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Abstract

In his paper on well-quasi-ordering infinite trees (Proc. Cambridge Philos. Soc. 61 (1965)
697), Nash-Williams proposed the conjecture that the class of all graphs (finite or infinite) is
well-quasi-ordered by the immersion relation (which is denoted here by <). In addition, in a
subsequent paper, Nash-Williams discussed a weaker version of his original conjecture to the
effect that the class of graphs is well-quasi-ordered with respect to a relation <, which,
roughly speaking, is obtained by redefining H <G so that distinct vertices of H can be
mapped into the same vertex of G. It is the purpose of the present note to disprove Nash-
Williams’ two immersion conjectures.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

For graph theoretic terminology, we refer to the definitions and notational
conventions collected at the end of the introduction or to the textbook of Diestel [1].
The graphs considered in this note do not contain loops or multiple edges. For
graphs G, H, we write H<G if G contains a subgraph which is isomorphic to a
subdivision of H. A classical result in infinite graph theory states that the class of
trees is well-quasi-ordered by the subdivision relation <:

Theorem A (Nash-Williams [2]). If Ty, T, ... is an infinite sequence of trees, then
there exist positive integers i,j such that i<j and T;<T;.

The following well-known conjecture of E. Vazsonyi apparently dates back to the
1930s. For finite graphs, the truth of the conjecture is an immediate consequence of
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the graph minor theorem of Robertson and Seymour [4]; cf. also [1]. In the general
case, however, the conjecture remains far from proved to this day, although partial
results on the infinite case can be obtained as consequences of results of Thomas [6].

Conjecture (Vazsonyi). If Gy, G, ... is an infinite sequence of graphs in which every
vertex has degree <3, then there exist positive integers i,j such that i<j and G;<G;.

Theorem A and Vazsonyi’s conjecture deal with restricted classes of graphs,
namely, trees and graphs with maximum degree at most 3, respectively. This
prompted Nash-Williams [2] to suggest another conjecture for the class of all graphs
which, if true, would have both Theorem A and Vazsonyi’s conjecture as corollaries.
For a graph G, let 2(G) denote the set of nontrivial paths of G. For graphs G, H, an
immersion ¢ : H— G is a mapping ¢ : V(H)VE(H)—- V(G)uZ2(G) such that

(i) if ve V(H), then @(v)e V(G);
(i) if v, e V(H),v#0, then @(v)#@(V');
(iii) if e = vv' e E(H), then ¢(e)e Z(G) and the path ¢(e) connects ¢(v) with ¢(v');
(iv) if e,¢' € E(H) are distinct, then ¢(e) and ¢(€') are edge-disjoint and
(v) if e = v/ € E(H) and v"'e V(H), then p(e")¢ V(g(e))\{p(v), o(+)}.

Writing H<;G to indicate that there exists an immersion ¢ :H — G, Nash-
Williams’ conjecture reads as follows.

Conjecture A (Nash-Williams [2]). If Gy, Ga, ... is an infinite sequence of graphs, then
there exist positive integers i,j such that i<j and G;<,G;.

In his paper [3], Nash-Williams subsequently presented a weaker version of
Conjecture A which is still strong enough to imply Theorem A and Vazsonyi’s
conjecture. Let (G) denote the set of cycles of a graph G. For graphs G, H, an
immersion o:H->G in the weak sense is a mapping
¢o:V(H)VE(H)-V(G)u2(G)u%(G) such that (i), (ii'), (iii), (iv), (v) hold, where
(i), (iv) and (v) are as above and the statements (ii'), (iii’) are as follows.

(i) if e=vv' e E(H) and ¢(v) # ('), then ¢(e) € #(G) and the path ¢(e) connects
¢(v) with @(v') and
(iii') if e=wv' e E(H) and ¢(v) = @(v), then ¢(e)e¥(G) and ¢(v) is a vertex on
cycle ¢(e).
Writing H<,G if there exists an immersion ¢: H— G in the weak sense, the
modified version of Conjecture A reads as follows.

Conjecture B (Nash-Williams [3]). If Gy, G, ... is an infinite sequence of graphs, then
there exist positive integers i,j such that i<j and G;<,G;.

In [4], Robertson and Seymour announced a proof of Conjecture A for the case of
finite graphs G, Gy, ... (which, of course, implies the truth of Conjecture B for finite
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graphs). It is the purpose of the present paper to show that, in the general case of
arbitrary graphs, counterexamples to Conjectures A and B exist. The question
whether or not the conjectures hold for countable graphs remains open. (Actually,
the paper also leaves open the question whether Nash-Williams’ conjectures hold for
graphs of cardinality less than the first limit cardinal greater than the cardinality of
the continuum.)

