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Abstract

The width of an embedded graph is the length of a shortest noncontractible cycle. SupposeG
is embedded in a surfaceS (either orientable or not) with large width. In this caseG is said to
be locally planar. SupposeP ⊂ V (G) is a set of vertices such that the components ofG[P] are
each 2-colorable, have bounded diameter and are suitably distant from each other. We show that any
5-coloring ofG[P] in which each component is 2-colored extends to a 5-coloring of all ofG. Thus,
for an arbitrary surface, the extension theorems for precolorings of subgraphs of locally planar graphs
parallel the results for planar graphs. Crucial to the proof of this result is the nice cycle lemma, viz.
If C is a minimal, noncontractible, and nonseparating cycle in a so-calledorderly triangulation of
at least moderate width, then there is a cycleC ′ such thatC ′ lies within the fourth neighborhood of
C, C ′ is minimal,homotopic toC, andC ′ either has even length or contains a vertex of degree 4.
Such anice cycle is useful in producing 5-colorings. We introduce the idea ofoptimal shortcuts in
order to prove the nice cycle lemma and the idea ofrelative width in order to prove the main theorem.
Our results generalize to extension theorems for precolorings withq ≥ 3 colors.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

SupposeG is anr -colorable graph andP ⊆ V (=V (G)) is r -precolored. It is natural to
ask whether the precoloring extends to at-coloring of the entire graph wherer ≤ t [11, 12].
The answer depends on the context. For example, a 4-precoloring of some vertices of a
planar graph need not extend to a 4-coloring of the entire graph even if there are only two
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precolored vertices and they are far apart. In contrast, a 5-precoloring of suitably separated
vertices extends to a 5-coloring of any planar graph [1].

It is no surprise that thequestion of whether a precoloringextends isN P-complete even
assuming severe restrictions onG. Its complexity has been well studied; see [14]. Still there
are general results. We introduce a little notation before describing some of what is known.

The chromatic number of G, denoted byχ(G), is the minimum number of colors
needed to properly color the vertices ofG. We letG[P] denote the subgraph ofG induced
by P. P is called independent if G[P] contains no edges. It is convenient to partition
P = P1 ∪ P2 ∪ · · · ∪ Pk ⊆ V whereP1, P2, . . . , Pk induce the connected components
of G[P]. We saythat d(P) ≥ ρ if for every pair of verticesx ∈ Pi , y ∈ Pj (i �= j)
the distance (number of edges in a shortest path) betweenx andy is at leastρ. The story
begins with a precolored independent set.

Theorem 1 ([1]). If χ(G) = r , P is independent, and d(P) ≥ 4, then any (r+1)-coloring
of G[P] extends to an (r + 1)-coloring of all of G.

This generalizes to extending precolorings ofq-colorable subgraphs.

Theorem 2 ([3]). Suppose χ(G) ≤ r and P ⊂ V is such that χ(G[P]) ≤ q and
d(P) ≥ 4. Any (r +q)-coloring of G[P] in which each G[Pi ] is q-colored (not necessarily
with the same colors) extends to an (r + q)-coloring of G.

The preceding results are best possible both with respect to the distance constraint and
thenumber of colors necessary. If we assume thatG is planar, we can save a color. Note
that the following theorem is not true for any distance constraint whenq = 1 [1].

Theorem 3 ([3]). Suppose G has no K5 minor, χ(G) ≤ r , and P ⊂ V is such that
d(P) ≥ 8 and χ(G[P]) ≤ q where q ≥ 2. Any (r + q − 1)-coloring of G[P] in which
each G[Pi ] is q-colored (not necessarily with the same colors) extends to an (r + q − 1)-
coloring of G.

It is natural to wonder ifTheorem 3extends to the class of “locally planar” graphs. Our
principal result is that this is indeed so.

For a surfaceS, let ε = ε(S) denote its Euler characteristic, and let theEuler genus be
given byg∗ = 2 − ε. WhenG is embedded in a nonplanar surface, itswidth w(G) is the
length of a shortest noncontractible cycle [4]. This has also been called theedge-width and
is known to be a crucial embedding parameter; see [8, Chapter 5]. A graphG embedded in
a surfaceS is said to belocally planar if w(G) is large enough. Here “large enough” will
depend onS as well as the property being sought.Theorem 3and Thomassen’s landmark
Theorem 4provide the origin for our work. The latter also illustrates the importance of
width.

