.3. Graphs for which p =2, n=5

If G is a graph with independence number 2 on n>=5 vertices, then ¢ =
5— (§)2< — 2, which lies outside the Mandelbrét set. This implies that J(x* + ¢),

and hence 7 (G) = ¢°"V(J(x> +¢)), is fractal dust. Furthermore, it is known
([5, p. 126]) that for c< — 2, J(x* + ¢) is real and contained in the interval [—g, q],
where g = %—i— ‘1—‘— c. With ¢ =5 — (g)z, this simplifies to ¢ = 3. Applying $° to
the interval [—5,5] leaves [—Z 0]. We have proved:

Theorem 4.4. If G is a graph with independence number 2 having n=5 vertices and m
non-edges, then 7 (G) is a dusty subset of the interval [, 0].

Since 0 is a repelling fixed point of fg, it lies in J( f5). Furthermore, since f(—2) =
0eJ(fc), and J(fs) is completely invariant under f¢ (cf. Section 2), —Z also lies in
J(fc). Hence, the interval [—2 0] in Theorem 4.4 is sharp.

Theorem 4.4 applies to the graph K,wKj;, for example, which has
independence number f=2, n=5 vertices and m=6 non-edges.
Here, fG(x) = 6x> + 5x and .Z(G) is a totally disconnected subset of the interval
[_%7 0]
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5. The families ak; and k),

In this section, we make use of Theorem 3.7 to reveal the connection between the
independence fractals of two seemingly different families of graphs with arbitrarily
high independence numbers.

We consider first the graphs aKj, the disjoint union of a copies of Kj. The
independence fractals of 3K, and 4K, are shown in Figs. 7 and 8, respectively.

Note that aKj, = K,[Kj]; since fi-(x) = (1 + x)* — 1 and fk, (x) = bx, we have
Jak, () = fr-(bx) = (1 + bx)* — 1
and
Jag, (%) = ab(1 + bx)“ !,

whose only critical point is z= —1/b. By Theorem 3.5, #(G) will either be
connected or totally disconnected, depending on whether the forward orbit of
z = —1/b is bounded or unbounded, respectively, in (C, |- ).

Now, fux,(—1/b) = 0% — 1 = —1. As we are considering only non-empty graphs,
b=2.

Case 1: b =2, aeven. Then fuk, (x) = fuk,(x) = (1 +2x)“ — 1. Now fux,(—1/b) =
—1, fur,(=1) = (1 —=2)" =1 =0, and f;x,(0) = 0. Hence, the forward orbit of —1/b
converges to 0, and is therefore bounded in (C, |- |). Thus, # (aK) is connected.

’.
5 ooy 0.4
.
3" v
L0.2
't
1 08 06 04 0.2 “[o
o
L 0.2
. l.".
7.;
. o & l _0.4
Py

Fig. 7. The independence fractal, 7 (3K>).
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Fig. 8. The independence fractal, 7 (4K>).

Case 2: b>3, a even. Then fux,(—1/b) = —1, and fux,(—1) = (1 = b)* — 1=>2% —
1>1. And z>1 = fux,(2)> (1 +22)' — 1 = 2z>z+ 1. Hence, the forward orbit of
—1/b is unbounded in (C,|-|), and F (aK}) is totally disconnected.

Case 3: a=3 odd. Then fuk,(—1/b) = —1, and fuk,(—1)=(1-b)" —1<(1 —
2P —1=-2<—-1. And z<—-1=f(E)<(1+22) —1=2z=z4z<z—1.
Hence, the forward orbit of —1/b is unbounded in (C,|-|), and Z (aK}) is totally
disconnected.

Case 4: a = 1. Then aK;, = K}, whose independence fractal we know is {0}, and
thus totally disconnected.

We have proved:

Theorem 5.1. The independence fractal of aK,, is connected if b = 2 and a is even, and
totally disconnected otherwise.

As we did for graphs with independence number 2, we can find a region inside
which 7 (aK}) lies. It lies in the disk

+1 <1

B

and this is a direct consequence of Theorem 5.2.

Theorem 5.2. For G = aK;, and all k=1, every root Fy of fo+ satisfies |Fy, —|—%| <%.
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Proof. By induction on k. Since fg(x) = (1 +bx)*—1, every root Fy of fg(x)
satisfies (1 4+ bF))* = 1, which implies that |1 +bF|| =1 and thus |F; +}| =}; the
result is therefore true for k = 1.

