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Abstract

The width of an embedded graph is the length of a shortest noncontractible cycle. Suppose
is embelded in a surfaces (either orientable or not) with large width. In this caGeis said to
be locally planar. Suppose c V(G) is a $t of vertices such that the componentsGifP] are
each 2-colorable, have bounded diameter and are suitably distant from each other. We show that any
5-coloring of G[P] in which each component is 2-colored extends to a 5-coloring of &.dfhus,
for an arbitrary surface, the extension theorems for precolorings of subgraphs of locally planar graphs
parallel the redts for planar graphs. Crucial to the proof of this result is the nice cycle lemma, viz.
If C is a minimal, noncontractible, and nonseparating cycle in a so-callderly triangulation of
at least moderate width, then there is a cy€lesuch thatC’ lies within the fourth neighborhood of
C, C’ is minimal, homotopic toC, andC’ either has even length or contains a vertex of degree 4.
Such anice cycle is useful in producing 5-colorings. We introduce the ideapiimal shortcuts in
order to prove the niceyclelemma and the idea oélative width in order to prove the main theorem.
Our results generalize to extension theorems for precoloringsowitt8 colors.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

SupposeG is anr -colorable graph an® C V (=V (G)) isr-precolored. It is natural to
ask whether the precoloring extends te@loring of the entire graph where< t [11, 12].
The answer depends on the context. For example, a 4-precoloring of some vertices of a
planar graph need not extend to a 4-coloring of the entire graph even if there are only two
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precolored vertices and they are far apart.dnteast, a 5-precoloring of suitably separated
vertices extends to a 5-coloring of any planar grah [

Itis no surprise that #aquestion of whether arpcoloringextends isN P-complete even
assuming severe restrictions @n Its compexity has been well studied; seB]. Still there
are general results. We introduce a little notatiefore describing some of what is known.

The chromatic number of G, denoted by x (G), is the mhimum number of colors
needed to properly color the vertices®f We letG[P] denote the subgraph &f induced
by P. P is calledindependent if G[P] contains no edges. It is convenient to partition
P=PUPU-.-UP C V wherePy, Py, ..., P induce the connected components
of G[P]. We saythatd(P) > p if for every pair of verticesx € B,y € Pj (i # |)
the distancer{umber of edges in a shortest path) betwremdy is at leasto. The sbry
begins with a precolored independent set.

Theorem 1 ([1]). If x(G) =r, P isindependent,andd(P) > 4, thenany (r +1)-coloring
of G[P] extendsto an (r + 1)-coloring of all of G.

This generalizes to extending precoloringgje¢olorable subgraphs.

Theorem 2 ([3]). Suppose x(G) < r and P C V is such that x(G[P]) < g and
d(P) > 4. Any (r +q)-coloring of G[ P] in which each G[ P, ] isg-colored (not necessarily
with the same colors) extendsto an (r + q)-coloring of G.

The preceding results are best possiblélwath respect to the distance constraint and
the number of colors necessary. If we assume thas planar, we can s& a cobr. Note
that the following theorem is notue for any distance constraint whgn= 1 [1].

Theorem 3 ([3]). Suppose G has no Ks minor, x(G) < r, and P C V is such that
d(P) > 8and x(G[P]) < gwhereq > 2. Any (r + q — 1)-coloring of G[P] in which
each G[P,] is g-colored (not necessarily with the same colors) extendsto an (r + q — 1)-
coloring of G.

Itis natural to wonder iTheorem 3xtends to the class of “locally planar” graphs. Our
principal result is that this is indeed so.

For a sufaceS, lete = ¢(S) denote its Euler chacteristic, and let thEuler genus be
given byg* = 2 — €. WhenG is embedded in a nonplanar surfacewtdth w(G) is the
length of a shortest noncontractible cycf.[This has also keen called thedge-width and
is known to be a crucial ebedding parameter; se@ [Chapter 5]. A graphG embedded in
a sufaceSis said to bdocally planar if w(G) is large enough. Here “large enough” will
depend orts as well as the property being soughheorem 3and Thomassen'’s landmark
Theorem 4provide the origin for our work. The latter also illustrates the importance of
width.

