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Abstract

The paper presents several results on edge partitions and vertex partitions of graphs into

graphs with bounded size components. We show that every graph of bounded tree-width and

bounded maximum degree admits such partitions. We also show that an arbitrary graph of

maximum degree four has a vertex partition into two graphs, each of which has components

on at most 57 vertices. Some generalizations of the last result are also discussed.
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1. Introduction

Graphs in this paper are simple, that is, without loops or multiple edges. The set of
vertices of a graph G will be denoted by VðGÞ; and the set of edges of G will be
denoted by EðGÞ: An edge partition of a graph G is a set fA1;A2;y;Akg of
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subgraphs of G such that
Sk

i¼1 EðAiÞ ¼ EðGÞ: Similarly, a vertex partition of G is a

set fA1;A2;y;Akg of induced subgraphs of G such that
Sk

i¼1 VðAiÞ ¼ VðGÞ:
Observe that vertex coloring and edge coloring are special cases of partitions.

More precisely, a proper vertex k-coloring is a vertex partition into k edgeless graphs,
and a proper edge k-coloring is an edge partition into k matchings. Thus, an edge
partition or a vertex partition fA1;A2;y;Akg may be viewed as an edge or vertex k-
coloring, and the connected components of the subgraphs Ai may be referred to as
monochromatic components. Note that a proper vertex (edge) coloring can be
described as a vertex (edge) partition into graphs with only components of one vertex
(at most two vertices). In this paper, we investigate the existence of vertex and edge
partitions into graphs with only components of bounded size.
The degree of a vertex v of G; denoted by dGðvÞ; is the number of edges incident

with v: The maximum vertex degree of a graph G will be denoted by DðGÞ: If
XDVðGÞ or XDEðGÞ; then GðX Þ is the subgraph of G induced by X : If FDEðGÞ;
then GWF is the subgraph obtained from G by deleting all edges in F : The length of
a path is its number of edges.
Let k be a positive integer. A k-tree is a graph defined inductively as follows: A

complete graph on k vertices is a k-tree. If G is a k-tree, and K is a subgraph of G

that is a complete graph on k vertices, then a graph obtained from G by adding a new
vertex and joining it by new edges to all vertices of K is a k-tree. Any subgraph of a
k-tree is a partial k-tree. The tree-width of a graph G is zero if G is edgeless; otherwise
it is the smallest integer k such that G is a partial k-tree. Nontrivial forests have tree-
width 1, while every graph has some tree-width.
The first result of this paper, which is presented in Section 2, deals with graphs in

which both maximum degree and tree-width are bounded. We show that each such
graph has an edge partition and a vertex partition into two graphs whose
components have bounded size. We also show there that, in general, bounding
just one of maximum degree and tree-width is not sufficient to ensure the existence of
such partitions.
Section 3 contains several lemmas useful later in the paper. In Sections 4 and 5, we

investigate, respectively, vertex partitions and edge partitions where both the number
of parts and maximum sizes of their components are bounded by functions of the
maximum degree. In a previous paper [6], three of the authors in collaboration with
Sanders showed that every graph of maximum degree three has an edge partition
into two graph all of whose components are paths on at most seven edges. Later,
Thomassen [12] proved a stronger result by showing that seven can be replaced by
five, which is the best possible. Either of these two results can be stated in terms of
vertex partitions of certain graphs of maximum degree four: line graphs of graphs
with maximum degree three. In Section 4, we show that a similar result holds for all
graphs with maximum degree four. More precisely, the following is an immediate
corollary of Theorem 4.1, which appears in Section 4.

Corollary 1.1. Every graph of maximum degree four has a vertex partition into two

graphs each of which has only components on at most 57 vertices.
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Note that, as demonstrated by K5; the components in Corollary 1.1 need not be
paths. Also, we do not believe that the bound in that corollary is the best possible.
In Section 6, we investigate partitions of planar graphs. We show that bounding

the maximum degree of planar graph by six does not guarantee the existence of
vertex or edge 2-coloring with bounded monochromatic components. We also show
that, in general, planar graphs cannot be vertex 3-colored with all monochromatic
components having bounded size.