The paper is organized as follows. In Section 2, we establish a result which, to
some extent, clarifies the relationship between the immersion relations <; and <j:
we show that for each family of graphs G; (iel) there exists a family of graphs
H; (iel) such that, for all i,jel, G;<Gj if and only if H;<,H; (Theorem 1). In
particular this means that, in order to disprove Conjecture B, it is enough to find a
counterexample to Conjecture A. In Section 3, we modify some of the ideas of
Thomas [5] in order to make them compatible with the immersion relation <;. This,
when taken together with Theorem 1 of the present note, implies Theorem 2, which
states that there exists a sequence Hp, Hj,... of uncountable graphs such that
H; <, H; for all i,j with i <j. Theorem 3 is a sharpened version of Theorem 2 showing
that the sequence H;, H», ... can be modified to obtain an antichain H|, Hj, ..., that
is, H; &, H; holds for all i,j with i#/.

Our terminology is standard. For graph theoretic terms not defined here, we refer
to Diestel [1]. The vertex set and edge set of a graph G are denoted by V(G) and
E(G), respectively. If e is an edge joining vertices v, w, then e is denoted by vw. For
ve V(G), the degree of vin G is denoted by dg(v). An edge is said to be pendant if one
of its ends has degree one. A family of graphs G; (iel) is edge-disjoint if
E(G;)nE(G;) =0 for all i,jel with i#j. A path is a graph P consisting of n+ 1
distinct vertices ay, ...,a, (n=0) and edges @;a;1 (i=0,...,n—1). For paths, we
use notations like P = (ay, ..., a,). A path is trivial if it consists of just one vertex.
For a path P = (ay, ...,a,), the vertices ay, a, are called endvertices of P. A path P is
an x, y-path (or likewise P is said to connect x with y) if x and y are its endvertices. In
order to stress the difference of the above defined notions of an ‘immersion’ and an
‘immersion in the weak sense’, the former will also be referred to as an immersion in
the strong sense.

A binary relation < on a set Q is a quasi-order if it is reflexive and transitive. We
say that Q is well-quasi-ordered by < if the relation < is a quasi-order on Q and if
for each infinite sequence ¢, ¢, ... of elements of Q there exist positive integers i, j
such that i<j and ¢; < ¢;. Given a quasi-order < on Q, a family ¢; (i) of elements
of Q is called an antichain (with respect to <) if ¢;A¢; for all i,je I with i#j.

The set {0,1,...} of natural numbers is denoted w. The symbol ¢ denotes the
cardinality of the continuum. Cardinals are identified with their initial ordinals.

2. A result linking the two versions of the immersion relation

In this section, we establish a result (Theorem 1) on the relations <; and <,
which in particular shows that, in order to disprove Conjecture B, it is enough to find
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a counterexample to Conjecture A. Most likely, Theorem 1 can also be applied in
other situations to reduce a problem for <, to the analogous problem for <;.

Theorem 1. For each family of graphs G; (iel) there exists a family of graphs
H; (iel) such that, for all i,j, €l,G;<G; if and only if H;<,H;. In particular,
G; (i€l) is an antichain with respect to <, if and only if H; (i€l) is an antichain with
respect to <,.

Proof. Let G; (iel) be a family of graphs. We may assume that G, G; = 0 for all
i,jel,i#j. Let u,a, B,y be cardinals such that

o<u<a<fi<y and dg(v)<p for all iel and ve V(G;). (1)

For the purpose of defining the graphs H;, we introduce a graph F as follows. Let
V(F) be the union of disjoint sets Xy, X7, ..., X5 where X, consists of three elements
a,b,c and X, ..., X5 are infinite sets with |X;| = u, | X2| = | X3| = o, | X4| = B, |X5| =
y. Let further £: X, — X3 be a bijection and define the edge set of F' by

E(F)={ax:xeXjuX,uXz}u{bx:xe X uXsu{c}}
U{ex:xeXstu{xx' :xe Xy, x' = &(x)}.
The graph F is displayed in Fig. 1. In particular, observe that in F there are

® . edge-disjoint paths of length two connecting a with b;
® ¢ edge-disjoint triangles attached at a;

® [ pendant edges attached at b and

® 1y pendant edges attached at c.

Let ¥V =J V(G;), where the union is taken over all iel. For each ve V| let F, be a
copy of F such that F,n F,, = () whenever v#w and such that F, n G = O forallve V
and jel. For each ve V, let f,: F > F, be an isomorphism and put a, = f,(a),b, =
fo(b), ¢, =fy(c). For each iel, let H; be the graph that results from G; and the
graphs F,(ve V(G;)) by identifying each vertex ve G; with vertex a, € F,.

Since the so-defined graphs H; are disjoint, we may write d(x) rather than dp,(x)
to denote the degree of a vertex x in H;. For each iel, we put 4; = V(G;)(=

e

Fig. 1. The graph F occurring in the proof of Theorem 1.