Theorem 4 ([13]). Let G be embedded in S. If w(G) is large enough, then G can be
5-colored.

We will prove two 5-coloring extension theorems for locally planar graphs. Within the
introduction we hide details. Our first result, assuming a precolored independent set, is
stated and proved inSection 3; the second, assuming a precolored bipartite subgraph, fills
Section 4.
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Theorem 5. Let G be embedded in a surface S of Euler genus g∗ > 0 such that w(G) is
large enough. If P ⊂ V is an independent set such that d(P) is large enough, then any
5-coloring of G[P] extends to a 5-coloring of G.

Ideally we would like a 5-coloring extension theorem whenG[P] is q-colored forq < 5
andd(P) is suitably bounded. Ifq ≥ 3, there is no such theorem [3]. To obtain a result for
q = 2 we need to control the embedding a bit more. ForP ⊂ V we introduce therelative
width of G, denoted bywP(G). This is the length of a shortest noncontractible cycle in
which the vertices ofP do not count. FormallywP (G) = min{|X | : X ⊂ V andG[X ∪ P]
contains a noncontractible cycle}.
Theorem 6. Suppose G is embedded in a surface S of Euler genus g∗ > 0 and P ⊂ V is
such that for each component the diameter of G[Pi ] is bounded. If both d(P) and wP(G)

are large enough, then any 5-coloring of G[P] in which each component is 2-colored (not
necessarily with the same colors) extends to a 5-coloring of G.

It is immediate that 0≤ wP(G) ≤ w(G). The width of an embedded graph can
be determined in polynomial time [8]. Determining the relative width is the same as
determining the width of the graph obtained fromG by contracting each component of
G[P]. If G[P] is noncontractible on the surface, the Euler genus of the contracted graph
will decrease (with the graph possibly nowon a pinched surface). Since this is easy to
detect both the width andthe relative width are accessible parameters.

Both of our precoloring extension theorems require the nice cycle lemma. Although this
has become part of the folklore of topological graph theory, it seems tricky to prove. To the
best of our knowledge the proof we give below is the first published argument that works
for surfaces withg∗ > 2. We devoteSection 2to developing this important technical result
and introduce the idea of “optimalk-shortcuts” for our proof.

We anticipate that both relative width and optimal shortcut will have further application
in topological graph theory.

2. The nice cycle lemma

The driving force behind our results and many of their predecessors is thenice cycle
lemma. This says that ifC is anoncontractible cycle in an “orderly” triangulation (defined
below)then there is a minimal cycleC ′ that is near toC, homotopic toC, andparticularly
nice from the point of view of 5-coloring. A minimal (i.e., chordless) noncontractible, and
nonseparating cycleC in an embedded graph is said to benice if it either has even length
or contains a vertex of degree at most 4. The first published version of a nice cycle lemma
appeared in [5]. There the cycleC had to be a minimum length noncontractible cycle in
an orderly triangulation of the torus, and the cycleC ′ was found in the first neighborhood
of C. Stromquist established a nice cycle lemma for an arbitrary surface whereC ′ was
found in the “filled first neighborhood” ofC [10], but this was never published. The filled
first neighborhood might contain vertices arbitrarily far fromC. Thomassen constructed a
nice cycle in [13]; however, to obtain his version of C ′ he used the notion of weak geodesic,
requiring a considerable detour away fromC. Using local modifications he found his nice
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cycle onone side ofC, but, as we now know, finding a nice cycle requires zigzagging to
both sides ofC. We sketch the argument at the end of this section.

Here we introduce optimalk-shortcuts and use this idea to give a simple proof of the
lemma. Our result also has the advantage thatC ′ is within distance four of the originalC.
We begin with some necessary background. IfU ⊂ V , let N(U) denote the set of vertices
that are not inU but are adjacent to at least one vertex inU . InductivelyNi (U) denotes the
set of vertices that are not inNi−1(U) but are adjacent to at least one vertex inNi−1(U).
ThusNi (U) consists of those vertices inG whose distance fromU is exactlyi .