2. Bounding both tree-width and maximum degree

The main theorem of this section is based on the following result [5]. A tree-partition of
a graph G is a pair ðT ;PÞ where T is a tree and P is a (disjoint) partition fPt: tAVðTÞg
of VðGÞ such that, for every pair of adjacent vertices u and v of G; either they are both
contained in the same Pt; or there are two adjacent vertices s and t of T such that uAPs

and vAPt: The width of a tree-partition ðT ;PÞ is the maximum size of a Pt:

Proposition 2.1. Every graph of maximum vertex degree D and tree-width k admits a

tree-partition of width at most 24kD:

As a consequence of Proposition 2.1, we show that graphs of bounded tree-width
and bounded maximum vertex degree can be vertex partitioned and edge partitioned
into graphs whose connected components have bounded size.

Theorem 2.2. Let k and D be positive integers, and let G be a graph whose tree-width is

at most k and whose maximum vertex degree is at most D: Then G admits a vertex

partition fG1;G2g such that every connected component of G1 and G2 has at most 24kD
vertices, and G admits an edge partition fH1;H2g such that every connected component

of H1 and H2 has at most 24kDðDþ 1Þ vertices.

Proof. By Proposition 2.1, G has a tree-partition ðT ;PÞ of width at most 24kD where
P ¼ fPt: tAVðTÞg: Since T is a tree, it has a vertex partition fT1;T2g such that
neither T1 nor T2 has any edges. Let Gi ¼

S
tAVðTiÞ Pt for iAf1; 2g: It is clear that

fG1;G2g is as described in Theorem 2.2.
Now we shall construct the edge partition fH1;H2g: Begin by choosing an

arbitrary vertex t0 of T : For each vertex t of T ; let hðtÞ denote the set of vertices s of
T such that s ¼ t or s is a neighbor of t that is separated from t0 by t: For each t; let
HðtÞ denote the subgraph of G that is induced by the edges with one endpoint in Pt

and the other endpoint in Ps; for some sAhðtÞ: Now let Hi ¼
S

tAVðTiÞ HðtÞ for
iAf1; 2g: Since Pt has at most 24kD elements, each of which has at most D neighbors,
the conclusion follows. &

It is natural to ask whether bounding just one of tree-width and maximum vertex
degree suffices to ensure the existence of a vertex partition or an edge partition into
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two graphs with bounded size components. We show that, in general, the answer to
this question is negative.
First, we consider graphs with bounded tree-width. Let Sn be a star on 2n vertices,

that is, a tree with 2n � 1 edges, all incident with the same vertex. Let Fn be a fan on

n2 þ n þ 1 vertices, that is, a graph obtained from a path on n2 þ n vertices by adding
a new vertex and joining it to all vertices of the path. Observe that, if n is a positive
integer, the tree-width of Sn is one, and the tree-width of Fn is two. Yet it is clear that
for every edge partition fG1;G2g of Sn each of G1 and G2 is a star, and at least one of
them has more than n vertices. Similarly, it is easy to show that, for every vertex
partition fG1;G2g of Fn; at least one of G1 and G2 has a connected component with
more than n vertices. It is worth noting that the above examples have the smallest
tree-width possible, for a graph of tree-width zero has no edges, and a graph of tree-
width one is a forest, and hence has a vertex partition into two edgeless parts.
Now, we turn our attention to graphs with bounded maximum degree. Our

example will be based on the following result of Erd +os and Sachs [7].

Proposition 2.3. For every integer kX2 and every integer gX3; there is a k-regular

graph whose girth is g:

Let n be an integer exceeding two, and let G be a 4-regular graph of girth n: Then
jEðGÞj ¼ 2jVðGÞj and hence, for every edge partition fA1;A2g of G; at least one of
A1 and A2 has a cycle. Since the girth of G is n; the monochromatic component
containing such a cycle has at least n edges. For vertex partitions take H to be the
line graph of G: Then H is 6-regular and every vertex 2-coloring of H results in a
monochromatic component with at least n vertices.
The following question remains open.

