Drawing Planar Graphs with Few Segments on the Grid

Philipp Kindermann
Universität Würzburg

joint work with
Tamara Mchedlidze Thomas Schneck Antonios Symvonis
Visual Complexity

of geometric entities in a drawing
Visual Complexity

of geometric entities in a drawing
Visual Complexity

of geometric entities in a drawing

(strong) line cover number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7

6
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

segment number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7

segment number
Visual Complexity

of geometric entities in a drawing

(Strong) line cover number

Segment number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7

segment number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7

segment number

6
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7

segment number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

segment number
Visual Complexity

of geometric entities in a drawing

(Strong) line cover number

Segment number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

segment number

arc number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7 6

segment number

arc number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7

segment number

7

arc number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7

segment number

7

arc number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

segment number

arc number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

segment number

arc number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7

6

segment number

arc number

path cover number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

segment number

arc number

path cover number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

segment number

arc number

path cover number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

segment number

arc number

path cover number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7

segment number

6

arc number

5

path cover number

4
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

segment number

arc number

slope number

path cover number
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7

6

7

6

segment number

arc number

path cover number

slope number

2

5

4
Visual Complexity

of geometric entities in a drawing

(strong) line cover number

7

6

segment number

7

arc number

5

path cover number

4

slope number

2

all other numbers are lower bounds
(Some) Known Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
</tr>
</tbody>
</table>

(Some) Known Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>tree</td>
<td>$\theta/2$</td>
<td>$\theta/2$</td>
<td>$\theta/2$</td>
</tr>
</tbody>
</table>

[1] Dujmović et al. 2007
(Some) Known Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>tree</td>
<td>$\vartheta/2$ [1]</td>
<td>$\vartheta/2$ [1]</td>
<td></td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1] Dujmović et al. 2007
(Some) Known Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>tree</td>
<td>$\phi/2$ [1]</td>
<td>$\phi/2$ [1]</td>
<td></td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
<td></td>
</tr>
</tbody>
</table>

[1] Dujmović et al. 2007
<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>tree</td>
<td>$\vartheta/2$ [1]</td>
<td>$\vartheta/2$ [1]</td>
<td></td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
<td></td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
<td></td>
</tr>
</tbody>
</table>

[1] Dujmović et al. 2007
(Some) Known Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>tree</td>
<td>$\vartheta/2$ [1]</td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
</tr>
</tbody>
</table>

[1] Dujmović et al. 2007
\textbf{(Some) Known Results}

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td></td>
</tr>
<tr>
<td>tree</td>
<td>$\vartheta/2$ [1]</td>
<td>$\vartheta/2$ [1]</td>
<td></td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
<td></td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
<td></td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
<td></td>
</tr>
</tbody>
</table>

[1] Dujmović et al. 2007
(Some) Known Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>tree</td>
<td>$\theta/2$ [1]</td>
<td>$\theta/2$ [1]</td>
<td></td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
<td></td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
<td></td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
<td></td>
</tr>
<tr>
<td>cubic 3-conn.</td>
<td>$n/2$ [3]</td>
<td>$n/2$ [2]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>tree</td>
<td>$\theta/2$ [1]</td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
</tr>
<tr>
<td>cubic 3-conn.</td>
<td>$n/2$ [3]</td>
</tr>
</tbody>
</table>

(Some) Known Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td></td>
</tr>
<tr>
<td>tree</td>
<td>$\vartheta/2$ [1]</td>
<td>$\vartheta/2$ [1]</td>
<td></td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
<td></td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
<td></td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
<td></td>
</tr>
<tr>
<td>cubic 3-conn.</td>
<td>$n/2$ [3]</td>
<td>$n/2$ [2]</td>
<td></td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>$2n$ [4]</td>
<td>$9n/3$ [4]</td>
<td></td>
</tr>
</tbody>
</table>