Given a traversal ofC, a 2-sided cycle within a graphG embedded in a surfaceS, we
defineR(C) andL(C), respectively the (not necessarily disjoint) right and left neighbors
of C. R(C) (resp.,L(C)) is the set of vertices ofN(C) that are adjacent toC along an
edge emanating from the right (resp., left) side ofC. All separating cycles ofG are 2-sided
as are all noncontractible cycles on an orientable surface. A nonorientable surface may
contain 1-sided or 2-sided noncontractible and nonseparating cycles.

For G embedded in a surfaceS of Euler genusg∗ > 0, a set of noncontractible cycles
C1, C2, . . . , Cs wheres ≤ g∗ is called aplanarizing set if G − ∪Ci is a planar graph.
For i �= j , dist(Ci , C j ) is the length of a shortest path joining these cycles. WhenCi is
a 2-sided noncontractible and nonseparating cycle, dist(Ci , Ci ) is the length of a shortest
path beginning with an edge fromCi to L(Ci ) and ending with an edge fromR(Ci ) to Ci .

WhenCi is a 1-sided noncontractible cycle, it is convenient to define dist(Ci , Ci ) as
infinity. In this case we (locally) defineR andL alongM, asubpath ofCi that containsm
edges. SupposeCi is a (1-sided or 2-sided) noncontractible cycle of length at leastm + 1.
On a traversal ofM ⊂ Ci there are right neighborsR(M) and left neighborsL(M), both
subsets ofN(Ci ), and these twosets are disjoint whenm ≤ w(G) − 3. Formally when
m ≤ w(G)− 3, R(M) = {y ∈ N(Ci ): there isa vertexx ∈ M and an edgexy lying on the
right side ofM in the traversal}. L(M) is defined in the same manner and given the width
hypothesis,L(M) ∩ R(M) = ∅.

We defineR j(M) to be the vertices ofN j(Ci ) that can be reached by a path starting
in M with an edge ofR(M). We defineL j(M) in an analogous way and note that for
2 ≤ j ≤ �w(G)−m−1

2 
, L j (M) ∩ R j (M) = ∅. For a vertexx ∈ Ci we defineR(x)

to be its right neighbors with respect to a traversal of a (short) subpath containingx and
degR(x) = |R(x)| is called theright degree of x . We make the analogous definition for the
left degree and note that deg(x) = degR(x) + degL(x) + 2.

If G is a triangulation of the surfaceS andU ⊂ V , G[U ] is said to beorderly if every
contractible 3-cycle inG[U ] bounds a face ofG and if every contractible 4-cycle inG[U ]
is either the boundary of two triangles ofG that share an edge or the first neighbor circuit
of a vertex of degree 4 inG. Orderly graphs have been helpful in inductive proofs of
5-coloring theorems for embedded graphs [5, 7].

SupposeC1 = u1, u2, . . . , ut is a minimal, noncontractible, and nonseparating cycle
in a graphembedded on a surfaceS of Euler genusg∗ > 0. A path of length 6,
say v1, v2, . . . , v7 is said to be anoptimal 6-shortcut for C1 if v1 = ui for somei ,
v7 = u j for some j , the resulting cycleC2 = u1, . . . , ui−1, {ui = v1}, v2, . . . , v6, {v7
= u j }, u j+1, . . . , ut is homotopic toC1, and C2 is as short as possible. Note that
v2, . . . , v6 may be vertices ofC1.
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Lemma 1 (Nice Cycle Lemma). Suppose C1 is a minimal, noncontractible, and
nonseparating cycle in a graph G, a triangulation of a surface S of Euler genus g∗ > 0.
Suppose GC1,4 = G[C1 ∪ N(C1) ∪ · · · ∪ N4(C1)] is orderly and w(G) ≥ 15. There is
a minimal, noncontractible, and nonseparating cycle, say C ′

1, in GC1,4 such that C ′
1 is

homotopic to C1 and C ′
1 is nice. If dist(C1, C1) ≥ d, then dist(C ′

1, C ′
1) ≥ d − 8, and for

X ⊂ V disjoint from C1, dist(X, C ′
1) ≥ dist(X, C1) − 4.