Theorem 4 ([13]). Let G be embedded in S. If w(G) is large enough, then G can be
5-colored.

We will prove two 5-coloring extension theorems for locally planar graphs. Within the
introduction we hide details. Our first result, assuming a precolored independent set, is
statd and proved iisection 3the second, assuming a precolored bipartite subgraph, fills
Section 4
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Theorem 5. Let G be embedded in a surface S of Euler genus g* > 0 such that w(G) is
large enough. If P C V is an independent set such that d(P) is large enough, then any
5-coloring of G[P] extends to a 5-coloring of G.

Ideally we would like a 5-coloring extension theorem wi@iP] is g-colored forg < 5
andd(P) is sutably bounded. Ifg > 3, there is no such theorer8][ To obtain a result for
g = 2 we reed to control the embedding a bit more. Forz V we introduce thaelative
width of G, denoted bywp(G). This is the length of a shortest noncontractible cycle in
which the vertices oP do not count. Formallyp (G) = min{|X]| : X ¢ V andG[X U P]
contains a noncontractible cyg¢le

Theorem 6. Suppose G is embedded in a surface S of Euler genusg* > 0and P C V is
such that for each component the diameter of G[P; ] is bounded. If both d(P) and wp(G)
are large enough, then any 5-coloring of G[ P] in which each component is 2-colored (not
necessarily with the same colors) extends to a 5-coloring of G.

It is immediate that 0< wp(G) < w(G). The width of an embedded graph can
be determined in polynomial time8]. Determiring the relative width is the same as
determining the width of the graph obtained fragnby contracting each component of
G[P]. If G[P] is noncontractible on the surface, the Euler genus of the contracted graph
will decrease (with the graph possibly nam a pinched surface). Since this is easy to
detect both the width antthe relative width are accessible parameters.

Both of our precoloring extension theorems require the nice cycle lemma. Although this
has become part of the folklore of topological graph theory, it seems tricky to prove. To the
best of our knowledge the proof we give below is the first published argument that works
for surfaces witlg* > 2. We devoteéection 2o devebping this important technical result
and introduce the idea of “optimkitshortcuts” for our proof.

We articipate that both relative width and optimal shortcut will have further application
in topological graph theory.

2. Thenicecyclelemma

The driving force behind our results and many of their predecessors igdheycle
lemma. This sa that ifC is anoncontractible cycle in an “orderly” triangulation (defined
below)then there is a minimal cyclé’ that is near ta&C, homotopic toC, andpatticularly
nice from the point of view of 5-coloring. A minimal (i.e., chordless) noncontractible, and
nonseparating cycl€ in an embedded graph is said to bace if it either has even length
or contains a vertex of degree at most 4. The first published version of a nice cycle lemma
appeared inq]. There the cycleC had to be a minimum length noncontractible cycle in
an orderly triangulation of the torus, and the cy€lewas found in the first neighborhood
of C. Stronquist established a nice cycle lemma for an arbitrary surface wheweas
found in the “filled first neighborhood” of [10], but this was never published. The filled
first neighborhood might contain vertices arbitrarily far fr&nThomassen constructed a
nice cycle in L3]; however, to obtai his verson of C’ he used the notion of weak geodesic,
requiring a considerable detour away fr@nUsing local modifications he found his nice
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cycle onone side ofC, but, as we ow know, finding a nice cycle requires zigzagging to
both sides ofC. We sketch the gument at the end of this section.

Here we introduce optimat-shortcuts and use this idea to give a simple proof of the
lemma. Our result also kahe adantag thatC’ is within distance dur of the originalC.