Question 2.4. Is there a number n such that every graph of maximum degree five can be

vertex 2-colored so that each monochromatic component has at most n vertices?

3. Lemmas

We start with a lemma from [8], which is an improved version of a result of [1] (see
also [2, p. 61]).

Lemma 3.1. Let fV1;V2;y;Vng be a partition of VðGÞ: Suppose jVijX2DðGÞ; for all

i: Then there is an independent set W of vertices such that W-Via|; for all i:

The following is the key lemma, which will be used in proving the main results.

Lemma 3.2. Let d be an integer exceeding two and let G be a graph with DðGÞpd: Let

fA;Bg be a partition of VðGÞ and let fB1;B2;y;Btg be a partition of B: Suppose

(i) DðGðAÞÞp1;
(ii) DðGðBÞÞpd � 2;
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(iii) each GðBiÞ is either a cycle or a path; and

(iv) there is a number rX1 such that for each iAf1; 2;y; tg and each vABi

with dGðBiÞðvÞ ¼ 2; there are at most r components of GðAÞ that contain neighbors

of v.

Then there is a set WDB such that every component of GðBi � WÞ; where 1pipt;
and every component of GðA,WÞ has at most K ¼ ð12r þ 6Þd � ð18r þ 27Þ vertices.

Proof. For each component C of GðAÞ; let NðCÞ be the set of vertices that are not in
C but are adjacent to some vertices in C: From (i) it is clear that C has at most two
vertices and thus jNðCÞjpmaxfDðGÞ; 2DðGÞ � 2gp2d � 2:
Without loss of generality, we may assume that jBij4K for i ¼ 1; 2;y; s; and

jBijpK for all other i not exceeding t: We will use Lemma 3.1 to break each Bi; for
iAf1; 2;y; sg; into paths.
Let k ¼ ð2r þ 1Þd � ð3r þ 4Þ: Then d42 and rX1 imply that K42k40: For each

ips; let B0
i be the set of vertices v of Bi with dGðBiÞðvÞ ¼ 2: Since 2k40; each jB0

ij can
be expressed as 2kpi þ qi; where pi and qi are nonnegative integers and qio2k: From
(iii) we know that jB0

ijXjBij � 2; which implies jB0
ijXK � 1X2k and thus pi40:

Choose mutually disjoint subsets Vi1;Vi2;y;Vipi
of B0

i such that each GðVijÞ is a
path on 2k vertices. Let U be the union of Vij for all jppi and ips: Then define a

graph H on U such that two vertices are adjacent if either they both belong to NðCÞ
for some component C of GðAÞ; or they are adjacent in G and they are not contained
in the same Bi: We will refer the two kinds of edges as, respectively, the first and
second type.
We first show that DðHÞpk: Let uAU : From (iv) it is clear that u is contained in at

most r sets NðCÞ: Since jNðCÞjp2d � 2; for all C; we conclude that u is incident in H

with at most rð2d � 3Þ edges of the first type. In addition, from (ii) it follows that u is
incident in H with at most ðd � 2Þ � 2 ¼ d � 4 edges of the second type. Therefore,
DðHÞprð2d � 3Þ þ ðd � 4Þ ¼ k:
Now, from Lemma 3.1 we deduce that H has an independent set W that meets

every Vij: Without loss of generality, we may assume that each Vij contains precisely

one vertex in W :We need to show that W satisfies the conclusion of Lemma 3.2. It is
clear from the construction of H that every edge of GðWÞ is an edge of some GðB0

iÞ;
which means every component of GðWÞ is a subgraph of some GðB0

iÞ: Since each
GðVijÞ is a path on 2kX2 vertices and jW-Vij j ¼ 1; we conclude from (iii) that each

component of GðWÞ may have at most two vertices. We also observe from the
construction of H that NðCÞ-W has at most one vertex, for every component C of
GðAÞ: Thus each component of GðA,WÞ consists of at most two vertices in W and,
by (iv), at most 2r components of GðAÞ: It follows that each component of GðA,WÞ
has at most 4r þ 2pK vertices, as d42 and rX1: For each ips; the graph GðBi �
WÞ may have only two kinds of components: a path P that is cut off from GðBiÞ � P