(Some) Known Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td></td>
</tr>
<tr>
<td>tree</td>
<td>$\vartheta/2$ [1]</td>
<td>$\vartheta/2$ [1]</td>
<td></td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
<td></td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
<td></td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
<td></td>
</tr>
<tr>
<td>cubic 3-conn.</td>
<td>$n/2$ [3]</td>
<td>$n/2$ [2]</td>
<td></td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>$2n$ [4]</td>
<td>$9n/3$ [4]</td>
<td></td>
</tr>
</tbody>
</table>

[1] Dujmović et al. 2007
[2] Igamberdiev et al. 2015
(Some) Known Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th>Grid Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>tree</td>
<td>$\vartheta/2$ [1]</td>
<td>$\vartheta/2$ [1]</td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
</tr>
<tr>
<td>cubic 3-conn.</td>
<td>$n/2$ [3]</td>
<td>$n/2$ [2]</td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>$2n$ [4]</td>
<td>$9n/3$ [4]</td>
</tr>
</tbody>
</table>

[1] Dujmović et al. 2007
[2] Igamberdiev et al. 2015
(Some) Known Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th>Grid Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>tree</td>
<td>$\vartheta/2$ [1]</td>
<td>$\vartheta/2$ [1]</td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>$2n$ [4]</td>
<td>$9n/3$ [4]</td>
</tr>
</tbody>
</table>

[1] Dujmović et al. 2007
[2] Igamberdiev et al. 2015
(Some) Known Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th>Grid Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>tree</td>
<td>$\theta/2$ [1]</td>
<td>$\theta/2$ [1]</td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>$2n$ [4]</td>
<td>$9n/3$ [4]</td>
</tr>
</tbody>
</table>

(Some) Known Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments Lower</th>
<th>Segments Upper</th>
<th>Grid Segments Segm.</th>
<th>Grid Segments Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree</td>
<td>$\vartheta/2$ [1]</td>
<td>$\vartheta/2$ [1]</td>
<td>$3n/4$ [6]</td>
<td>$O(n^2) \times O(n^{1.58})$</td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>$2n$ [4]</td>
<td>$9n/3$ [4]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Some) Known Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th>Grid Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>tree</td>
<td>(\vartheta/2) [1]</td>
<td>(\vartheta/2) [1]</td>
</tr>
<tr>
<td>outerplanar</td>
<td>(n) [1]</td>
<td></td>
</tr>
<tr>
<td>max. outerp.</td>
<td>(n) [1]</td>
<td>(n) [1]</td>
</tr>
<tr>
<td>3-trees</td>
<td>(2n) [1]</td>
<td>(2n) [1]</td>
</tr>
<tr>
<td>2-connected</td>
<td>(2n) [1]</td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>(2n) [1]</td>
<td>(5n/2) [1]</td>
</tr>
<tr>
<td>cubic 3-conn.</td>
<td>(n/2) [3]</td>
<td>(n/2) [2]</td>
</tr>
<tr>
<td>triangulation</td>
<td>(2n) [4]</td>
<td>(7n/3) [4]</td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>(2n) [4]</td>
<td>(9n/3) [4]</td>
</tr>
<tr>
<td>planar</td>
<td>(2n) [4]</td>
<td>(8n/3) [4]</td>
</tr>
</tbody>
</table>

(Some) Known Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th>Grid Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>tree</td>
<td>$\vartheta/2$ [1]</td>
<td>$\vartheta/2$ [1]</td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
</tr>
<tr>
<td>3-trees</td>
<td>2n [1]</td>
<td>2n [1]</td>
</tr>
<tr>
<td>2-connected</td>
<td>2n [1]</td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>2n [1]</td>
<td>5$n/2$ [1]</td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>2n [4]</td>
<td>9$n/3$ [4]</td>
</tr>
</tbody>
</table>

(Some) Known Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th>Grid Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>tree</td>
<td>$\vartheta/2$ [1]</td>
<td>$\vartheta/2$ [1]</td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>$2n$ [4]</td>
<td>$9n/3$ [4]</td>
</tr>
</tbody>
</table>