We begin with some necessary backgroundJ I V, let N(U) denote the set of vertices
that are not irJ but are adjacent to at least one vertexdnInductivelyN' (U) denotes the
set of vetices that are not ilN'~1(U) but are adjacent to at least one vertexNh—1(U).
ThusN! (U) consists of those vertices (& whose distace fromU is exactlyi.

Given a traversal o€, a 2-sded cycle vithin a graphG embedded in a surfacg we
defineR(C) andL (C), respectively the (not necessarily disjoint) right and left neighbors
of C. R(C) (resp.,L(C)) is the set bvertices of N(C) that are adjacent t€ along an
edge emanating from the right (resp., left) sid€ofAll sepaating cycles ofG are 2-sided
as are all noncontractible cycles on an orientable surface. A nonorientable surface may
contain 1-sided or 2-sided noncontractible and nonseparating cycles.

For G embedded in a surfacgof Euler genug* > 0, a set of noncontractible cycles
C1,Cy,...,Cs wheres < g* is called aplanarizing set if G — UGC; is a plana grgph.
Fori # j, dist(Cj, Cj) is the length of a shortest path joining these cycles. Whiers
a 2-sided noncontractible and nonseparating cycle(@isC;) is the length 6a shortest
path beginning with an edge fro@ to L (C;) and ending with an edge froR(C;) to C;.

WhenC; is a 1-sided noncontractible cycle, it is convenient to define(@istC;) as
infinity. In this case we (locally) definR andL alongM, asubpath ofC; that containsn
edges. Suppodgg is a (1-sided or 2-sided) noncontractible cycle of length at least 1.

On a traversal oM c C; there are right neighbor®(M) and left neighbors (M), both
subsets ofN(Cj), and these twaets are disjoint whem < w(G) — 3. Formdly when
m < w(G) — 3, R(M) = {y € N(Cj): there isa vertexx € M and an edgey lying on the
right side ofM in the traversal L (M) is defined in the same maer and given the width
hypothesisL. (M) N R(M) = 4.

We defineRI(M) to be the vertices oNI(C;) that can be reached by a path starting
in M with an edge of R(M). We defineLi(M) in an analogous way and note that for
2 < j < 2O i(M)N RI(M) = @. For a vertexx € Ci we defineR(x)
to be its right neighbors with respect to a traversal of a (short) subpath contairsing
degr(x) = |R(x)| is called theaight degree of x. We make the analogous definition for the
left degree and note that deg) = degs(X) + deg (X) + 2.

If G is a triangulation of the surfac8 andU c V, G[U] is said to beorderly if every
contractible 3-cycle ifG[U ] bounds a face oB and if every contractible 4-cycle iB[U ]
is either the boundary of two triangles Gfthat share an edge or the first neighbor circuit
of a vertex @& degree 4 inG. Orderly graphs have been helpful in inductive proofs of
5-coloring theorems for embedded graphs/].

SupposeC; = ug, Uy, ..., Ut is a minimal, noncontractible, and nonseparating cycle
in a graphembedded on a surfacg of Euler genusg* > 0. A path of length 6,
say vy, v2, ..., v7 is said to be aroptimal 6-shortcut for C; if v1 = u; for somei,
v7 = uj for somej, theresulting cycleCy = ug, ..., Ui—1 {Ui = v1},v2,..., ve, {v7
= Uj},Uj41,..., U is homotopic toCy, and Cy is as $ort as possible. Note that
v2, ..., vg May be vertices ot;.
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Lemmal (Nice Cyde Lemma). Suppose C; is a minimal, noncontractible, and
nonseparating cycle in a graph G, a triangulation of a surface S of Euler genus g* > 0.
Suppose G, 4 = G[CLUN(Cp U ---U N4(Cy)] is orderly and w(G) > 15. Thereis
a minimal, noncontractible, and nonseparating cycle, say C}, in Gc, 4 such that C; is
homotopic to C; and C; is nice. If dist(Cy, C1) > d, then dist(C;, C;) > d — 8, and for
X C V digoint from Cy, dist(X, C;) > dist(X, C1) — 4.