by two vertices w1;w2AW (say w1AVi1 and w2AVi2), or a path P that is cut off from
GðBiÞ � P; when GðBiÞ is a path, by a single vertex wAW (say WAVi1). In the first
case, jVðPÞjpðjVi1j � 1Þ þ qi þ ðjVi2j � 1Þp3ð2k � 1Þ ¼ K : In the second case,
jVðPÞjpqi þ ðjVi1j � 1Þp2ð2k � 1ÞpK : The lemma follows. &
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4. Vertex partitions

Our first main result of this paper is the following theorem. Let f ð0Þ ¼ 1; let

f ð1Þ ¼ f ð2Þ ¼ 2; and let f ðDÞ ¼ 12D2 � 36Dþ 9 for all DX3:

Theorem 4.1. Every graph with maximum degree D can be vertex JðDþ 2Þ=3n-
colored such that each monochromatic component has at most f ðDÞ vertices.

In order to prove this theorem, we need the following result of Lovász [10].

Lemma 4.2. Let G be a graph and let k1; k2;y; km be nonnegative integers with

k1 þ k2 þ?þ kmXDðGÞ � m þ 1: Then VðGÞ can be partitioned into V1;V2;y;Vm

so that DðGðViÞÞpki; for all iAf1; 2;y;mg:

Proof of Theorem 4.1. The result is clear when Dp2: Thus we may assume that
D42: Let h ¼ JðDþ 2Þ=3n: Then Dp3h � 2: By taking k1 ¼ 1; k2 ¼ D� 2; and
m ¼ 2; we deduce from Lemma 4.2 that VðGÞ can be partitioned into A and B such
that DðGðAÞÞp1 and DðGðBÞÞpD� 2:Next, by taking k1 ¼ k2 ¼ ? ¼ kh�1 ¼ 2 and
m ¼ h � 1; we deduce from Lemma 4.2 that B can be partitioned into
V1;V2;y;Vh�1 such that DðGðViÞÞp2 for all i: Let C1;C2;y;Ct be all components
of GðV1Þ;GðV2Þ;y; and GðVh�1Þ: Clearly, each Ci is either a cycle or a path. Let
Bi ¼ VðCiÞ for all i: Then G;A;B; and Bi; where 1pipt; satisfy the assumptions of
Lemma 3.2 with d ¼ D and r ¼ D� 2: Let WDB be chosen as in Lemma 3.2.
Observe that, for each i; every component of GðVi � WÞ is a component of some
Cj � W : Therefore, the h-coloring ðA,W ;V1 � W ;V2 � W ;y;Vh�1 � WÞ satisfies
the conclusion of Theorem 4.1. &

The next theorem says that if we can use a few more colors, then we can make the
size of the monochromatic components independent of D:

Theorem 4.3. For any positive eo3; there is a number Ne for which every graph G can

be vertex JðDðGÞ þ 2Þ=ð3� eÞn-colored so that each monochromatic component has at

most Ne vertices.

Proof. Let D ¼ DðGÞ and h ¼ JðDþ 2Þ=ð3� eÞn: Then Dpð3� eÞh � 2: Let p ¼
J1=en and let Ne ¼ f ð3p � 2Þ: Since f is a nondecreasing function, we have

f ðtÞpNe; for all tp3p � 2: ð1Þ

Consequently, by Theorem 4.1, the result holds when Dp3p � 2:Next, we consider the
case when DX3p � 1: Since h40; we may assume h ¼ px þ y for some nonnegative

integers x and y with 1pypp: Then D� ðx þ 1Þ þ 1p½ð3� 1
p
Þðpx þ yÞ � 2� �

xoð3p � 2Þx þ ð3y � 2Þ: It follows from Lemma 4.2 that VðGÞ can be partitioned
into V1;V2;y;Vxþ1 such that DðGðViÞÞp3p � 2; for ipx; and DðGðVxþ1ÞÞp3y � 2:
Let hi ¼ p; when ipx; and hxþ1 ¼ y: By Theorem 4.1, each GðViÞ can be vertex
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hi-colored so that its monochromatic components have size at most f ð3hi � 2Þ; which,
by (1), is at most Ne: Therefore, G can be vertex h-colored, where h ¼ h1 þ h2 þ?þ
hxþ1 ¼ px þ y and all monochromatic components have size at most Ne: &

