The QuaSEFE Problem

Patrizio Angelini, Henry Förster, Michael Hoffmann, Michael Kaufmann, Stephen Kobourov, Giuseppe Liotta, Maurizio Patrignani

27th International Symposium on Graph Drawing and Network Visualization 2019
The QuaSEFE Problem

QuaSEFE
The QuaSEFE Problem
The QuaSEFE Problem

Simultaneous (Graph) Embedding with Fixed Edges
The QuaSEFE Problem

QuaSEFE

Simultaneous (Graph) Embedding with Fixed Edges

Input: Set of planar graphs with shared vertex set
The QuaSEFE Problem

Input: Set of planar graphs with shared vertex set

Output: Planar drawings for all graphs such that

![Diagram of QuaSEFE problem]
The QuaSEFE Problem

Input: Set of planar graphs with shared vertex set

Output: Planar drawings for all graphs such that vertices have the same position in all drawings (simultaneous drawings)
The QuaSEFE Problem

Input: Set of planar graphs with shared vertex set

Output: Planar drawings for all graphs such that

- vertices have the same position in all drawings (simultaneous drawings)
- edges have the same representation in all drawings (fixed edges)
The QuaSEFE Problem

Simultaneous (Graph) Embedding with Fixed Edges
The QuaSEFE Problem

Simultaneous (Graph) Embedding with Fixed Edges
The QuaSEFE Problem

Quasiplanarity

Simultaneous (Graph) Embedding with Fixed Edges
The QuaSEFE Problem

- Quasiplanarity
- Quasiplanar Embedding: No triple of edges crosses pairwise

Simultaneous (Graph) Embedding with Fixed Edges
The QuaSEFE Problem

- Quasiplanarity
- Quasiplanar Embedding: No triple of edges crosses pairwise

 forbidden
The QuaSEFE Problem

- Quasiplanar Embedding: No triple of edges crosses pairwise

- Quasiplanarity

Simultaneous (Graph) Embedding with Fixed Edges

- forbidden
- allowed (no triple)
The QuaSEFE Problem

Quasiplanarity

Simultaneous (Graph) Embedding with Fixed Edges

- Quasiplanar Embedding: No triple of edges crosses pairwise

- Thickness two drawings (i.e. two-edge colorable drawings) are quasiplanar
The QuaSEFE Problem

Quasiplanarity

Simultaneous (Graph) Embedding with Fixed Edges
The QuaSEFE Problem

- Quasiplanarity

- QuaSEFE Problem:

Simultaneous (Graph) Embedding with Fixed Edges
The QuaSEFE Problem

Quasiplanarity

Simultaneous (Graph) Embedding with Fixed Edges

QuaSEFE Problem:

\textbf{Input:} Set of quasiplanar graphs with shared vertex set
The QuaSEFE Problem

QuaSEFE Problem:
- **Input:** Set of *quasiplanar* graphs with shared vertex set
- **Output:** Simultaneous *quasiplanar* drawings for all graphs with fixed edges

Quasiplanarity
Related Work

- always positive instances for SEFE
Related Work

- always positive instances for SEFE
 - two caterpillars (in polynomial area) [Brass et al. ’06]
Related Work

- always positive instances for SEFE
 - two caterpillars (in polynomial area) \[\text{[Brass et al. '06]}\]
 - a planar graph and a tree \[\text{[Frati '06]}\]
Related Work

- always positive instances for SEFE
 - two caterpillars (in polynomial area) [Brass et al. ’06]
 - a planar graph and a tree [Frati ’06]
- counterexamples for SEFE
Related Work

- always positive instances for SEFE
 - two caterpillars (in polynomial area)
 - a planar graph and a tree
- counterexamples for SEFE
 - three paths

[Brass et al. ’06]
[Frati ’06]
[Brass et al. ’06]
Related Work

- always positive instances for SEFE
 - two caterpillars (in polynomial area) [Brass et al. ’06]
 - a planar graph and a tree [Frati ’06]
- counterexamples for SEFE
 - three paths [Brass et al. ’06]
 - two outerplanar graphs [Frati ’06]
Related Work

- always positive instances for SEFE
 - two caterpillars (in polynomial area) \[\text{[Brass et al. '06]}\]
 - a planar graph and a tree \[\text{[Frati '06]}\]
- counterexamples for SEFE
 - three paths \[\text{[Brass et al. '06]}\]
 - two outerplanar graphs \[\text{[Frati '06]}\]
- SEFE testable in $O(n^2)$ time for two biconnected planar graphs with connected intersection \[\text{[Bläsius & Rutter '16]}\]
Related Work