(Some) Known Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th>Grid Segments</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td>Segm.</td>
</tr>
<tr>
<td>tree</td>
<td>$\vartheta/2$ [1]</td>
<td>$\vartheta/2$ [1]</td>
<td>$3n/4$ [6]</td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
<td>$\vartheta/2$ [6]</td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
<td>$3n/2$ [6]</td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
<td>$8n/3$ [6]</td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
<td></td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>$2n$ [4]</td>
<td>$9n/3$ [4]</td>
<td></td>
</tr>
</tbody>
</table>

(Some) Known Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th>Grid Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>tree</td>
<td>$\vartheta/2$ [1]</td>
<td>$\vartheta/2$ [1]</td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>$2n$ [4]</td>
<td>$9n/3$ [4]</td>
</tr>
</tbody>
</table>

Tree Drawings

Tree T
n vtcs
Tree Drawings

Tree T

n vtcs

β deg-2 vtcs
Tree Drawings

Tree T

n vtcs

β deg-2 vtcs
Tree Drawings

Tree T
n vtcs

Remove β deg-2 vtcs
Tree Drawings

Tree T
n vtcs

\Rightarrow Tree T'
$n - \beta$ vtcs

Remove β deg-2 vtcs
Tree Drawings

Tree T
n vtcs

⇒ Tree T'
$n - \beta$ vtcs

Remove β deg-2 vtcs

α leaves
Tree Drawings

Tree T
n vtcs

Remove β deg-2 vtcs

\Rightarrow Tree T'
$n - \beta$ vtcs

α leaves
Tree Drawings

Tree T
n vtcs

Remove β deg-2 vtcs

\Rightarrow Tree T'
$n - \beta$ vtcs

α leaves
Tree Drawings

Tree T
n vtcs

⇒ Tree T'
$n - \beta$ vtcs

Remove β deg-2 vtcs

Remove α leaves
Tree Drawings

Tree T
n vtcs

\Rightarrow Tree T'
$n - \beta$ vtcs

Remove β deg-2 vtcs

Remove α leaves

\Rightarrow Tree T''
$n - \alpha - \beta$ vtcs
Tree Drawings

Tree T
n vtcs

\Rightarrow Tree T'
$n - \beta$ vtcs

Remove β deg-2 vtcs

Remove α leaves

\Rightarrow Tree T''
$n - \alpha - \beta$ vtcs

$n - \alpha - \beta$ segments
Tree Drawings

Tree T
n vtcs

⇒ Tree T'
$n - \beta$ vtcs

Remove β deg-2 vtcs

⇒ Tree T''
$n - \alpha - \beta$ vtcs

$n - \alpha - \beta$ segments

Remove α leaves
$+ \frac{\alpha}{2}$ segments
Tree Drawings

Tree T
n vtcs

⇒ Tree T'
$n - \beta$ vtcs

Remove β deg-2 vtcs

⇒ Tree T''
$n - \alpha - \beta$ vtcs

Remove α leaves
$+ \alpha/2$ segments

$n - \alpha/2 - \beta$ segments

$n - \alpha - \beta$ segment
Tree Drawings

Tree T
n vtcs

\Rightarrow Tree T'
$n - \beta$ vtcs

Remove β deg-2 vtcs
$+ 0$ segments

Remove α leaves
$+ \alpha/2$ segments

$n - \alpha/2 - \beta$ segments

\Rightarrow Tree T''
$n - \alpha - \beta$ vtcs

$n - \alpha - \beta$ segment
Tree Drawings

Tree T

n vtcs

⇒ Tree T'

$n - \beta$ vtcs

Remove β deg-2 vtcs

$+ 0$ segments

⇒ Tree T''