5. Edge partitions

For line graphs, both Theorem 4.1 and Theorem 4.3 can be improved. These
improvements, which are stated in terms of edge partitions, appear as Theorems 5.1
and 5.5 below. The following is an improvement of Theorem 4.1 for line graphs. Let
us define gð0Þ ¼ 0; gð1Þ ¼ 1; and gðDÞ ¼ 60D� 63 for all DX2:

Theorem 5.1. Every loopless graph G with maximum degree D can be edge

JðDþ 1Þ=2n-colored so that each monochromatic component has at most gðDÞ edges.

We first present two lemmas, which will play the role that Lemma 4.2 had for
vertex partitions. The first of these, which is stated below, is a reformulation of a well-
known result of Petersen [11] stating that every even regular graph has a 2-factor.

Lemma 5.2. Let d be an integer and let G be a loopless graph with DðGÞp2d: Then

EðGÞ can be partitioned into F1;F2;y;Fd such that DðGðFiÞÞp2 for all i:

Proof. It is well known that G has a 2d-regular supergraph H: Then the lemma
follows from repeatedly applying Petersen’s result to H: &

The next lemma can be easily derived from either the preceding one, or Lemma 1
in [3].

Lemma 5.3. Every loopless graph G has a set A of edges such that DðGWAÞoDðGÞ
and each component of GðAÞ is a path of length at most two.

Proof of Theorem 5.1. Let H be the line graph of G: We prove the theorem by
applying Lemma 3.2 to H: Let h ¼ JðDþ 1Þ=2n: Then 2h � 2pDp2h � 1:
Consequently, DðHÞp4h � 4: Let d ¼ 4h � 4: We first examine the case when
dp2: Clearly, dp2 implies hp1; which in turn implies Dp1 and thus every
component of G is either K1 or K2: In this case, the theorem obviously holds because
EðGÞ can be JðDþ 1Þ=2n ¼ 1 colored and each monochromatic component of G

has at most D ¼ gðDÞ edges.
Now, we assume that d42: Let ADEðGÞ be chosen as in Lemma 5.3 and let

B ¼ EðGÞ � A: Then DðGðBÞÞp2h � 2: It follows that DðHðAÞÞp1 and
DðHðBÞÞp2ð2h � 3Þ ¼ d � 2: Next, by applying Lemma 5.2 to GðBÞ; we conclude
that B can be partitioned into F1;F2;y;Fh�1 such that DðGðFiÞÞp2 for all i: Let
C1;C2;y;Ct be all components of GðF1Þ;GðF2Þ;y;GðFh�1Þ: Then each Ci is either
a cycle or a path. Let Bi ¼ VðCiÞ; for all i: It follows that ðB1;B2;y;Bh�1Þ is a
partition of B and each HðBiÞ is either a cycle or a path. Since a line graph does not
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have induced K1;3; we conclude that each xAB can be adjacent in H to vertices in at

most two components of HðAÞ: Therefore, G;A;B;Bi ð1piph � 1Þ satisfy the
assumptions of Lemma 3.2 with r ¼ 2:
Let WDB be chosen as in Lemma 3.2. Notice that, for any XDEðGÞ; the graph

GðXÞ is connected if and only if HðXÞ is connected. In addition, for each i; every
component of GðFi � WÞ is a component of some Cj � W : It follows that each

component of GðA,WÞ and GðFi � WÞ ‘‘where ð1piph � 1Þ’’ has at most 30d �
63 ¼ 60ð2h � 2Þ � 63p60D� 63 edges. Therefore, the h-coloring ðA,W ;F1 �
W ;F2 � W ;y;Fh�1 � WÞ satisfies the conclusion of Theorem 5.1. &

One of the authors, in collaboration with others, proved in [3] the following:

Theorem 5.4. There is an absolute constant c40 such that for every D-regular graph G

and every
ffiffiffiffi
D

p
4kX2 the edges of G can be colored with ðk þ 1ÞD=ð2kÞ þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD log D

p
colors so that each monochromatic component is a path of length at most k.