Proof. SupposeC1 = u1, u2, . . . , ut is a minimal, noncontractible, and nonseparating
cycle in G. Choose M = v1, v2, . . . , v7 to be an optimal 6-shortcut forC1 where
v1 = ui and v7 = u j . The resulting cycleC2 = u1, . . . , {ui = v1}, v2, . . . , v6,

{v7 = u j }, u j+1, . . . , ut is minimal since ifC2 were to contain a chord then the 6-shortcut
would not have been optimal. Sincew(G) ≥ 15, R4(M) ∩ L4(M) = ∅. We mayassume
thatbothC1 andC2 have odd length and contain no vertex of degree 4. Thus botht and
i − 1 + 7 + t − j are odd. If D denotes the path fromu j+1 to ui−1 inclusive, then
|D| = i − 1 + t − j is even.

Case (i). Suppose degR(v3) ≥ 2 anddegR(v4) ≥ 2. Let x denote the vertex that is in a
triangle to the right of the edge joiningv3 with v4. SupposeA is a shortest path fromv1 to
x among the vertices inN(v3) not including either endpoint. NormallyA includesv2 but
that is not necessary. Next letB be the shortest path fromx to v6 among the neighbors of
v4 not including either endpoint. NormallyB includesv5 but that isnot necessary.

Consider the cycleC3 = D, v1, A, x, v4, v5, v6, v7. C3 is homotopic toC2. Let us
examine thepossible chords forC3. If there were a chord fromD to any vertex in the
subpathA, x, v4, v5, v6, then we didnot select our optimal 6-shortcut correctly. This is
also the case if there were a chord fromA to eitherv6 or v7. If therewere a chord fromA
to v4, thenGC1,4 contains a contractible 3-cycle that is not a face boundary. If there were
a chord from A to v5, then we have acontractible 4-cycle, saya, v3, v4, v5, with x in its
interior. If x is adjacent tov5 and deg(x) = 4, thenD, v1, v2, v3, x, v5, v6, v7 is nice. If x
is not adjacent tov5 or deg(x) �= 4, thenGC1,4 contains a forbidden contractible 4-cycle.
Thus either|A| is odd or we are done sinceC3 would be nice.

Next considerthe cycleC4 = D, v1, v2, v3, x, B, v6, v7. As in the preceding paragraph
either |B| is odd or we are done sinceC4 would be nice. Finally, look atC5 =
D, v1, A, x, B, v6, v7. C5 is homotopic toC2 and |C5| is even. The only chord we have
not considered is an edge fromA to B. This will produce a contractible 4-cycle. Either
deg(x) = 4 andC4 is nice orGC1,4 contains a forbidden contractible 4-cycle. Thus we are
finished the proof of Case (i).

Case (ii). SupposeC2 is our minimal, noncontractible, and nonseparating cycle and
degR(v3) < 2. If either degR(v3) = 0 or degR(v3) = degR(v4) = 1, thenv1, . . . , v7 is
not an optimal 6-shortcut. Thus we may assume that degR(v3) = 1 anddegR(v4) ≥ 2.
If degR(v5) ≥ 2, then we are back in Case (i) usingv4 andv5. Thus we may assume
degR(v5) = 1. If either degL(v5) = 1 or degL(v3) = 1, thenC2 is nice. Now if
degL(v4) > 1, then we are back in Case (i) interchanging left with right. Thus we may
assume that degR(v3) = degL(v4) = 1 anddegL(v5) ≥ 2. Supposex is v3’s unique right
neighbor. We alterC2 by replacingv3 with x . In the resulting cycle both degL(v4) and
degL(v5) are at least 2 and we are in Case (i) once again.
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Case (iii). SupposeC2 is our minimal, noncontractible, and nonseparating cycle,
degR(v3) ≥ 2, and degR(v4) < 2. As in Case(ii) we may assume degR(v4) = 1. If
degR(v5) ≤ 1, thenv1, . . . , v7 is not an optimal 6-shortcut. If degR(v5) ≥ 2, then by
reversing the direction of the 6-shortcut we are in Case (ii).

In each case we find the nice cycle withinGC1,4. Thus each nice cycle is no more
than four edges away from its original planarizing cycle. The distance claims follow
immediately. �

We digress a moment to describe how to construct a noncontractible cycleC in a graph
embedded in a nonorientable surface with the property that a nearby nice cycle must use
both sides ofC. Let C consist of vertices whose right degrees are alternately 1 and 3. It is
easy to build such a cycle in a 6-regular triangulation of a Klein bottle, and from there it
can be on any nonorientable surface. For such a cycle, there is no nice replacement cycle
lying locally on one side ofC. Thus whenC has odd length and is 1-sided, the nice cycle
must be found using detours locally to both sides ofC.

