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Abstract

In his paper on well-quasi-ordering infinite trees (Proc. Cambridge Philos. Soc. 61 (1965)

697), Nash-Williams proposed the conjecture that the class of all graphs (finite or infinite) is

well-quasi-ordered by the immersion relation (which is denoted here by p1). In addition, in a

subsequent paper, Nash-Williams discussed a weaker version of his original conjecture to the

effect that the class of graphs is well-quasi-ordered with respect to a relation p2 which,

roughly speaking, is obtained by redefining Hp1G so that distinct vertices of H can be

mapped into the same vertex of G: It is the purpose of the present note to disprove Nash-

Williams’ two immersion conjectures.
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1. Introduction

For graph theoretic terminology, we refer to the definitions and notational
conventions collected at the end of the introduction or to the textbook of Diestel [1].
The graphs considered in this note do not contain loops or multiple edges. For
graphs G;H; we write HpG if G contains a subgraph which is isomorphic to a
subdivision of H: A classical result in infinite graph theory states that the class of
trees is well-quasi-ordered by the subdivision relation p:

Theorem A (Nash-Williams [2]). If T1;T2;y is an infinite sequence of trees, then

there exist positive integers i; j such that ioj and TipTj :

The following well-known conjecture of E. Vázsonyi apparently dates back to the
1930s. For finite graphs, the truth of the conjecture is an immediate consequence of
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the graph minor theorem of Robertson and Seymour [4]; cf. also [1]. In the general
case, however, the conjecture remains far from proved to this day, although partial
results on the infinite case can be obtained as consequences of results of Thomas [6].

Conjecture (Vázsonyi). If G1;G2;y is an infinite sequence of graphs in which every

vertex has degree p3; then there exist positive integers i; j such that ioj and GipGj :

Theorem A and Vázsonyi’s conjecture deal with restricted classes of graphs,
namely, trees and graphs with maximum degree at most 3, respectively. This
prompted Nash-Williams [2] to suggest another conjecture for the class of all graphs
which, if true, would have both Theorem A and Vázsonyi’s conjecture as corollaries.
For a graph G; let PðGÞ denote the set of nontrivial paths of G: For graphs G;H; an
immersion j : H-G is a mapping j : VðHÞ,EðHÞ-VðGÞ,PðGÞ such that

(i) if vAVðHÞ; then jðvÞAVðGÞ;
(ii) if v; v0AVðHÞ; vav0; then jðvÞajðv0Þ;
(iii) if e ¼ vv0AEðHÞ; then jðeÞAPðGÞ and the path jðeÞ connects jðvÞ with jðv0Þ;
(iv) if e; e0AEðHÞ are distinct, then jðeÞ and jðe0Þ are edge-disjoint and
(v) if e ¼ vv0AEðHÞ and v00AVðHÞ; then jðv00ÞeVðjðeÞÞ\fjðvÞ;jðv0Þg:

Writing Hp1G to indicate that there exists an immersion j : H-G; Nash-
Williams’ conjecture reads as follows.

Conjecture A (Nash-Williams [2]). If G1;G2;y is an infinite sequence of graphs, then

there exist positive integers i; j such that ioj and Gip1Gj:

In his paper [3], Nash-Williams subsequently presented a weaker version of
Conjecture A which is still strong enough to imply Theorem A and Vázsonyi’s
conjecture. Let CðGÞ denote the set of cycles of a graph G: For graphs G;H; an
immersion j : H-G in the weak sense is a mapping

j : VðHÞ,EðHÞ-VðGÞ,PðGÞ,CðGÞ such that (i), ðii0Þ; ðiii0Þ; (iv), (v) hold, where

(i), (iv) and (v) are as above and the statements ðii0Þ; ðiii0Þ are as follows.

(ii0) if e ¼ vv0AEðHÞ and jðvÞajðv0Þ; then jðeÞAPðGÞ and the path jðeÞ connects
jðvÞ with jðv0Þ and

(iii0) if e ¼ vv0AEðHÞ and jðvÞ ¼ jðv0Þ; then jðeÞACðGÞ and jðvÞ is a vertex on
cycle jðeÞ:

Writing Hp2G if there exists an immersion j : H-G in the weak sense, the
modified version of Conjecture A reads as follows.