Proof. SupposeC; = ug, Uy, ..., U is a minimal, noncontractible, and nonseparating
cycle in G. ChooseM = w3, vp,...,v7 to be an optiml 6-shortcut forC; where
vi = U andv; = uj. Theresulting cycleC; = uy,...,{ui = vi},v2,..., ve,

{vz = uj}, Uj41, ..., ut is minimal since ifC, were to ©ntain a chord then the 6-shortcut
would not have been optimal. SinegG) > 15, R*(M) N L*(M) = @. We mayassume
thatboth C; andCy have odd length and contain no vertex of degree 4. Thustbattu

i —1+7+t— ] are odd. IfD denotes the path fromj1 to ui_1 inclusive, then
ID|=i—1+4+t—jiseven.

Case (i). Suppose deg(v3) > 2 anddegg(vsa) > 2. Letx denote the vertex thatis in a
triangle b the rght of the edge joinings with v4. SupposeA is a shortest path fromy to
x among the vertices il (v3) not including either endpoint. Normallg includesv; but
that is not necessary. Next IBtbe the shortest path fromto vg among the neighbors of
v4 not including either endpoint. NormalB includesuvs but that 8 not necessary.

Consider the cycl€Cs = D, v1, A, X, v4, vs, v, v7. C3 IS homotopic toCp. Let us
examine thepossible chords foCgz. If therewere a chord fromD to any vertex in the
subpathA, x, vs, vs, vs, then we didnot select our optimal 6-shortcut correctly. This is
also the case if there were a chord frénto eithervg or v7. If therewere a chord fromA
to v4, thenGg, 4 contains a contractible 3-cycle that is not a face boundary. If there were
a chord from A to vs, then we have &ontractible 4-cycle, sag, vs, v4, vs, With X in its
interior. If x is adjacent tas and degx) = 4, thenD, v1, v, v3, X, vs, vs, v7 IS nice. Ifx
is not adjacent tes or degx) # 4, thenGc, 4 contains a forbidden contractible 4-cycle.
Thus eithef A| is odd or we are done singgs would be nice.

Next considerthe cycleC4 = D, v1, v2, v3, X, B, vg, v7. As in the preceding paragraph
either |B| is odd or we are done sinc€; would be nice. Finally, look aCs =
D, v1, A, X, B, v, v7. Cs is homotopic toC, and|Cs| is even. The only chord we have
not considered is an edge frofto B. This will produce a contractible 4-cycle. Either
degx) = 4 andCy is nice orGc, 4 contains a forbidden contractible 4-cycle. Thus we are
finished he proof of Case ().

Case (ii). SupposeC; is our minimal, noncontractible, and nonseparating cycle and
degr(va) < 2. If either deg(vs) = 0 or degy(vz) = degg(va) = 1, thenvy, ..., v7is
not an optimal 6-shortcut. Thus we may assume thakteg = 1 anddegg(va) > 2.

If degr(vs) > 2, then we are back in Case (i) using and vs. Thus we may assume
degr(vs) = 1. If either deg(vs) = 1 or deg (v3) = 1, thenC; is nice. Now if

deq (v4) > 1, then we are back in Case (i) interchanging left with right. Thus we may
assume that dgg(vs) = deq (v4) = 1 anddeq (vs) > 2. SUpPOS is v3's unique right
neighbor. We alteC, by replacinguz with x. In the resulting cycle both deg(vs) and

deq (vs) are at least 2 and we are in Case (i) once again.
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Case (iii). SupposeC; is our minimal, noncontractible, and nonseparating cycle,
degk(v3) > 2, and deg(vs) < 2. As in Case(ii) we may assume degvs) = 1. If
degk(vs) < 1, thenwy,...,v7 is not an optimal 6-shortcut. If degus) > 2, then by
reversing the direction of the 6-shortcut we are in Case (ii).