Theorem 5.4 has the following corollary, which may be viewed as an improvement
of Theorem 4.3 for line graphs.

Theorem 5.5. For any e40 there is a number Ne for which every loopless graph G with

maximum degree D can be edge Jðð1þ eÞDþ 1Þ=2n-colored such that each

monochromatic component has at most Ne edges.

Proof. Let c be the number from Theorem 5.4, let G be a graph with maximum
degree D; let e be a positive number, and let e0 be a positive number satisfying

e0pe; e0p1=2; and e0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=e0Þ

p
pe=ð8cÞ: Without loss of generality, we may

assume that G is D-regular, since every graph of maximum degree D is a (not

necessarily spanning) subgraph of a D-regular graph. Let Ne ¼ gðe�40 Þ where g is the

function defined immediately before Theorem 5.1. If Dpe�40 ; then the conclusion

follows from Theorem 5.1; hence we may assume that D4e�40 : Upon applying

Theorem 5.4 with k ¼ e�20 ; we conclude that the edges of G can be colored using at

most D=2þ De20=2þ ce�10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D log D

p
colors so that each monochromatic component is

a path on at most e�20 edges. Clearly, the size of the monochromatic components

satisfies the conclusion of the theorem. The following computation gives the desired
bound on the number of colors used. Note that the first inequality uses the fact that
ðlog xÞ=x is decreasing when x4e:

ðk þ 1ÞD
2k

þ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD log D

p
¼D
2
þ De20

2
þ ce�10 D

ffiffiffiffiffiffiffiffiffiffiffi
log D
D

r

p
D
2
þ D

e20
2
þ 2ce0

ffiffiffiffiffiffiffiffiffiffiffiffi
log

1

e0

s !

p
D
2
þ D

e
4
þ e
4

� 	
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p
ð1þ eÞDþ 1

2
: &

We note that Theorem 5.5 cannot be strengthened to allow e ¼ 0: More precisely,
we have the following:

Remark 5.6. For each integer n there is a graph G such that every edge
JðDðGÞ þ 1Þ=2n-coloring of G results in a monochromatic component with more
than n vertices.

Proof. Let D ¼ 2n þ 1; and let G be a D-regular graph of girth n þ 1; whose existence
is guaranteed by Proposition 2.3. Suppose that G1;G2;y;Gm is an edge partition of
G such that mpJðDðGÞ þ 1Þ=2n and every monochromatic component has at most
n edges. Since the girth of G exceeds n; each monochromatic component is acyclic
and has at most n þ 1 vertices. Hence, the number of components of Gi is at least
jVðGiÞj=ðn þ 1Þ and so jEðGiÞjpjVðGiÞj � jVðGiÞj=ðn þ 1ÞpjVðGiÞjð1� 1=ðn þ 1ÞÞ:
Therefore

jEðGÞjp Dþ 1

2


 �
jVðGÞj n

n þ 1

¼ðn þ 1ÞjVðGÞj n

n þ 1

o jVðGÞj D
2
:

This is impossible since G is D-regular. &

6. Planar graphs

In Section 2, we showed that for every integer n; there is a 4-regular graph G and a
6-regular graph H such that every edge 2-coloring of G and every vertex 2-coloring
of H results in a monochromatic component containing a cycle of length at least n:
However, graphs G and H are nonplanar whenever n43: In the first part of this
section, we show that for every integer n there is a planar graph G of maximum
degree six such that every edge 2-coloring and every vertex 2-coloring results in a
monochromatic component with at least n vertices.
A graph is a near-triangulation if it is a plane graph whose every face, except

possibly for the infinite face, is a triangle. For a positive integer n; let Tn be the graph
whose vertices are the triples of nonnegative integers summing to n; with an edge
connecting two triples if they agree in one coordinate and differ by one in each of the
other two coordinates. The graph Tn may be viewed as embedded in the plane whose

equation is R3 is x þ y þ z ¼ n where the name of each vertex forms its coordinates,
and edges are straight line segments. The graph T5 is illustrated in Fig. 1. It is clear
that each Tn is a near-triangulation with no vertices of degree exceeding six. The next
theorem states that it is impossible to find a vertex partition or an edge partition of
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Tn into two graphs neither of which has connected components with more than n

vertices.