134 T. Andreae | Journal of Combinatorial Theory, Series B 87 (2003) 130-137

{a,:veV(G;)}), Bi = {b,:veV(G;)}, and C; = {c,:ve V(G;)}. Further, we write
x~y to indicate that x and y are vertices of the same graph F,.

Clearly, if G;<1G; then H;<H; and thus H;<,H;. For the proof of the converse,
let i,jel and assume that /s:H;— H; is an immersion in the weak sense. Let
g : G;— Hj denote the restriction of / to G;. Clearly, Theorem 1 is proved if we show
that

g is an immersion G;— Gj in the strong sense. (2)

For the proof of (2), first observe that
h(c)eC; for all ceC;. (3)

Indeed, as a consequence of the construction of the graphs H; and H;, together with
assumption (1), one obtains d(c) = y>d(v) for all ce C; and all ve V(H;)\C;. Hence
(3). For similar reasons, we have h(b)eB;juC; for all heB;. However, for
be B;, h(b)eC; is impossible since there is no cycle of H; passing through a vertex
of C;, while each vertex of B; is on a cycle of H;. Hence

h(b)eB; for all beB;. (4)
Now, let ae A;. Note that there are o edge-disjoint cycles passing through « and,

consequently, the same must be true for A(a). From this, together with the fact that
o>, one concludes that i1(a)e A4;, and thus we have found that

h(a)eA; for all aeA4;. (5)
We next show that the following holds.
Let ae A;, ce C; with a~c. Then h(a)~h(c). (6)

For the proof, consider be B; with a~b~ c. We first show /(a) ~h(b). Suppose that
h(a) ~h(b) does not hold. Note that there exists a family (P,), ., of u edge-disjoint
paths of H; connecting /(a) with h(b) since there are u such paths of H; connecting a
with b. For each v<p, let e, be the edge of P, which is incident with i(a). From the
supposition that /(a) ~h(b) does not hold, together with (5), it follows that all edges
e, are in G; and thus we have dg,(h(a)) > p, which contradicts (1). Hence /(a) ~h(b).
Thus in order to obtain (6) it remains to show /(h) ~h(c). Suppose that this does not
hold. Then one concludes from (4) and (5), together with A(a) ~h(b), that the path
h(bc) contains h(a) as an inner vertex, which is impossible. Hence h(b) ~ h(c).
We claim that

h(c)#h(d) for all ¢, eC;, c#(. (7)

Suppose A(c) = h(c") for distinct ¢, ¢’ e C;. By (3), we have h(c) € C;. Denote by D the
component of H; — h(c) containing the vertices of Bj; let e be the unique edge
connecting i(c¢) with D. Let b, b’ € B; with b~ ¢, b’ ~ . By (4) we have h(b),h(b')e D
and thus we conclude from /(c) = (') that e is an edge of both A(ch) and h(c'd’),
which is impossible. Hence (7).

As a consequence of (3), (5)+(7) one obtains

h(a)#h(d) for all a,d' € A;, a#d'. (8)
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By (8), g is an immersion G;— H; in the strong sense. Further, by (5), g maps the
vertices of G; onto vertices of G;. Moreover, note that it follows from the
construction of H; that a path of H; is completely contained in G; if its endvertices
are in G;. Hence (2). O

3. Counterexamples to Conjectures A and B

In this section, based on ideas of [5], we construct a counterexample to Conjecture
A. The existence of a counterexample to Conjecture B then follows from Theorem 1.
For an ordinal o,2* denotes the set of mappings x:0—{0,1}. We put 2<% =

Up<, 2P If xe2* and f<a, then x| fe2/ denotes the restriction of x to f. For
xp€2” and new, we put

Uy(x0) = {x€2”: x| n=xo| n}.

The set 2? is considered as a topological space endowed with the product topology,
i.e. the topology whose basic open sets are the U,(x).

Let o, %1, ... be cardinals with ¢<xo <k <--- . For each xe2” and new, let 4,
be a set of cardinality &, such that A4y, N2<0tl = ¢ and AcnnAym = @ whenever
(x,n)# (y,m). For each X =2°, we define a graph Gy by

V(Gy) ={x|o:xeX,aew+ 1} U U Ayp,

xeX
new

E(Gy) = U {av:aeA,,,ve{x,x| n}}.

xeX
new

For X<=2® and veV(Gy), we denote by dy(v) the degree of v in Gy. As a
consequence of the definitions, one obtains dy(v) = sup{k;:iew} if veX,dy(v) =
| Uy(x)nX|-ky=x, if v=x]n for xeX and new, and dy(v) =2, otherwise.
Hence, for X, Y =2 we have

dy(x)>dy(v) for all xeX and veV(Gy)\Y. 9)

Lemma 1. For X =2%, let x, xq be distinct elements of X. Let further ne w. Then there
exists a system of k, edge-disjoint x, xo-paths of Gy if and only if xe U,(xo).