$n - \alpha - \beta$ vtcs

Remove α leaves

$+ \alpha/2$ segments

$n - \alpha/2 - \beta$ segments

$n - \alpha - \beta$ segment
Tree Drawings

Tree T
n vtcs

\Rightarrow Tree T'
$n - \beta$ vtcs

\Rightarrow Tree T''
$n - \alpha - \beta$ vtcs

Remove β deg-2 vtcs
+ 0 segments

Remove α leaves
+ $\alpha/2$ segments

$n - \alpha/2 - \beta$ segments

$n - \alpha - \beta$ segment
Tree Drawings

Tree T
n vtcs

\Rightarrow Tree T'
$n - \beta$ vtcs

\Rightarrow Tree T''
$n - \alpha - \beta$ vtcs

Remove β deg-2 vtcs
$+ 0$ segments

Remove α leaves
$+ \alpha/2$ segments

$n - \alpha/2 - \beta$ segments

$\alpha > (n - \beta)/2$
Tree Drawings

Tree T
n vts

\Rightarrow Tree T'
$n - $vts

\Rightarrow Tree T''
$n - $vts

Remove β deg-2 vts
$+ 0$ segments

$3n/4$ segments

Remove α leaves
$+ \alpha/2$ segments

$\alpha > (n - \beta)/2$

$n - \alpha/2 - \beta$ segments

$n - \alpha - \beta$ segment
Tree Drawings

(1) Draw △ □ □ ▢ ▢
Tree Drawings

(1) Draw ▲ ▲ ▼ ▼
Tree Drawings

(1) Draw

\[\text{Diagram of trees} \]
Tree Drawings

(1) Draw △ □ □ ▢ ▤
Tree Drawings

(1) Draw ▲ ▲ ▲ ▲
Tree Drawings

(1) Draw Δ Δ Δ Δ

(2) Layout \(\nu + \) Δ Δ Δ Δ
Tree Drawings

(1) Draw

(2) Layout $v +$
Tree Drawings

(1) Draw ▲ ▼ ▼ ▼

(2) Layout $v +$ ▲ ▼ ▼ ▼ ▼
Tree Drawings

(1) Draw ▲ ▲ ▲ ▲
(2) Layout $v + ▲ ▲ ▲ ▲ ▲$
Tree Drawings

(1) Draw

(2) Layout $v +$
Tree Drawings

(1) Draw △ △ △ △

(2) Layout \(v + \) △ △ △ △ △
Tree Drawings

(1) Draw △ △ △ △
(2) Layout v + △ △ △ △
(3) Add □
Tree Drawings

(1) Draw

(2) Layout $v +$

(3) Add
Tree Drawings

(1) Draw △ △ △ △

(2) Layout v + △ △ △ △

(3) Add □
Tree Drawings

(1) Draw △ △ △ △
(2) Layout $v + △ △ △ △$
(3) Add □
Tree Drawings

(1) Draw

(2) Layout $v +$

(3) Add

(4) Sort by #
Tree Drawings

(1) Draw

(2) Layout $v +$

(3) Add

(4) Sort by #
Tree Drawings

(1) Draw

(2) Layout

(3) Add

(4) Sort by#

(5) Place + on common segments in order
Tree Drawings

(1) Draw ▲ ▼ ▲ ▼ ▲
(2) Layout $v + ▲ ▼ ▲ ▼ ▲$
(3) Add □
(4) Sort ● by #
(5) Place ● + □ on common segments in order
Tree Drawings