Theorem 6.1. If fG1;G2g is a vertex partition or an edge partition of Tn; then at least

one of G1 and G2 has a connected component with more than n vertices.

Before addressing the proof of the theorem, we need a few definitions. Let G be a
near-triangulation and let v1; v2; and v3 be three distinct vertices in the cycle C that
bounds the infinite face. Then v1; v2; and v3 induce a partition of C into paths P1;P2;
and P3 such that, for each iAf1; 2; 3g; Pi avoids vi and has the other two members of
fv1; v2; v3g as endvertices. A connector of G with respect to fv1; v2; v3g is a connected
subgraph H of G such that, for each iAf1; 2; 3g; the set VðHÞ-VðPiÞ is not empty.
The part of Theorem 6.1 that speaks of vertex partitions follows immediately from

the following two results of [9].

Proposition 6.2. Let G be a near-triangulation and let v1; v2; and v3 be distinct

vertices in the cycle bounding the infinite face of G: For every vertex partition fG1;G2g
of G there is a connector H of G with respect to fv1; v2; v3g that is a subgraph of G1 or

of G2:

Proposition 6.3. If H is a connector of Tn with respect to ð0; 0; nÞ; ð0; n; 0Þ; and

ðn; 0; 0Þ; then H has more than n vertices.

The part of Theorem 6.1 on edge partitions follows immediately from
Proposition 6.3 and the edge version of Proposition 6.2, which is stated and proved
below.

Fig. 1. T5:
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Proposition 6.4. Let G be a near-triangulation and let v1; v2; and v3 be distinct vertices

in the cycle bounding the infinite face of G: For every edge partition fG1;G2g of G

there is a connector H of G with respect to fv1; v2; v3g that is a subgraph of G1 or

of G2:

Proof. We will apply Proposition 6.2 to the graph G0 obtained from G in the
following process. Let the vertex set of G0 be VðGÞ,EðGÞ with two such vertices
being joined by an edge if and only if one of them is an edge e and the other is either
a vertex of G incident with e; or an edge of G that shares a common vertex and a
common finite face with e: Alternatively, G0 may be viewed as obtained from G by
subdividing each of its edges once, and adding new edges incident with the new
vertices so that each of the finite faces of G becomes subdivided into four triangular
faces. For example, if G ¼ Tn; then G0 is isomorphic to T2n:
Note that each of v1; v2; and v3 lies in the cycle bounding the infinite face of G0: For

each iAf1; 2g; let Vi ¼ VðGÞ,EðGiÞ and let G0
i be the subgraph of G0 induced by Vi:

Since V1,V2 ¼ VðG0Þ; Proposition 6.2 implies that there is a connector H 0 of G0

with respect to v1; v2; and v3 that is a subgraph of G0
1 or of G0

2: Without loss of

generality, we may assume that H 0 is a connected component of G0
1: Let H be a

subgraph of G induced by those vertices of H 0 that are also vertices of G: We shall
prove that H is a connector of G with respect to v1; v2; and v3: Let P1;P2; and P3 be
the paths that partition the cycle bounding the infinite face of G as described in
the definition immediately preceding Proposition 6.2, and let P0

1;P0
2; and P0

3 be the

corresponding paths in G0: Then, for each iAf1; 2; 3g; the vertex set of P0
i is the union

of VðPiÞ and EðPiÞ:
Suppose H avoids one of the paths Pi for some iAf1; 2; 3g: But H 0; being a

connector, has a vertex e in P0
i; which must be an edge of Pi: Let v be a vertex that is

incident in G with e: Then, clearly, vAVðPiÞ: Since all vertices of G are in V1; which
induces G0