In each case we find the nice cycle with¢, 4. Thus each nice cycle is no more
than four edges away from its original planarizing cycle. The distance claims follow
immediately. O

We digress a moment to describe how to construct a noncontractible@yinla graph
embedded in a nonorientable surface with the property that a nearby nice cycle must use
both sides ofC. Let C consist of vertices whose right degrees are alternately 1 and 3. It is
easy to build such a cycle in a 6-regular triangulation of a Klein bottle, and from there it
can be on any nonorientable surface. For such a cycle, there is no nice replacement cycle
lying locally on one side oC. Thus whenC has odd length and is 1-sided, the nice cycle
must be found using detours locally to both side€of

3. When an independent set is precolored

A version of the next theorem for orientable surfaces appearé&l.ifijere are several
good reasons to have another look. First, the proof given below works for both orientable
and nonorientable surfaces. Second, the pagtiaute cycle lemma needed in the earlier
proof never appeared in print. Third, several steps in our proof are reusgection 4
Finally, the constants are better. Note thheorem 7s a specific realization afheorem 5

Theorem 7. Suppose G is embedded in a surface S of Euler genus g* > 0 and w(G) >
20829° — 1). If P C V is an independent set in G such that d(P) > 18, then any
5-coloring of P extendsto a 5-coloring of G.

Proof. We may asumeG is a triangulation ofS. Otherwse we ould add vertices and
edges td5, making it a triangulation while keeping the width and distance between vertices
unchanged?, 5, 12]. Thomassen and Yu have shown thab{fG) > 8(d+1)(29"—1), then
there exists a planarizing set of cycles Co, ..., Cs, s < g%, such hat distC;, Cj) > 2d
forl <i < j < s[13 15]. For our purposes we neetl= 25. If for somep € P and
i <s,dist(p, Ci) < 9, we create a new minimal cycle, s@y, by repkcing vertices whose
distance is Iss thard from p by a path inN% p). With the given distance constraints, these
alteredC/ do not intersect and do not come too close to anoftiez P.

Once we have done this for every cycle {€1, ..., Cs} and for everyp € P, we
have a new collection of planarizing cyclgs], ..., C¢} with eachC{ homotopic toC;.
Since the maximum distance between any two vertices wikfiip) is 18, the distance
involving one cycle can be chged by at most 18. Since di€}, Cj) > 2d = 50, we have
dist(C/, C}) > 2d — 36 = 14 and distP, C{) > 9 for each, | <s.

Next, 1J r each < s we make the subgrapﬁc/ 4 orderly (seeLemma ). For each
G, 4 We delete vertices d& interior to any contractible 3- -cycle @¢ 4 and, if there is
more than one, lavertices interior to any contractible 4-cycle ch/ 4 In the ldter case,
we add a vertex™ adjacent to all four boundary vertices. We may have deleted vertices
of P, but as we shall see below, none interior to and adjacent to vertices of a contractible
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3- or 4-cycle. In addition we have not changed the distance between any two vertices
of P exterior to these contractible cycles. Thus it is still the case ¢hi&) > 18 and
dist(P, C/) > 9. Callthis intermediate grap@&;. Thenbr 1 <i < swe gply Lemma 1l

with C/ = Cy and letC/” denote the resulting nice cycle, homotopic tG;, lying within

G/ a- This gives the fial planarizing set of cycle?, ..., C}.

We havedist(C/’, C]’) > 2d — 36— 8 = 6 anddist(P, C") > 5. With this planarizing
set for Gy we form a planar triangulation. For ea€lf that is 2sided, 1 < i < s, we
remove C” and replace it with two vertices andy;. Then for each edge ih(C), x;
is adjacent to both endpoints dfat edge, and for each edgeRi(C/"), yi is adjacent to
both endpoints. FoC;” 1-sided, we remov€;” and replace it withx; adjacent to both ends
of each edge ilN(C/"). Theresulting graphGo is a pane triangulation with the distance
between every pair of new vertices, yi, at least 6. Their distance frofa is at least 5.