Now suppose the result is true for a number k > 1. Since fr1 (x) = fo+ ( f6(x)), any
root Fi. of fgen (x) must satisfy f(Fyy1) = Fi for some root Fy of fix(x). This says
that (1 +ka+1)a —1=F, and so |1 +ka+1| = |1 +Fk|l/a and |Fk+1 +%| = %|1 +
Fk|1/ “. By assumption, |F; + %| <%. Applying the triangle inequality,

1l 1 1a
Fi+-| =14+ F;_
K + b’ b‘ + Fr1]

1 1 1
=3 (5 +5)+ (1-5)

1/a

1 ] 1N /¢
< | [Fr— — 1 ——
(SR
VAN
S h\b b
1
=)

and so the result holds for k& + 1 as well, completing the proof. [

The bounding disk |z +%|<% is best possible, since (as revealed in the proof of
Theorem 5.2) the roots of fy,, itself, lie on the boundary.

Consider next the family of complete multipartite graphs K., = Kq, a, ..., a,-

Here, again b>2 since we are considering only non-empty graphs. Since K, is
precisely the graph K;[K,], we have

fKu:h (x) :th[E] (X) =b.

e (x) =b(1+x)" —b.

Moreover, since K, = Ky[K,] and aK;, = K,[K»], Theorem 3.7 tells us that
F (Kup) = b. F(aKp). (11)

In particular, & (K,;) has the same ‘shape’ as its counterpart, % (aK;). Together
with Theorems 5.1 and 5.2, Eq. (11) implies:

Theorem 5.3. The independence fractal of K, is connected if b = 2 and a is even, and
totally disconnected otherwise. Further, 7 (K,y) lies in the disk |z + 1|<1, and this
bounding disk is best possible.
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6. Concluding remarks

The relationships between a graph and its independence fractal remains a
tantalizing question. Even the restricted question of when an independence fractal is
connected seems elusive. Certainly, it does not depend on the connectivity of the
graph. We have seen, for instance, that 4K, a disconnected graph, has a connected
independence fractal, while Theorem 3.8 guarantees the existence of many connected
graphs with disconnected independence fractals. In Section 4, we were able to
provide a complete answer for graphs with independence number 2, and it may be
possible to do something similar for graphs with independence number 3, though the
Mandelbrét set for cubics is contained in C x C [3.,4] and is not well understood.

Just how much about a graph can its independence fractal tell us? Theorem 3.7
tells us that G[K,] and K,[G] have analytically conjugate independence fractals.
Further, since for any polynomial /" and positive integer k, J(f) = J(f ok ) (Theorem
2.4), it follows that G* and G have identical independence fractals for any graph G.
These observations provide a partial answer to:

Question 6.1. When do two graphs G and H have analytically conjugate independence
fractals?

Finally, related to the problem of determining bounds for the roots of
independence polynomials [6,8] is that of bounding independence fractals in terms
of various graph parameters. Theorems 5.2 and 5.3 tell us that % (¢K}) and F (K,)
lie in the disks |z + }| <} and |z + 1| <1, respectively, while Theorem 4.1 implies that
for graphs with independence number 2 the independence fractals lie in |z + F4| <5~
It is not clear what a general result along these lines might be.

Appendix A. Proof of Theorem 2.3
We shall make use of three results in the literature.

Theorem A.1. (cf. Beardon [1, p. 71]). Let f be a rational map of degree at least two,
and E a compact subset of C., such that for all ze F(f), the sequence { f°*(z)} does
not accumulate at any point of E. Then for any open set U containing
J(f),[°TNE)S U for all sufficiently large k.

Theorem A.2. (cf. Beardon [1, p. 149]). Let f be a rational map of degree at least
two, W a domain that meets J, and K any compact set containing no exceptional points

of f. Then for all sufficiently large k,fOk(W) oK.

(A domain is an open connected set.)
Recall from Section 2.1 the definition of irrationally indifferent cycles. If z, lies on
an irrationally indifferent cycle of f with period k, and this cycle lies in the Fatou set
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F(f), then the component (i.e., maximal open connected subset) Fy of F(f)
containing z, is forward invariant under f °k and is called a Siegel disk. For any
point z#zg in Fy, the sequence { f**(z),/°®¥(z), ...} is dense on a curve—called, an
invariant circle—lying inside Fj.

In fact, a complete classification of the possibilities for periodic components of a
rational map is known; and every component C of a Fatou set F(f) is eventually
periodic under f, that is, for some j>k>0, f¥(C) :fOk(C). These very deep and
fascinating results were proved by Sullivan (cf. [1] for references and details), and an
immediate consequence of his work is:

Theorem A.3. If f is a polynomial, and zoe F(f), then the forward orbit O (z) =
{f*(z0)} either

(1) converges to a periodic cycle, or
(i) settles into a ‘periodic cycle’ of Siegel disks, becoming dense on an invariant circle
in each.

