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Let n≥1, and let m be an integer with m≥2. We show that if a subset A of the interval
[0,n] satisfies that 0∈A and |A|>1+n/2, thenmA, the set of the sum ofm (not necessarily
distinct) elements in A, has a power of m. This result is best possible in the case that m
is odd.

1. Introduction

First of all we prepare some notations. Let h≥ 2, and let A1,A2, . . . ,Ah be
sets of integers. We denote by A1+A2+· · ·+Ah the set of all integers of the
form a1+a2+ · · ·+ah, where ai∈Ai for i=1,2, . . . ,h. We call it the sumset.
If every Ai is the same, say A, then we denote A1+A2+· · ·+Ah by hA. Let
n≥ 1. A set A of nonnegative integers is called normal if it contains 0 and
the greatest common divisor of all elements of A is 1. For each integer d, we
define the set d∗A :={da :a∈A}.

Erdős and Freud had conjectured that if A⊆ [1,n] with |A|> n/3, then
some power of 2 can be written as the sum of distinct elements of A. This
was proved by Erdős and Freiman [1], and sharpened by Nathanson and
Sárkőzy [5]. Recently Lev [2] proved the following:

Theorem 1.1. Let n ≥ 1, and let A be a set of integers contained in the
interval [1,n]. If |A|>n/3 then there is a power of 2 that can written as the
sum of at most four (not necessarily distinct) elements of A.

Mathematics Subject Classification (2000): 11B13, 05D05



2 TETSUYA ABE

In other word, if A ⊆ [0,n] satisfies that 0 ∈ A and |A| > 1+n/3 then
4A has a power of 2. This result is best possible in the sense: there is a
subset A of [0,n] such that 0 ∈ A, |A| = 1+ 	n/3
 and the powers of 2
cannot be represented as sums of elements of A (indeed, A can be chosen
as the multiples of 3). Moreover there is a subset A of [0,n] such that 0∈A,
|A|>1+n/3, and 3A has no power of 2.

Our main result in this paper is the following:

Theorem 1.2. Let m be an integer with m≥2. Then mA contains a power
of m whenever A⊆ [0,n] satisfies that 0∈A and |A|>1+n/2.

Theorem 1.2 is best possible in the case that m is odd. Let A be the set
of all integers contained in the interval [0,n] that are divisible by 2. Then
|A|=1+	n/2
. Since every sum of elements of A is divisible by 2, no power
of m can be written as the sum of elements of A. Moreover we can construct
examples of A⊆ [0,n] such that 0∈A and |A|>1+n/2, but (m−1)A contains
no power of m. Let n=mr+2 where r≥2, and let

A = 2 ∗
[
0,

n − 1
2

]
∪ {n}.

Clearly |A|= 1+n/2+1/2. Since m− 1 is even, the set of odd integers of
(m−1)A is

m−3
2⋃

i=0

(
(m − 2− 2i)

(
2 ∗

[
0,

n − 1
2

])
+ {(2i + 1)n}

)
,

which is contained in the interval [n,(m− 1)n− 1]. Since (m− 1)n− 1 ≤
mr+1−(m(m−2)+3)<mr+1, (m−1)A has no power of m.

2. Proof of Theorem 1.2

In this section we prove Theorem 1.2. The next lemma will be used to prove
the theorem.

Lemma 2.1. Let n ≥ 1, and let m be an integer with m ≥ 2. If A⊆ [0,n]
and B⊆ [0,(m−1)n] are such that 0∈A, 0∈B, and

|A|+ |B| > (m − 1)n + 1

then the sumset A+B contains a power of m.
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Proof. Suppose on the contrary that the sumset A+B contains no power
of m. We may assume that n ≥ 2. By induction on n, we have that |A∩
[0,n−1]|+ |B ∩ [0,(m−1)(n−1)]|≤ (m−1)(n−1)+1. Therefore n∈A and
b :=(m−1)n∈B. Let r be an integer such that mr <b<mr+1. We consider
two cases.
Case 1. n<mr. Let A1=(−1)∗A+{mr}. Then A1⊆ [0, b], and moreover A1

and B have no common element. Hence |A|+ |B|= |A1|+ |B|≤(m−1)n+1.
This is a contradiction.
Case 2. n>mr. Note that b+n>mr+1. Let A1=[0, b]∩((−1)∗A+{mr+1})
and let B1=B∩[mr+1−n,b]. Clearly A1∩B1=∅ and A1∪B1⊆ [mr+1−n,b].
If mr+1−b>1, then by induction on n, we have that

|A∩[0,mr+1−b−1]|+|B∩[0, (m−1)(mr+1−b−1)]| ≤ (m−1)(mr+1−b−1)+1,

and so

|A|+ |B| ≤ (m − 1)(mr+1 − b − 1) + 1 + |A1|+ |B1|
+ |[(m − 1)(mr+1 − b − 1) + 1,mr+1 − n − 1]|

≤ (m − 1)n + 1.

Otherwise, mr+1 = b+1. If m=2, then |A1|+ |B1| ≤ n−1 because neither
A1 nor B1 contains 2r. If m≥ 3, then |B∩ [0,mr+1−n−1]| ≤mr+1−n−1
because 1 /∈B. Therefore we have that

|A|+ |B| ≤ 1 + |B ∩ [0,mr+1 − n − 1]|+ |A1|+ |B1|
≤ (m − 1)n + 1,

which is a contradiction.

Next we use Lev’s theorem [3]. This is a very important result which is
a generalization of Freiman’s theorem (see [4]). Let n+1≥ k ≥ 1. By l we
denote the positive integer satisfying

l(k − 2) ≤ n − 1 ≤ (l + 1)(k − 2).(1)

Theorem 2.2. If A is a normal k-element subset of the interval [0,n], then
for h≥1

|hA| ≥




h(h + 1)(k − 2)
2

+ h + 1 if h ≤ l;

l(l + 1)(k − 2)
2

+ l + 1 + (h − l)n if h ≥ l.
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Proof of Theorem 1.2. Let A be a subset of the interval [0,n] such that
0∈A and |A|>1+n/2. We may assume that n∈A. Then A is normal. Since
2(|A|−2)>n−2, we can see that the inequality (1) holds with k= |A| and
l=1. By Theorem 2.2,

|(m − 1)A| ≥ (|A| − 2) + 2 + (m − 2)n > (m − 3/2)n + 1,

and so
|A|+ |(m − 1)A| > (m − 1)n + 1.

From Lemma 2.1 we have that mA=A+(m−1)A contains a power of m.
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