3. When an independent set is precolored

A version of the next theorem for orientable surfaces appeared in [2]. There are several
good reasons to have another look. First, the proof given below works for both orientable
and nonorientable surfaces. Second, the particular nice cycle lemma needed in the earlier
proof never appeared in print. Third, several steps in our proof are reused inSection 4.
Finally, the constants are better. Note thatTheorem 7is a specific realization ofTheorem 5.

Theorem 7. Suppose G is embedded in a surface S of Euler genus g∗ > 0 and w(G) ≥
208(2g∗ − 1). If P ⊂ V is an independent set in G such that d(P) ≥ 18, then any
5-coloring of P extends to a 5-coloring of G.

Proof. We may assumeG is a triangulation ofS. Otherwise we could add vertices and
edges toG, making it a triangulation while keeping the width and distance between vertices
unchanged [2, 5, 12]. Thomassen and Yu have shown that ifw(G) ≥ 8(d+1)(2g∗−1), then
there exists a planarizing set of cyclesC1, C2, . . . , Cs , s ≤ g∗, such that dist(Ci , C j ) ≥ 2d
for 1 ≤ i ≤ j ≤ s [13, 15]. For our purposes we needd = 25. If for somep ∈ P and
i ≤ s, dist(p, Ci ) < 9, we create a new minimal cycle, sayC ′

i , by replacing vertices whose
distance is less than9 from p by a path inN9(p). With the given distance constraints, these
alteredC ′

i do not intersect and do not come too close to anotherp∗ ∈ P.
Once we have done this for every cycle in{C1, . . . , Cs} and for everyp ∈ P, we

have a new collection of planarizing cycles{C ′
1, . . . , C ′

s} with eachC ′
i homotopic toCi .

Since the maximum distance between any two vertices withinN9(p) is 18, the distance
involving one cycle can be changed by at most 18. Since dist(Ci , C j ) ≥ 2d = 50, we have
dist(C ′

i , C ′
j ) ≥ 2d − 36 = 14 and dist(P, C ′

i ) ≥ 9 for eachi, j ≤ s.
Next, for eachi ≤ s we make the subgraphGC ′

i ,4
orderly (seeLemma 1). For each

GC ′
i ,4

we delete vertices ofG interior to any contractible 3-cycle ofGC ′
i ,4

and, if there is
more than one, all vertices interior to any contractible 4-cycle ofGC ′

i ,4
. In the latter case,

we add a vertexv∗ adjacent to all four boundary vertices. We may have deleted vertices
of P, but as we shall see below, none interior to and adjacent to vertices of a contractible
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3- or 4-cycle. In addition we have not changed the distance between any two vertices
of P exterior to these contractible cycles. Thus it is still the case thatd(P) ≥ 18 and
dist(P, C ′

i ) ≥ 9. Call this intermediate graphG1. Then for 1 ≤ i ≤ s we apply Lemma 1
with C ′

i = C1 and letC ′′
i denote the resulting nice cycle, homotopic toC ′

i , lying within
GC ′

i ,4
. This gives the final planarizing set of cycles{C ′′

1, . . . , C ′′
s }.

We havedist(C ′′
i , C ′′

j ) ≥ 2d − 36− 8 = 6 anddist(P, C ′′
i ) ≥ 5. With this planarizing

set for G1 we form a planar triangulation. For eachC ′′
i that is 2-sided, 1 ≤ i ≤ s, we

remove C ′′
i and replace it with two verticesxi and yi . Then for each edge inL(C ′′

i ), xi

is adjacent to both endpoints of that edge, and for each edge inR(C ′′
i ), yi is adjacent to

both endpoints. ForC ′′
i 1-sided, we removeC ′′

i and replace it withxi adjacent to both ends
of each edge inN(C ′′

i ). Theresulting graphG0 is a plane triangulation with the distance
between every pair of new vertices,xi , yi , at least 6. Their distance fromP is at least 5.