Conjecture B (Nash-Williams [3]). If G1;G2;y is an infinite sequence of graphs, then

there exist positive integers i; j such that ioj and Gip2Gj:

In [4], Robertson and Seymour announced a proof of Conjecture A for the case of
finite graphs G1;G2;y (which, of course, implies the truth of Conjecture B for finite
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graphs). It is the purpose of the present paper to show that, in the general case of
arbitrary graphs, counterexamples to Conjectures A and B exist. The question
whether or not the conjectures hold for countable graphs remains open. (Actually,
the paper also leaves open the question whether Nash-Williams’ conjectures hold for
graphs of cardinality less than the first limit cardinal greater than the cardinality of
the continuum.)

The paper is organized as follows. In Section 2, we establish a result which, to
some extent, clarifies the relationship between the immersion relations p1 and p2:
we show that for each family of graphs Gi ðiAIÞ there exists a family of graphs
Hi ðiAIÞ such that, for all i; jAI ;Gip1Gj if and only if Hip2Hj (Theorem 1). In

particular this means that, in order to disprove Conjecture B, it is enough to find a
counterexample to Conjecture A. In Section 3, we modify some of the ideas of
Thomas [5] in order to make them compatible with the immersion relation p1: This,
when taken together with Theorem 1 of the present note, implies Theorem 2, which
states that there exists a sequence H1;H2;y of uncountable graphs such that
Hi4/ 2Hj for all i; j with ioj: Theorem 3 is a sharpened version of Theorem 2 showing

that the sequence H1;H2;y can be modified to obtain an antichain H 0
1;H 0

2;y; that
is, H 0

i4/ 2H 0
j holds for all i; j with iaj:

Our terminology is standard. For graph theoretic terms not defined here, we refer
to Diestel [1]. The vertex set and edge set of a graph G are denoted by VðGÞ and
EðGÞ; respectively. If e is an edge joining vertices v;w; then e is denoted by vw: For
vAVðGÞ; the degree of v in G is denoted by dGðvÞ: An edge is said to be pendant if one
of its ends has degree one. A family of graphs Gi ðiAIÞ is edge-disjoint if

EðGiÞ-EðGjÞ ¼ | for all i; jAI with iaj: A path is a graph P consisting of n þ 1

distinct vertices a0;y; an ðnX0Þ and edges aiaiþ1 ði ¼ 0;y; n � 1Þ: For paths, we
use notations like P ¼ ða0;y; anÞ: A path is trivial if it consists of just one vertex.
For a path P ¼ ða0;y; anÞ; the vertices a0; an are called endvertices of P: A path P is
an x; y-path (or likewise P is said to connect x with y) if x and y are its endvertices. In
order to stress the difference of the above defined notions of an ‘immersion’ and an
‘immersion in the weak sense’, the former will also be referred to as an immersion in

the strong sense.
A binary relation % on a set Q is a quasi-order if it is reflexive and transitive. We

say that Q is well-quasi-ordered by % if the relation % is a quasi-order on Q and if
for each infinite sequence q1; q2;y of elements of Q there exist positive integers i; j

such that ioj and qi%qj: Given a quasi-order % on Q; a family qi ðiAIÞ of elements

of Q is called an antichain (with respect to %) if qiIqj for all i; jAI with iaj:

The set f0; 1;yg of natural numbers is denoted o: The symbol c denotes the
cardinality of the continuum. Cardinals are identified with their initial ordinals.

2. A result linking the two versions of the immersion relation

In this section, we establish a result (Theorem 1) on the relations p1 and p2

which in particular shows that, in order to disprove Conjecture B, it is enough to find
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a counterexample to Conjecture A. Most likely, Theorem 1 can also be applied in
other situations to reduce a problem for p2 to the analogous problem for p1:

Theorem 1. For each family of graphs Gi ðiAIÞ there exists a family of graphs

Hi ðiAIÞ such that, for all i; j;AI ;Gip1Gj if and only if Hip2Hj : In particular,

Gi ðiAIÞ is an antichain with respect to p1 if and only if Hi ðiAIÞ is an antichain with

respect to p2:

Proof. Let Gi ðiAIÞ be a family of graphs. We may assume that Gi-Gj ¼ | for all

i; jAI ; iaj: Let m; a; b; g be cardinals such that

opmoaobog and dGi
ðvÞom for all iAI and vAVðGiÞ: ð1Þ

For the purpose of defining the graphs Hi; we introduce a graph F as follows. Let
VðFÞ be the union of disjoint sets X0;X1;y;X5 where X0 consists of three elements
a; b; c and X1;y;X5 are infinite sets with jX1j ¼ m; jX2j ¼ jX3j ¼ a; jX4j ¼ b; jX5j ¼
g: Let further x : X2-X3 be a bijection and define the edge set of F by

EðFÞ ¼ fax : xAX1,X2,X3g,fbx : xAX1,X4,fcgg

,fcx : xAX5g,fxx0 : xAX2; x0 ¼ xðxÞg:

The graph F is displayed in Fig. 1. In particular, observe that in F there are

* m edge-disjoint paths of length two connecting a with b;
* a edge-disjoint triangles attached at a;
* b pendant edges attached at b and
* g pendant edges attached at c:

Let V ¼
S

VðGiÞ; where the union is taken over all iAI : For each vAV ; let Fv be a

copy of F such that Fv-Fw ¼ | whenever vaw and such that Fv-Gj ¼ | for all vAV

and jAI : For each vAV ; let fv : F-Fv be an isomorphism and put av :¼ fvðaÞ; bv :¼
fvðbÞ; cv :¼ fvðcÞ: For each iAI ; let Hi be the graph that results from Gi and the
graphs FvðvAVðGiÞÞ by identifying each vertex vAGi with vertex avAFv:

Since the so-defined graphs Hi are disjoint, we may write dðxÞ rather than dHi
ðxÞ

to denote the degree of a vertex x in Hi: For each iAI ; we put Ai :¼ VðGiÞð¼

Fig. 1. The graph F occurring in the proof of Theorem 1.
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fav : vAVðGiÞgÞ; Bi :¼ fbv : vAVðGiÞg; and Ci :¼ fcv : vAVðGiÞg: Further, we write
xBy to indicate that x and y are vertices of the same graph Fv:

Clearly, if Gip1Gj then Hip1Hj and thus Hip2Hj: For the proof of the converse,

let i; jAI and assume that h : Hi-Hj is an immersion in the weak sense. Let

g : Gi-Hj denote the restriction of h to Gi: Clearly, Theorem 1 is proved if we show

that

g is an immersion Gi-Gj in the strong sense: ð2Þ
For the proof of (2), first observe that

hðcÞACj for all cACi: ð3Þ
Indeed, as a consequence of the construction of the graphs Hi and Hj ; together with

assumption (1), one obtains dðcÞ ¼ g4dðvÞ for all cACi and all vAVðHjÞ\Cj: Hence

(3). For similar reasons, we have hðbÞABj,Cj for all bABi: However, for

bABi; hðbÞACj is impossible since there is no cycle of Hj passing through a vertex

of Cj; while each vertex of Bi is on a cycle of Hi: Hence

hðbÞABj for all bABi: ð4Þ
Now, let aAAi: Note that there are a edge-disjoint cycles passing through a and,
consequently, the same must be true for hðaÞ: From this, together with the fact that
a4m; one concludes that hðaÞAAj ; and thus we have found that

hðaÞAAj for all aAAi: ð5Þ
We next show that the following holds.

Let aAAi; cACi with aBc: Then hðaÞBhðcÞ: ð6Þ
For the proof, consider bABi with aBbBc: We first show hðaÞBhðbÞ: Suppose that
hðaÞBhðbÞ does not hold. Note that there exists a family ðPnÞnom of m edge-disjoint

paths of Hj connecting hðaÞ with hðbÞ since there are m such paths of Hi connecting a

with b: For each nom; let en be the edge of Pn which is incident with hðaÞ: From the
supposition that hðaÞBhðbÞ does not hold, together with (5), it follows that all edges
en are in Gj and thus we have dGj