(1) Draw

(2) Layout $v +$

(3) Add

(4) Sort ● by #

(5) Place ● + ■ on common segments in order
Tree Drawings

(1) Draw

(2) Layout $v +$

(3) Add

(4) Sort \bullet by #

(5) Place $\bullet + \square$ on common segments in order
Tree Drawings

(1) Draw

(2) Layout $v +$

(3) Add \square

(4) Sort \bullet by #

(5) Place $\bullet + \square$ on common segments in order
Tree Drawings

(1) Draw △ △ △ △

(2) Layout $v +$ △ △ △ △

(3) Add □

(4) Sort ☆ by #

(5) Place ☆ + □ on common segments in order
Tree Drawings

(1) Draw △ □ □ □ □

(2) Layout \(v + \) △ □ □ □ □

(3) Add □

(4) Sort ● by #

(5) Place ● + □ on common segments in order
Tree Drawings

(1) Draw △ △ △ △

(2) Layout v + △ △ △ △

(3) Add □

(4) Sort ● by #

(5) Place ● + □ on common segments in order
Tree Drawings

(1) Draw triangle, square, arrowhead, diamond

(2) Layout $v +$ triangle, square, arrowhead, diamond

(3) Add square

(4) Sort circle by #

(5) Place circle, plus, square on common segments in order

$3n/4$ segments
Tree Drawings

1. Draw ▲ △ □ □
2. Layout $v + ▲ △ □ □$
3. Add □
4. Sort ● by #
5. Place ● + □ on common segments in order

$3n/4$ segments
$n \times n$ grid
Tree Drawings

1. Draw △ □ ▲ △
2. Layout v + △ □ ▲ △
3. Add □
4. Sort • by #
5. Place • + □ on common segments in order

$3n/4$ segments

$n \times n$ grid
Tree Drawings

(1) Draw △ △ △ △

(2) Layout v + △ △ △ △

(3) Add □

(4) Sort ● by #

(5) Place ● + □ on common segments in order

3n/4 segments
n × n grid
Tree Drawings

(1) Draw ▲ ▲ ▲ ▲
(2) Layout ◆ + ▲ ▲ ▲ ▲
(3) Add □
(4) Sort ◆ by #
(5) Place ◆ + □ on common segments in order

$3n/4$ segments
$n \times n$ grid
Tree Drawings

(1) Draw ▲ ▲ ▲ ▲

(2) Layout $v + \ ▲ ▲ ▲ ▲$

(3) Add □

(4) Sort ● by #

(5) Place ● + □ on common segments in order

$3n/4$ segments

$n \times n$ grid
Tree Drawings

(1) Draw △ △ △ △

(2) Layout \(v + △ △ △ △ \)

(3) Add □

(4) Sort \(\bullet \) by #

(5) Place \(\bullet + □ \) on common segments in order

3n/4 segments

\(n \times n \) grid
Tree Drawings

(1) Draw ▲ △ □ △ ▲
(2) Layout $v + ▲ △ △ ▲ ▲$
(3) Add □
(4) Sort ● by #
(5) Place ● + □ on common segments in order

$3n/4$ segments

$n \times n$ grid

height ✓
Tree Drawings

(1) Draw △ △ △ △

(2) Layout v + △ △ △ △

(3) Add □

(4) Sort ● by #

(5) Place ● + □ on common segments in order

3n/4 segments

n × n grid

height ✓

width
Tree Drawings

(1) Draw ▲▲▲▲
(2) Layout v + ▲▲▲▲
(3) Add □
(4) Sort ● by #
(5) Place ● + □ on common segments in order

3n/4 segments
n × n grid

height ✓
width
Tree Drawings

(1) Draw

(2) Layout $v +$

(3) Add

(4) Sort \bullet by #

(5) Place $\bullet +$ \square on common segments in order

$3n/4$ segments

$n \times n$ grid

height ✓

width

$n \times n$ grid
Tree Drawings

(1) Draw ▲ ▼ ▼ ▼ ▼
(2) Layout ▼ + ▲ ▼ ▼ ▼ ▼
(3) Add □
(4) Sort ● by #
(5) Place ● + □ on common segments in order

$3n/4$ segments
$n \times n$ grid

height ✓
width
Tree Drawings

(1) Draw

(2) Layout $v +$

(3) Add

(4) Sort by #

(5) Place on common segments in order

$3n/4$ segments

$n \times n$ grid

height ✓

width
Tree Drawings

(1) Draw △ △ △ △
(2) Layout \(v + \) △ △ △ △
(3) Add □
(4) Sort • by #
(5) Place • + □ on common segments in order

3n/4 segments
\(n \times n \) grid

height ✓
width ✓
Improved Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th>Grid Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>tree</td>
<td>$\theta/2$ [1]</td>
<td>$\theta/2$ [1]</td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>$2n$ [4]</td>
<td>$9n/3$ [4]</td>
</tr>
</tbody>
</table>