1; and H 0 is a connected component of G0
1; we conclude that v is a vertex of

H 0; and hence also of Pi-H; a contradiction.
It remains to show that H is connected. Let u and v be two vertices of H: Then, as

H 0 is connected, it contains a path P from u to v: Take the list of consecutive vertices
of P and modify it as follows: Between every two consecutive vertices of P that are
both edges of G insert the vertex of G that is incident with both edges. Since V1

contains all vertices of G; and G0
1 is induced by V1; the modified list consists of

vertices of H 0: The same list, when interpreted in G; alternates vertices and edges
with two consecutive entries being incident. Since all vertices of G that appear in the
list are in H 0; and hence in H; the list forms a walk in H that begins in u and ends in
v: It follows that H is a connector of G with respect to v1; v2; and v3; as required. &

Finally, we address vertex partitions of arbitrary planar graphs. The well-known
Four Color Theorem states that every planar graph has a vertex 4-coloring so that
all monochromatic components have exactly one vertex. Theorem 6.1 implies that
the size of monochromatic components cannot be bounded if only two colors are
used for coloring a planar graph. The following natural question arises:
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Question 6.5. Is there a number c such that every planar graph has a vertex 3-coloring

so that each monochromatic components has at most c vertices?

Next, we show that the answer to this question is negative. For a positive integer n;
let Un be the graph consisting of n pairwise disjoint copies of Fn; which was defined in

Section 2 as a fan on n2 þ n þ 1 vertices, and let U 0
n be the graph obtained from Un

by adding one vertex and joining it to all other vertices.

Theorem 6.6. Let n be a positive integer and let fA1;A2;A3g be a vertex partition of

U 0
n: Then at least one of A1;A2; and A3 has a component with more than n vertices.

Proof. Let v denote a vertex of U 0
n that is adjacent to all other vertices. Without loss

of generality, we may assume that vAVðA3Þ: If A3 meets each component of Un; then
the conclusion follows. Hence we may assume that some component of Un; which is
a fan Fn; meets only A1 and A2: The conclusion follows from the discussion in
Section 2. &

Note that the maximum degree of the graphs U 0
n grows with n: Indeed, we do not

know whether the graphs U 0
n in Theorem 6.6 can be replaced by graphs whose

maximum degree is bounded by a universal constant.
We close the paper with analogs of some results and questions for the class of

planar graphs to larger classes of graphs. A graph G is a minor of graph H if G can
be obtained from a subgraph of H by contracting edges. A class G of graphs is
minor-closed if for every member H of G all minors of H are also in G: It is clear that
the class of planar graphs is minor-closed. The following theorem speaks of vertex 4-
coloring of graphs in minor-closed classes.

Theorem 6.7. Let G be a minor-closed class of graphs other than the class of al graphs,
and let D be a positive integer. Then there is a number c depending only on G and D such

that every graph G in G with maximum degree at most D admits a vertex 4-coloring

with each monochromatic component having at most c vertices.

Proof. It is shown in [4] that there is a number a; depending only on G; such that
every graph in G can be vertex 2-colored so that each monochromatic subgraph has
tree-width at most a: This, together with Theorem 2.2, easily implies the
conclusion. &

Note that Theorem 6.6 implies that the number of colors in Theorem 6.7 cannot
be reduced from four to three, even for the class of planar graphs. However, it is not
known whether the number c in Theorem 6.7 can depend only on G:
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[11] J. Petersen, Die Theorie der regulären Graphen, Acta Math. 15 (1891) 193–220.

[12] C. Thomassen, Two-coloring the edges of a cubic graph such that each monochromatic component is

a path of length at most 5, J. Combin. Theory Ser. B 75 (1999) 100–109.

N. Alon et al. / Journal of Combinatorial Theory, Series B 87 (2003) 231–243 243


	Partitioning into graphs with only small components
	Introduction
	Bounding both tree-width and maximum degree
	Lemmas
	Vertex partitions
	Edge partitions
	Planar graphs
	References