ðhðaÞÞXm; which contradicts (1). Hence hðaÞBhðbÞ:
Thus in order to obtain (6) it remains to show hðbÞBhðcÞ: Suppose that this does not
hold. Then one concludes from (4) and (5), together with hðaÞBhðbÞ; that the path
hðbcÞ contains hðaÞ as an inner vertex, which is impossible. Hence hðbÞBhðcÞ:

We claim that

hðcÞahðc0Þ for all c; c0ACi; cac0: ð7Þ
Suppose hðcÞ ¼ hðc0Þ for distinct c; c0ACi: By (3), we have hðcÞACj: Denote by D the

component of Hj � hðcÞ containing the vertices of Bj; let e be the unique edge

connecting hðcÞ with D: Let b; b0ABi with bBc; b0Bc0: By (4) we have hðbÞ; hðb0ÞAD

and thus we conclude from hðcÞ ¼ hðc0Þ that e is an edge of both hðcbÞ and hðc0b0Þ;
which is impossible. Hence (7).

As a consequence of (3), (5)–(7) one obtains

hðaÞahða0Þ for all a; a0AAi; aaa0: ð8Þ
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By (8), g is an immersion Gi-Hj in the strong sense. Further, by (5), g maps the

vertices of Gj onto vertices of Gj: Moreover, note that it follows from the

construction of Hj that a path of Hj is completely contained in Gj if its endvertices

are in Gj : Hence (2). &

3. Counterexamples to Conjectures A and B

In this section, based on ideas of [5], we construct a counterexample to Conjecture
A. The existence of a counterexample to Conjecture B then follows from Theorem 1.

For an ordinal a; 2a denotes the set of mappings x : a-f0; 1g: We put 2oa ¼
S

boa 2
b: If xA2a and bpa; then x p bA2b denotes the restriction of x to b: For

x0A2o and nAo; we put

Unðx0Þ ¼ fxA2o : x p n ¼ x0 p ng:
The set 2o is considered as a topological space endowed with the product topology,
i.e. the topology whose basic open sets are the UnðxÞ:

Let k0; k1;y be cardinals with cpk0ok1o? . For each xA2o and nAo; let Ax;n

be a set of cardinality kn such that Ax;n-2ooþ1 ¼ | and Ax;n-Ay;m ¼ | whenever

ðx; nÞaðy;mÞ: For each XD2o; we define a graph GX by

VðGX Þ :¼ fx p a : xAX ; aAoþ 1g,
[

xAX
nAo

Ax;n;

EðGX Þ :¼
[

xAX
nAo

fav : aAAx;n; vAfx; x p ngg:

For XD2o and vAVðGX Þ; we denote by dX ðvÞ the degree of v in GX : As a
consequence of the definitions, one obtains dX ðvÞ ¼ supfki: iAog if vAX ; dX ðvÞ ¼
j UnðxÞ-X j 
 kn ¼ kn if v ¼ x p n for xAX and nAo; and dX ðvÞ ¼ 2; otherwise.
Hence, for X ;YD2o; we have

dX ðxÞ4dY ðvÞ for all xAX and vAVðGY Þ\Y : ð9Þ

Lemma 1. For XD2o; let x; x0 be distinct elements of X : Let further nAo: Then there

exists a system of kn edge-disjoint x; x0-paths of GX if and only if xAUnðx0Þ:

Proof. Assume xAUnðx0Þ: Then x0 p n ¼ x p n: Let f : Ax0;n-Ax;n be a bijection. For

each aAAx0;n; we define a path Pa of length four by putting Pa ¼ ðx0; a; x0 p n ¼
x p n; f ðaÞ; xÞ: Then these paths form a system of kn edge-disjoint x; x0-paths of GX :
For a proof of the ‘only if’ direction, assume that xeUnðx0Þ: Let P be an x; x0-path
of GX : From the definition of GX ; together with the fact that xeUnðx0Þ; one readily
obtains that P must contain a subpath P0 ¼ ðy; a; v; b; zÞ with yAX \Unðx0Þ;
zAUnðx0Þ; v ¼ y p m ¼ z p m; aAAy;m; bAAz;m for some mAo: Because yeUnðx0Þ
and zAUnðx0Þ; we have y p naz p n: Hence mon and thus we have proved that each
x; x0-path P of GX must pass through a vertex v with v ¼ y p m for some yAX and
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mon: Note that there are only finitely many vertices of this kind and each such
vertex has degree at most kn�1: Thus there cannot exist kn edge-disjoint x; x0-paths of
GX : &