Improved Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments Lower</th>
<th>Segments Upper</th>
<th>Grid Segments Segm.</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree</td>
<td>$\vartheta/2$ [1]</td>
<td>$\vartheta/2$ [1]</td>
<td>$3n/4$</td>
<td>$n \times n$</td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
<td>$\vartheta/2$ [6]</td>
<td>quasipolynomial</td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
<td>$3n/2$ [6]</td>
<td>$O(n) \times O(n^2)$</td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
<td>$8n/3$ [6]</td>
<td>$O(n) \times O(n^2)$</td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>$2n$ [4]</td>
<td>$9n/3$ [4]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Orderly Spanning Trees

[Chiang, Lin, Lu '05]
Orderly Spanning Trees

[Chiang, Lin, Lu ’05]
Orderly Spanning Trees

[Chiang, Lin, Lu ’05]
Orderly Spanning Trees

[Chiang, Lin, Lu ’05]

neighbors of v in circ. order:
Orderly Spanning Trees

neighbors of v in circ. order:

(1) parent

[Chiang, Lin, Lu ’05]
neighbors of v in circ. order:

(1) parent
(2) $N^+(v)$: diff. subtree (left)
neighbors of v in circ. order:

1. parent
2. $N^+(v)$: diff. subtree (left)
neighbors of v in circ. order:

(1) parent

(2) $N^+(v)$: diff. subtree (left)
Orderly Spanning Trees

neighbors of v in circ. order:

1. parent
2. $N^+(v)$: diff. subtree (left)
3. children
neighbors of v in circ. order:

1. parent
2. $N^+(v)$: diff. subtree (left)
3. children
4. $N^-(v)$: diff. subtree (right)
neighbors of v in circ. order:

1. parent
2. $N^+(v)$: diff. subtree (left)
3. children
4. $N^-(v)$: diff. subtree (right)
neighbors of \(v \) in circ. order:

1. parent
2. \(N^+(v) \): diff. subtree (left)
3. children
4. \(N^-(v) \): diff. subtree (right)
Slope-Disjoint Drawing of a Tree

Assign angle interval to each vtx

Angelini et al. ’12
Slope-Disjoint Drawing of a Tree

Assign angle interval to each vtx

[Angelini et al. ’12]
Slope-Disjoint Drawing of a Tree

Assign angle interval to each vtx
All segments in $T[v]$ in interval

[Angelini et al. ’12]
Slope-Disjoint Drawing of a Tree

Assign angle interval to each vtx
All segments in $T[v]$ in interval

[Angelini et al. ’12]
Slope-Disjoint Drawing of a Tree

Assign angle interval to each vtx
All segments in $T[v]$ in interval

[Angelini et al. ’12]
Slope-Disjoint Drawing of a Tree

Assign angle interval to each vtx
All segments in $T[v]$ in interval
Intervals of children: disjoint subintervals that contain parent edge

[Angelini et al. ’12]
Slope-Disjoint Drawing of a Tree

Assign angle interval to each vtx
All segments in $T[v]$ in interval
Intervals of children: disjoint subintervals that contain parent edge

[Angelini et al. ’12]
Slope-Disjoint Drawing of a Tree

Assign angle interval to each vtx
All segments in $T[v]$ in interval
Intervals of children: disjoint subintervals that contain parent edge

[Angelini et al. ’12]
Slope-Disjoint Drawing of a Tree

Assign angle interval to each vtx
All segments in $T[v]$ in interval
Intervals of children: disjoint subintervals that contain parent edge
Slope-Disjoint Drawing of a Tree

Assign angle interval to each vtx
All segments in $T[v]$ in interval
Intervals of children: disjoint subintervals that contain parent edge

[Hossain & Rahman ’15]
Slope-disjoint drawing of orderly spanning tree on $O(n) \times O(n^2)$ grid
⇒ planar (monotone) drawing on $O(n) \times O(n^2)$ grid

[Angelini et al. ’12]
Slope-Disjoint Drawing of a Tree

Assign angle interval to each vtx
All segments in $T[v]$ in interval
Intervals of children: disjoint subintervals that contain parent edge

[Angelini et al. ’12]

Slope-disjoint drawing of orderly spanning tree on $O(n) \times O(n^2)$ grid
⇒ planar (monotone) drawing on $O(n) \times O(n^2)$ grid
doesn’t change the slopes!