Supposec is a 4-cobring of Gg using colors{1, 2, 3, 4} [6, 9]. If for somei, c(X;) #
c(y;), we recolor each vertex iftN2(y;) that is colorect(y;) with color 5 and then ay;
we perform a(c(x;), c(y;))-Kempe change so that gets the same color ag. Since
dist(xi, yi) > 6, this recoloring is valid. Next we transfer this coloring backGa. For
eachi < s for whichC/” has even length, we 2-col@ with {c(x;), 5}, and for eachC/’
with a vertexv; of degree 4, we 2-coldE” with {c(x;), 5} except forv; which is wlored
last with whatever color is available.

Next we correct the coloring for the verticesihn G that were not colored correctly
by c. Since distP, C") > 5,c(p) is one of{1,2,3,4}. If any p € P was pecolored
with color 5, its color can be changed immediatelyplivas pecolored with, say 1, and
c(p) = 2, then we recolor all neighbors gfthat are colored 1 with color 5, and then give
p its desired olor 1. Due to distance constraints, this produces a proper colorirgg;pn
call this coloringc;.

Finally, we add back and color the vertices deleted within contractible 3- and 4-cycles
lying within Gera for eachi < s. Let C be a contractible 3-cycle iGci'.A with non-
empty interior inG. Thus distC, C{) < 4. Call the plane graph induced I8y and its
interior H. H may contain some elements Bf necessarily at distance at least 9 fr@h
and so at distance at least 5 fr@nWe begin vith a 4-coloring ofH that agrees with the
coloring of C from G1. Then we orrect the coloring of anyp € PN H as in the preceding
paragraph. Since dig®, C) > 2, the coloring orC is not changed and the two colorings
are consistent.

SupposeC = u, v, X, Y is a contractible 4-cycle WIthIIGC/ 4 that within G contains
more than one interior vertex. Thus soméeiior vertices were deleted to for@;. Let
H be the plane graph o@ and its interior inG. We mayassume that in the coloring of
G1, c1(u) = 1 andci(v) = 2.

Case (i). Supposeci(x) = 1. We transform the plane grapgh by idertifying the
verticesu andx within the outer face oH. If ci(y) = 2 (resp., 3), then we 4-colad
using colors{1, 3, 4, 5} (resp.,{1, 2, 4, 5}) making sire thatu andx (resp.,u, v, andx)
are correctly colored. Then we ect the colorig of anyverticesp € H as above. Since
again distP, C) > 2, the color 2 (resp., 3) is not placed on or adjacent to vertic€s of
Then we assign color 2 to bothandy (resp., ctor 3 to y) for a mloring of H that is
correct onP and agrees on the boundary with thatoin G;.
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Case (ii). Supposeci(x) = 3. We transform the plane grapgt by adding an edge
joining u andx in the outer face oH. If c1(y) = 2(resp., 4), we 4-coloH with {1, 3, 4, 5}
(resp.{1, 2, 3, 5}) making suras andx (resp.u, v, andx) are carectly colored. Then as in
the preceding paragraph werrect the coloring of? and assign color 2 to andy (resp.,
color 4 toy). In this way the 5-precoloring d? always extends t&. [

The corollary below is a specific version dfieorem 41t is also a stregthening of the
original result in the sense that the lower bound on the width is much smaller.

Corollary 7.1. If G is embedded in a surface S of Euler genus g* > 0 and w(G) >
64(29° — 1), then x (G) < 5.

Proof. Folow the proof of Theorem 7assuming thaP = ¢@. O

Corollary 7.2. Suppose G is embedded in S, a surface of Euler genus g* > 0 such that
w(G) > 64(29° — 1). If d(P) > 4, then any (5 + q)-coloring of G[P] in which each
component is g-colored extendsto a (5 + q)-coloring of G.