Supposec is a 4-coloring of G0 using colors{1, 2, 3, 4} [6, 9]. If for some i, c(xi ) �=
c(yi), we recolor each vertex inN2(yi ) that is coloredc(yi ) with color 5 and then atyi

we perform a(c(xi ), c(yi))-Kempe change so thatyi gets the same color asxi . Since
dist(xi , yi ) ≥ 6, this recoloring is valid. Next we transfer this coloring back toG1. For
eachi ≤ s for which C ′′

i has even length, we 2-colorC ′′
i with {c(xi), 5}, and for eachC ′′

i
with a vertexvi of degree 4, we 2-colorC ′′

i with {c(xi), 5} except forvi which is colored
last with whatever color is available.

Next we correct the coloring for the vertices inP ∩ G1 that were not colored correctly
by c. Since dist(P, C ′′

i ) ≥ 5, c(p) is one of {1, 2, 3, 4}. If any p ∈ P was precolored
with color 5, its color can be changed immediately. Ifp was precolored with, say 1, and
c(p) = 2, then we recolor all neighbors ofp that are colored 1 with color 5, and then give
p its desired color 1. Due to distance constraints, this produces a proper coloring onG1;
call this coloringc1.

Finally, we add back and color the vertices deleted within contractible 3- and 4-cycles
lying within GC ′

i ,4
for eachi ≤ s. Let C be a contractible 3-cycle inGC ′

i ,4
with non-

empty interior inG. Thus dist(C, C ′
i ) ≤ 4. Call the plane graph induced byC and its

interior H . H may contain some elements ofP, necessarily at distance at least 9 fromC ′
i

and so at distance at least 5 fromC. We begin with a 4-coloring ofH that agrees with the
coloring ofC from G1. Then we correct the coloring of anyp ∈ P ∩ H as in the preceding
paragraph. Since dist(P, C) > 2, the coloring onC is not changed and the two colorings
are consistent.

SupposeC = u, v, x, y is a contractible 4-cycle withinGC ′
i ,4

that within G contains
more than one interior vertex. Thus some interior vertices were deleted to formG1. Let
H be the plane graph onC and its interior inG. We mayassume that in the coloring of
G1, c1(u) = 1 andc1(v) = 2.

Case (i). Supposec1(x) = 1. We transform the plane graphH by identifying the
verticesu andx within the outer face ofH . If c1(y) = 2 (resp., 3), then we 4-colorH
using colors{1, 3, 4, 5} (resp.,{1, 2, 4, 5}) making sure thatu andx (resp.,u, v, andx)
are correctly colored. Then we correct the coloring of anyvertices p ∈ H as above. Since
again dist(P, C) > 2, the color 2 (resp., 3) is not placed on or adjacent to vertices ofC.
Then we assign color 2 to bothv and y (resp., color 3 to y) for a coloring of H that is
correct onP and agrees on the boundary with that ofC in G1.
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Case (ii). Supposec1(x) = 3. We transform the plane graphH by adding an edge
joining u andx in the outer face ofH . If c1(y) = 2 (resp., 4), we 4-colorH with {1, 3, 4, 5}
(resp.,{1, 2, 3, 5}) making sureu andx (resp.,u, v, andx) are correctly colored. Then as in
the preceding paragraph wecorrect the coloring onP and assign color 2 tov andy (resp.,
color 4 toy). In this way the 5-precoloring ofP always extends toG. �

The corollary below is a specific version ofTheorem 4. It is also a strengthening of the
original result in the sense that the lower bound on the width is much smaller.

Corollary 7.1. If G is embedded in a surface S of Euler genus g∗ > 0 and w(G) ≥
64(2g∗ − 1), then χ(G) ≤ 5.

Proof. Follow theproof ofTheorem 7assuming thatP = ∅. �

Corollary 7.2. Suppose G is embedded in S, a surface of Euler genus g∗ > 0 such that
w(G) ≥ 64(2g∗ − 1). If d(P) ≥ 4, then any (5 + q)-coloring of G[P] in which each
component is q-colored extends to a (5 + q)-coloring of G.

Proof. Corollary 7.1 implies that G is 5-colorable and the result follows from
Theorem 2. �

4. When a subgraph is precolored

We close with a 5-coloring extension theorem in which each precolored component is
2-colored.Theorem 8is a specific realization ofTheorem 6.