Unbounded forward orbits actually converge to the point at infinity with respect
to the spherical metric, o(. This situation is covered by (i) in Theorem A.3, since oo is
a fixed (and thus, periodic) point of any polynomial.

With these results at hand, we can prove Theorem 2.3.

Proof of Theorem 2.3. Let f and z; be as in the statement of the theorem, and ¢>0
given. Establishing the limit in the conclusion of the theorem is equivalent (cf. [1,
p. 35]) to proving that, for all sufficiently large k,

(@) f°P(z9)=J(f) + ¢, and
(i) J(f)=f R (z0) + 2,

where A +¢={z:00(z,a)<e¢ for some ae A}, the dilation of 4 by a ball of
radius e.

To prove (i), note first that if zgeJ(f) then f°% (z0)=J(f)=J(f) + ¢ for all k.
Assume, then, that zyp€ F(f). From Section 2.1, the periodic cycles in F( /) are either
attracting or irrationally indifferent, the latter lying in Siegel disks. Thus, since z, lies
in neither an attracting cycle nor a Siegel disk, Theorem A.3 implies that no point z
in F(f) will have a forward orbit that accumulates at zy. Hence, the set E = {z}
satisfies the hypothesis of Theorem A.1, and therefore /(¥ (zy) = J(f) + ¢ for all
sufficiently large k.

To prove (ii), we begin by choosing a positive number d <¢/2, and covering J( f)
with finitely many open balls of radius ¢ (such a covering exists since J(f) is
compact). The point zj is not exceptional, since exceptional points are necessarily
periodic points in F(f). For each ball W in the covering #°, Theorem A.2 implies
that for all sufficiently large k,f°® (W) >{z}, and hence £°™(zy) n W #0. Since
there are only finitely many such balls, we then have that, for all sufficiently large
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k, £°F)(z0) n W 0 for each ball W. Finally, since &> 20 it follows that for all such
k, 20 (z0) e W ().
This completes the proof. [

Appendix B. A tight box containing J(x* — 3)

2

We give a proof of the claim in Section 4 that the Julia set of g(x) = x> —3 is

contained in the box [—3,3] x [—@, g] This box is in fact best possible, as the points
+3 and "‘\/Tii all lie in J(g(x)): the point z =3 is a repelling fixed point of g, and
g°2(£ L) = g(—3) = 3eJ(g(x)). Since repelling fixed points of ¢ lie J(g(x)), and

J(g) is completely invariant (cf. Section 2), it follows that i\/g and —_P/Tgi all lie in
J(g(x)).
Lemma B.1. For g(x) = x> —3 and z = a+ bieC, if either |a|>3 or |b|>% then
l9(2)]>3-

Proof. We have

g(z):zz—%—(az—bz—%)—i—Zabi

and so
O A L U 1)
Now, if |b| >\/7§ then, from (A.1),
9(2)P = b* +2a°0* +307 —3a® + 2%
= (20 P’ +b* +367 4 7)

330249 43 .3,49
2.3 )a +5ta it

and hence |g(z
On the other hand, if |a| >3 then, from (A.1),

9@ > a3 45,

which also implies that |g(z)[>3. O

Next, we prove:
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Lemma B.2. For g(x) = x* =3, if zeC is such that |z| =3+ € for some €>0, then
l9(2)1 =3 + 3e.

Proof. We have

9(z)] =12 =3
> |z -3
>G+9" -3
=%+36+62
>%+3e

Together, Lemmas A.1 and A.2 imply:

Theorem B.3. For g(x) = x> — 3 and z€C, if either |%e (z)|>3 or |Im (z)]| >\/7§ then
19 (2)| > o0 as k— o0,

Proof. As z satisfies the hypothesis of Lemma A.1, we have |g(z)| =3 + ¢ for some
€>0. Applying Lemma A.2 to g(z), we have |g°*(z)| >3 + 3¢, and, by induction, we

find that |g”**'(z)|>3+ 3% for each k>1, and the conclusion of theorem
follows. [

Theorem B.3 implies that the Filled Julia set (and hence the Julia set) of g(x) =

x? — 3 lies in the box [—3,3] x [, 7],

Corollary B.4. The Julia set J(x* —3) is contained in the box

V3

z:|Re (Z)|<% and | Im (z)|<7
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