Proof. Corollay 7.1 implies that G is 5-colorabé and the esult follows from
Theorem?2 O

4. When a subgraph is precolored

We close with a 5-coloring extension th@mn in which each precolored component is
2-colored.Theorem 8s a specific realization cfFheorem 6

Theorem 8. Suppose G is embedded in S a surface of Euler genus g* > 0. If, for
1 <i < kdiameter (G[P]) < D,d(P) > 18, and wp(G) > (16D + 408)(29" — 1),
then any 5-coloring of G[ P] in which each component is 2-colored extendsto a 5-coloring
of G.

Proof. We omitdetails that are identical to those in the proofldfeorem 7 We assume
thatG is a triangulation ofS. Weknow thatG contains a planarizing collection of chordless
cyclesCy,Cp,...,Cs wheres < g* such that for 1 < i < j < s, dist(Ci,Cj) >

2d > 2D + 50 [13, 15. We letC], C;, ..., C; denote the cycles that detour around
the components ofG[P]. Specifically C} is homotopic toC;j, dist(C:, P) > 9, and
dist(C{, C{) > 2D 4+ 50— 2(D + 18) > 14.

We create the grapls; by making the subgrap@c{A orderly for each < s. Then for
1 <i < swe gply Lemma 1with C/ = C;. We letC/” denote theresulting nice cycle,
homotopic toC/ and lying within GC{!“' This gives the fial planarizing set of cycles
{C{,...,C{}. We have digiC/", C]’) > 2d — 36— 8 = 6 anddist(P, C{") > 5.

Next we form a plane triangulation in two stages. First we cut out the planarizing cycles
and replace each with either one omtwertices. Their distance froR is at least 5 and
their distance from each other is at least 6. Next we looR aBincewp(G) > 0, each
component oP is contractible. For & i < k remove edges fror®[ P, ] until the resulting
component is a tree. Contract ttth component to obtain the vertexand delete multiple
edges. The resulting grafby is a riangulation of the plane.
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Supposec is a 4-cobring of Gg using colorg1, 2, 3, 4}. As before we gange that for
1< j < s/ if Cis a 2-sided cycle, thea(xj) = c(yi). We then olor the \ertices in
Gi1 — G[P] by transferring the coloring o and coloring each of the nice planarizing
cycles. We still need to fix the coloring B[P]. For 1< i < k we 2-cola the vetices of
G[P;] using the colorg(vj) and 5. The color classes in this 2-coloring are identical to the
color classes in the hypothesized precolorinGoP; ].

Suppose for one particuldat c(vi) = 1 and thatthe two color classes iG[P] are
assigned the colors 2 and 3 in the precoloring. First perform a (3, 5)-Kempe change at
every \ertex in G[P] that is colored 5. Now every vertex B[P ] that is supposed to
be colored 3 is. Second perform a (1, 5)-Kempe change at every ver8kH1 that
is colored 1. Finally, perform a (&)-Kempe change at every vertex @[ P;] that is
currently colored 5. These three Kempe changes have the effect of making the colors on
G[P;] agree with those of the precoloring. Furthermore these color changes are confined
to P, UN(P)UNZ2(P)UN3(P). The aguments for other possibrecolorings are either
similar or simpler 8].

The last step is to color the vertices Gfthat were deleted to crea;. All of these
vertices are interior to contractible 3- or 4atgs that are within distance 4 of sor@¢.

We will color these independently in exactly the same manner as was done in the proof of
Theorem7 O

If one wanted an extension theorem in which a 6-colorinG @] with each component
2-colored extends to a 6-coloring of all &, thend(P) > 18 is needed. The required
hypothesis on the relative width is thap (G) > 208(29° —1). This latter hypothesis can be
replaced by assuming both that diamé®@fP 1) < D andw(G) > 18(D+1)208(29" - 1).

In either case the proofs are easier than the prodheforem 8
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