[Angelini et al. ’12]

[Hossain & Rahman ’15]
Slope-disjoint drawing of orderly spanning tree on $O(n) \times O(n^2)$ grid
⇒ planar (monotone) drawing on $O(n) \times O(n^2)$ grid
doesn’t change the slopes!
Obtaining a slope-disjoint drawing
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
otherwise use highest slope +1
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
otherwise use highest slope +1
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
otherwise use highest slope +1
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
otherwise use highest slope +1
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
otherwise use highest slope +1
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
otherwise use highest slope +1
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
otherwise use highest slope $+1$
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
otherwise use highest slope +1
Obtaining a slope-disjoint drawing

cCW pre-order traversal
reuse slope whenever possible
otherwise use highest slope +1
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
otherwise use highest slope +1

highest slope: n
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
otherwise use highest slope +1

highest slope: n
max. width: n
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
otherwise use highest slope +1

highest slope: n
max. width: n

$\Rightarrow n \times n^2$ grid
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
otherwise use highest slope +1

highest slope: \(n \)
max. width: \(n \)

\(\Rightarrow n \times n^2 \) grid, 1 segment per leaf
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
otherwise use highest slope +1

highest slope: n
max. width: n

$\Rightarrow n \times n^2$ grid, 1 segment per leaf

[Miura, Azuma, Nishizeki ’05]
Every Schnyder tree is an orderly spanning tree
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
otherwise use highest slope $+1$

highest slope: n
max. width: n

$\Rightarrow n \times n^2$ grid, 1 segment per leaf

[Miura, Azuma, Nishizeki ’05]
Every Schnyder tree is an orderly spanning tree

T_1, T_2, T_3 Schnyder realizer of 3-conn. planar graph
$\Rightarrow \leq 2n + 1$ leaves in total in T_1, T_2, T_3
Obtaining a slope-disjoint drawing

ccw pre-order traversal
reuse slope whenever possible
otherwise use highest slope +1

highest slope: \(n \)
max. width: \(n \)

\[\Rightarrow n \times n^2 \text{ grid, 1 segment per leaf} \]

[Miura, Azuma, Nishizeki ‘05]
Every Schnyder tree is an orderly spanning tree

\(T_1, T_2, T_3 \) Schnyder realizer of 3-conn. planar graph
\[\Rightarrow \leq 2n + 1 \text{ leaves in total in } T_1, T_2, T_3 \]

3-conn. planar graph
\[\Rightarrow (8n - 14)/3 \text{ segments, } O(n) \times O(n^2) \text{ grid} \]
<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th>Grid Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>tree</td>
<td>$\theta/2$ [1]</td>
<td>$\theta/2$ [1]</td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>$2n$ [4]</td>
<td>$9n/3$ [4]</td>
</tr>
</tbody>
</table>

New Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th>Grid Segments</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td>Segm.</td>
</tr>
<tr>
<td>tree</td>
<td>$\vartheta/2$ [1]</td>
<td>$\vartheta/2$ [1]</td>
<td>$3n/4$</td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
<td>$3n/2$ [6]</td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
<td>$8n/3$ [6]</td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td></td>
<td>$8n/3$</td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
<td>$8n/3$</td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>$2n$ [4]</td>
<td>$9n/3$ [4]</td>
<td></td>
</tr>
</tbody>
</table>

New Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th>Grid Segments</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td>Segm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tree</td>
<td>3n/4</td>
<td>n × n</td>
<td></td>
</tr>
<tr>
<td>outerplanar</td>
<td>7n/4</td>
<td>O(n) × O(n^2)</td>
<td></td>
</tr>
<tr>
<td>max. outerp.</td>
<td>8n/3</td>
<td>O(n) × O(n^2)</td>
<td></td>
</tr>
<tr>
<td>3-trees</td>
<td>8n/3</td>
<td>O(n) × O(n^2)</td>
<td></td>
</tr>
<tr>
<td>2-connected</td>
<td>8n/3</td>
<td>O(n) × O(n^2)</td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>8n/3</td>
<td>O(n) × O(n^2)</td>
<td></td>
</tr>
<tr>
<td>cubic 3-conn.</td>
<td>n/2</td>
<td>n/2</td>
<td>2O(n log n)</td>
</tr>
<tr>
<td>triangulation</td>
<td>7n/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>9n/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>planar</td>
<td>8n/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th>Grid Segments</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Segm.</td>
<td>Area</td>
</tr>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td></td>
</tr>
<tr>
<td>tree</td>
<td>$\theta/2$ [1]</td>
<td>$\theta/2$ [1]</td>
<td>$3n/4$</td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td>n [1]</td>
<td>$7n/4$</td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
<td>$3n/2$ [6]</td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
<td>$8n/3$ [6]</td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
<td>$8n/3$</td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>$2n$ [4]</td>
<td>$9n/3$ [4]</td>
<td>$5n/2$</td>
</tr>
</tbody>
</table>

New Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments</th>
<th></th>
<th>Grid Segments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td>Segm.</td>
<td>Area</td>
</tr>
<tr>
<td>tree</td>
<td>$\vartheta/2$ [1]</td>
<td>$\vartheta/2$ [1]</td>
<td>$3n/4$</td>
<td>$n \times n$</td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
<td>$\vartheta/2$ [6]</td>
<td>quasipolynomial</td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
<td>$7n/4$</td>
<td>$O(n) \times O(n^2)$</td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
<td>$8n/3$ [6]</td>
<td>$O(n) \times O(n^2)$</td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
<td>$8n/3$</td>
<td>$O(n) \times O(n^2)$</td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>$2n$ [4]</td>
<td>$9n/3$ [4]</td>
<td>$5n/2$</td>
<td>$O(n) \times O(n^2)$</td>
</tr>
<tr>
<td>planar</td>
<td>$2n$ [4]</td>
<td>$8n/3$ [4]</td>
<td>$17n/6$</td>
<td>$O(n) \times O(n^2)$</td>
</tr>
</tbody>
</table>

New Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Segments Lower</th>
<th>Segments Upper</th>
<th>Grid Segments Segm.</th>
<th>Grid Segments Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree</td>
<td>$\theta/2$ [1]</td>
<td>$\theta/2$ [1]</td>
<td>$3n/4$</td>
<td>$n \times n$</td>
</tr>
<tr>
<td>outerplanar</td>
<td>n [1]</td>
<td></td>
<td>$\theta/2$ [6]</td>
<td>quasipolynomial</td>
</tr>
<tr>
<td>max. outerp.</td>
<td>n [1]</td>
<td>n [1]</td>
<td>$7n/4$</td>
<td>$O(n) \times O(n^2)$</td>
</tr>
<tr>
<td>3-trees</td>
<td>$2n$ [1]</td>
<td>$2n$ [1]</td>
<td>$3n/2$ [6]</td>
<td>$O(n) \times O(n^2)$</td>
</tr>
<tr>
<td>2-connected</td>
<td>$2n$ [1]</td>
<td></td>
<td>$8n/3$ [6]</td>
<td>$O(n) \times O(n^2)$</td>
</tr>
<tr>
<td>3-connected</td>
<td>$2n$ [1]</td>
<td>$5n/2$ [1]</td>
<td>$17n/6$</td>
<td>$O(n) \times O(n^2)$</td>
</tr>
<tr>
<td>triangulation</td>
<td>$2n$ [4]</td>
<td>$7n/3$ [4]</td>
<td>$5n/2$</td>
<td>$O(n) \times O(n^2)$</td>
</tr>
<tr>
<td>4-conn. triang.</td>
<td>$2n$ [4]</td>
<td>$9n/3$ [4]</td>
<td></td>
<td>$17n/6$ $O(n) \times O(n^2)$</td>
</tr>
</tbody>
</table>