Theorem 8. Suppose G is embedded in S a surface of Euler genus g∗ > 0. If, for
1 ≤ i ≤ k diameter (G[Pi ]) ≤ D, d(P) ≥ 18, and wP(G) ≥ (16D + 408)(2g∗ − 1),
then any 5-coloring of G[P] in which each component is 2-colored extends to a 5-coloring
of G.

Proof. We omitdetails that are identical to those in the proof ofTheorem 7. We assume
thatG isa triangulation ofS. Weknow thatG contains a planarizing collection of chordless
cycles C1, C2, . . . , Cs wheres ≤ g∗ such that for 1 ≤ i ≤ j ≤ s, dist(Ci , C j ) ≥
2d ≥ 2D + 50 [13, 15]. We let C ′

1, C ′
2, . . . , C ′

s denote the cycles that detour around
the components ofG[P]. Specifically C ′

j is homotopic toC j , dist(C ′
j , P) ≥ 9, and

dist(C ′
i , C ′

j ) ≥ 2D + 50− 2(D + 18) ≥ 14.
We create the graphG1 by making the subgraphGC ′

i ,4
orderly for eachi ≤ s. Then for

1 ≤ i ≤ s we apply Lemma 1with C ′
i = C1. We letC ′′

i denote theresulting nice cycle,
homotopic toC ′

i and lying within GC ′
i ,4

. This gives the final planarizing set of cycles
{C ′′

1 , . . . , C ′′
s }. We have dist(C ′′

i , C ′′
j ) ≥ 2d − 36− 8 = 6 anddist(P, C ′′

i ) ≥ 5.
Next we form a plane triangulation in two stages. First we cut out the planarizing cycles

and replace each with either one or two vertices. Their distance fromP is at least 5 and
their distance from each other is at least 6. Next we look atP. SincewP (G) > 0, each
component ofP is contractible. For 1≤ i ≤ k remove edges fromG[Pi ] until the resulting
component is a tree. Contract thei th component to obtain the vertexvi and delete multiple
edges. The resulting graphG0 is a triangulation of the plane.



M.O. Albertson, J.P. Hutchinson / European Journal of Combinatorics 25 (2004) 863–871 871

Supposec is a 4-coloring of G0 using colors{1, 2, 3, 4}. As before we arrange that for
1 ≤ j ≤ s, if C ′′

i is a 2-sided cycle, thenc(xi ) = c(yi ). We then color the vertices in
G1 − G[P] by transferring the coloring ofG0 and coloring each of the nice planarizing
cycles. We still need to fix the coloring inG[P]. For 1≤ i ≤ k we 2-color the vertices of
G[Pi ] using the colorsc(vi ) and 5. The color classes in this 2-coloring are identical to the
color classes in the hypothesized precoloring ofG[Pi ].

Suppose for one particulari, c(vi ) = 1 and thatthe two color classes inG[Pi ] are
assigned the colors 2 and 3 in the precoloring. First perform a (3, 5)-Kempe change at
every vertex in G[Pi ] that is colored 5. Now every vertex inG[Pi ] that is supposed to
be colored 3 is. Second perform a (1, 5)-Kempe change at every vertex inG[Pi ] that
is colored 1. Finally, perform a (2,5)-Kempe change at every vertex inG[Pi ] that is
currently colored 5. These three Kempe changes have the effect of making the colors on
G[Pi ] agree with those of the precoloring. Furthermore these color changes are confined
to Pi ∪ N(Pi )∪ N2(Pi )∪ N3(Pi ). The arguments for other possible precolorings are either
similar or simpler [3].

The last step is to color the vertices ofG that were deleted to createG1. All of these
vertices are interior to contractible 3- or 4-cycles that are within distance 4 of someC ′

i .
We will color these independently in exactly the same manner as was done in the proof of
Theorem 7. �

If one wanted an extension theorem in which a 6-coloring ofG[P] with each component
2-colored extends to a 6-coloring of all ofG, thend(P) ≥ 18 is needed. The required
hypothesis on the relative width is thatwP (G) ≥ 208(2g∗−1). This latter hypothesis can be
replaced by assuming both that diameter(G[Pi ]) ≤ D andw(G) ≥ 18

17(D+1)208(2g∗−1).
In either case the proofs are easier than the proof ofTheorem 8.
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