Lemma 2. For X ;YD2o; let g : GX-GY be an immersion in the strong sense and

denote by j the restriction of g to X : Then j is a continuous injective function X-Y :

Proof. By (9), we have jðXÞDY : Clearly j is injective and thus it remains to show
that j is continuous. For this purpose, let x0AX : For some nAo; consider the basic
open neighborhood Unðjðx0ÞÞ: We have to show that there exists a natural number
an such that

jðUan
ðx0Þ-X ÞDUnðjðx0ÞÞ: ð10Þ

We show that this is true for an ¼ n: Let xAUnðx0Þ-X : If x ¼ x0; then
jðxÞAUnðjx0ÞÞ clearly holds. Hence let xax0: By Lemma 1, x0 and x are joined
by kn edge-disjoint paths of GX ; and thus the same must hold for jðx0Þ and jðxÞ in
GY : Consequently, again by Lemma 1, jðxÞAUnðjðx0ÞÞ: Hence (10). &

By a result of Thomas [5, Theorem 2] there exists a sequence X1;X2;y of subsets
of 2o (each of cardinality c) such that for all i; j with ioj there is no continuous
injective function Xi-Xj : By combining this with Theorem 1 and Lemma 2 of the

present paper, we obtain the following result.

Theorem 2. There exists a sequence H1;H2;y of uncountable graphs such that

Hi4/ 2Hj for all positive integers i; j with ioj:

Proof. Let X1;X2;y be as given above. Put Gi :¼ GXi
ði ¼ 1; 2;yÞ: Then, by

Lemma 2, we have Gi4/ 1Gj for all i; j with ioj and thus Theorem 2 follows by

application of Theorem 1. (It immediately follows from the proof of Theorem 1 that
the resulting graphs H1;H2;y are uncountable.) &

4. Antichains

The following is a sharpened version of Theorem 2.

Theorem 3. There exists a sequence H 0
1;H 0

2;y of uncountable graphs such that

H 0
i4/ 2H 0

j for all positive integers i; j with iaj:

Proof. Let Gi ði ¼ 1; 2;yÞ be as in the proof of Theorem 2. Then Gi4/ 1Gj for all i; j

with ioj: Note that a graph GX (as defined in Section 3) is infinite and connected if
X is non-empty. Consequently, the Gi are infinite connected graphs. Let l1ol2y be
cardinals with l14 j VðGiÞj ði ¼ 1; 2;yÞ: For i ¼ 1; 2;y; let G0

i result from Gi by

adding li new vertices of degree 0. Then jVðG0
jÞjojVðG0

iÞj for all j; i with joi; and
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thus G0
ip1G0

j is impossible if joi: On the other hand, G0
ip1G0

j is also impossible if

ioj since this clearly would imply Gip1Gj: Hence G0
i4/ 1G0

j for all i; j with iaj:

Theorem 3 then follows from Theorem 1. (By the proof of Theorem 1, the resulting
graphs H 0

1;H 0
2;y are uncountable.) &

Note that the above proof of Theorem 3 yields disconnected graphs H 0
1;H 0

2;y . In

order to obtain connected graphs showing the same, one can proceed as in the proof
of Theorem 3 with just one slight modification when defining G0

i : just pick one of the

li new vertices and join it by edges to all other vertices of G0
i : Let aiAVðG0

iÞ be this

vertex which now has degree li ði ¼ 1; 2;yÞ: Then any immersion G0
i-G0

j (in the

strong sense) would map ai to aj (because of their degrees), and hence Gi to Gj: But

the former is impossible for i4j; while the latter is impossible for ioj: Application of
Theorem 1 then yields the desired connected graphs H 0

1;H 0
2;y . (Note that, by the

proof of Theorem 1, the connectedness of the graphs H 0
i is an immediate

consequence of the connectedness of the graphs G0
i:)
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