Proof. Assume xe U,(xo). Then xo [ n =x [ n. Let f : Ay, , — A, be a bijection. For
each ae Ay, ,, we define a path P, of length four by putting P, = (xo,a,x0 | n =
x | n,f(a),x). Then these paths form a system of x, edge-disjoint x, xp-paths of Gy.
For a proof of the ‘only if* direction, assume that x¢ U,(xp). Let P be an x, xo-path
of Gy. From the definition of Gy, together with the fact that x¢ U, (x), one readily
obtains that P must contain a subpath P’ = (y,a,v,b,z) with yeX\U,(xo),
zeUy(xp), v=ym=zm, acA,,, beA., for some mew. Because y¢ U,(xo)
and ze U,(x), we have y [ n#z | n. Hence m<n and thus we have proved that each
x, xo-path P of Gy must pass through a vertex v with v = y | m for some ye X and
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m<n. Note that there are only finitely many vertices of this kind and each such
vertex has degree at most x,_;. Thus there cannot exist x, edge-disjoint x, xo-paths of
Gy. O

Lemma 2. For X, Y <2 let g: Gy — Gy be an immersion in the strong sense and
denote by ¢ the restriction of g to X. Then ¢ is a continuous injective function X — Y.

Proof. By (9), we have ¢(X)< Y. Clearly ¢ is injective and thus it remains to show
that ¢ is continuous. For this purpose, let xoe X. For some n € w, consider the basic
open neighborhood U,(¢(x9)). We have to show that there exists a natural number
a, such that

?(Ua, (x0) 0 X) < Un(0(x0))- (10)

We show that this is true for a, =n. Let xeU,(xo)nX. If x=xy, then
@(x) e Uy(pxop)) clearly holds. Hence let x#x(. By Lemma 1, xy and x are joined
by k, edge-disjoint paths of Gy, and thus the same must hold for ¢(x¢) and ¢(x) in
Gy. Consequently, again by Lemma 1, ¢(x)e U,(o(x¢)). Hence (10). O

By a result of Thomas [5, Theorem 2] there exists a sequence X, X, ... of subsets
of 2¢ (each of cardinality ¢) such that for all i,j with i< there is no continuous
injective function X;— X;. By combining this with Theorem 1 and Lemma 2 of the
present paper, we obtain the following result.

Theorem 2. There exists a sequence Hi,H,, ... of uncountable graphs such that
H; <, H; for all positive integers i,j with i<j.

Proof. Let X, X>,... be as given above. Put G; = Gy, (i=1,2,...). Then, by
Lemma 2, we have G;<G; for all i,j with i<j and thus Theorem 2 follows by
application of Theorem 1. (It immediately follows from the proof of Theorem 1 that
the resulting graphs Hy, H, ... are uncountable.) [J

4. Antichains
The following is a sharpened version of Theorem 2.

Theorem 3. There exists a sequence Hi, Hj, ... of uncountable graphs such that
H{ <&, H; for all positive integers i,j with i].

Proof. Let G; (i =1,2,...) be as in the proof of Theorem 2. Then G; <, G; for all i,j
with i<j. Note that a graph Gy (as defined in Section 3) is infinite and connected if
X is non-empty. Consequently, the G; are infinite connected graphs. Let 1, </4,... be
cardinals with 4, > | V(G;)| (i=1,2,...). For i=1,2, ..., let G result from G; by
adding /; new vertices of degree 0. Then |V(G))|<|V(G))] for all j,i with j<i, and
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thus G{ <G} is impossible if j<i. On the other hand, G;<G; is also impossible if
i<j since this clearly would imply G;<G;. Hence Gi< G for all i,j with i#].
Theorem 3 then follows from Theorem 1. (By the proof of Theorem 1, the resulting
graphs H{, Hj, ... are uncountable.) O

Note that the above proof of Theorem 3 yields disconnected graphs H{, H, ... . In
order to obtain connected graphs showing the same, one can proceed as in the proof
of Theorem 3 with just one slight modification when defining G}: just pick one of the
Zi new vertices and join it by edges to all other vertices of Gi. Let a;€ V(G!) be this
vertex which now has degree 4; (i = 1,2, ...). Then any immersion G;-»ij (in the
strong sense) would map a; to a; (because of their degrees), and hence G; to G;. But
the former is impossible for i >, while the latter is impossible for i <j. Application of
Theorem 1 then yields the desired connected graphs H{, Hj, ... . (Note that, by the
proof of Theorem 1, the connectedness of the graphs H! is an immediate
consequence of the connectedness of the graphs G}.)
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