- always positive instances for SEFE
 - two caterpillars (in polynomial area) [Brass et al. ’06]
 - a planar graph and a tree [Frati ’06]
- counterexamples for SEFE
 - three paths [Brass et al. ’06]
 - two outerplanar graphs [Frati ’06]
- SEFE testable in $O(n^2)$ time for two biconnected planar graphs with connected intersection [Bläsius & Rutter ’16]
- Variants
Related Work

- always positive instances for SEFE
 - two caterpillars (in polynomial area) [Brass et al. ’06]
 - a planar graph and a tree [Frati ’06]
- counterexamples for SEFE
 - three paths [Brass et al. ’06]
 - two outerplanar graphs [Frati ’06]
- SEFE testable in $O(n^2)$ time for two biconnected planar graphs with connected intersection [Bläsius & Rutter ’16]
- Variants
 - no fixed mapping between vertices [Brass et al. ’06]
Related Work

- always positive instances for SEFE
 - two caterpillars (in polynomial area) [Brass et al. ‘06]
 - a planar graph and a tree [Frati ‘06]
- counterexamples for SEFE
 - three paths [Brass et al. ‘06]
 - two outerplanar graphs [Frati ‘06]
- SEFE testable in $O(n^2)$ time for two biconnected planar graphs with connected intersection [Bläsius & Rutter ‘16]
- Variants
 - no fixed mapping between vertices [Brass et al. ‘06]
 - geometric simultaneous embedding (GSE) [Angelini et al. ’11, Di Giacomo et al. ’15]
Related Work - SEFE and Beyond Planarity

- quasiplanar GSE
Related Work - SEFE and Beyond Planarity

- quasiplanar GSE
 - a tree and a cycle [Didimo et al. ’12]
Related Work - SEFE and Beyond Planarity

- quasiplanar GSE
 - a tree and a cycle
 - a tree and an outerpillar

[Didimo et al. ’12]
[Di Giacomo et al. ’15]
Related Work - SEFE and Beyond Planarity

- quasiplanar GSE
 - a tree and a cycle [Didimo et al. ’12]
 - a tree and an outerpillar [Di Giacomo et al. ’15]
 - not every two quasiplanar graphs [Di Giacomo et al. ’15]
Related Work - SEFE and Beyond Planarity

- quasiplanar GSE
 - a tree and a cycle [Didimo et al. '12]
 - a tree and an outerpillar [Di Giacomo et al. '15]
 - not every two quasiplanar graphs [Di Giacomo et al. '15]
- simultaneous RAC drawings
 - [Argyriou et al. '13, Bekos et al. '16, Evans et al. '16, Grilli '18]
Our Results

- always positive instances for QuaSEFE
Our Results

- always positive instances for QuaSEFE
 - two planar graphs and a tree
Our Results

- always positive instances for QuaSEFE
 - two planar graphs and a tree
 - a 1-planar graph and a planar graph
Our Results

- always positive instances for QuaSEFE
 - two planar graphs and a tree
 - a 1-planar graph and a planar graph
 - planar graphs with restrictions on their intersection graphs
Our Results

- always positive instances for QuaSEFE
 - two planar graphs and a tree
 - a 1-planar graph and a planar graph
 - planar graphs with restrictions on their intersection graphs
- counterexamples for QuaSEFE in two special settings
Two Planar Graphs and a Tree ✓

1. Draw G_1 planar
Two Planar Graphs and a Tree ✓

1. Draw G_1 planar
Two Planar Graphs and a Tree ✓

- 1. Draw G_1 planar
- 2. Draw T_2 planar
Two Planar Graphs and a Tree ✓

1. Draw G_1 planar
2. Draw T_2 planar
 - some edges fixed by G_1
Two Planar Graphs and a Tree ✓

1. Draw G_1 planar
2. Draw T_2 planar
 - some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$
Two Planar Graphs and a Tree ✓

- 1. Draw \(G_1\) planar
- 2. Draw \(T_2\) planar
 - some edges fixed by \(G_1\)
 - choose planar rotation system from \(G_3\) for edges in \(G_3 \setminus G_1\)
Two Planar Graphs and a Tree ✓

1. Draw G_1 planar
2. Draw T_2 planar
 - some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$
Two Planar Graphs and a Tree ✓

1. Draw G_1 planar
2. Draw T_2 planar
 - some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$
Two Planar Graphs and a Tree ✓

1. Draw G_1 planar
2. Draw T_2 planar
 - some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$
 - remaining edges embedded planar
Two Planar Graphs and a Tree ✓

1. Draw G_1 planar
2. Draw T_2 planar
 - some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$
 - remaining edges embedded planar
3. Draw G_3 quasiplanar
Two Planar Graphs and a Tree

1. Draw G_1 planar
2. Draw T_2 planar
 - some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$
 - remaining edges embedded planar
3. Draw G_3 quasiplanar
 - $G_3 \setminus G_1$ planar
Two Planar Graphs and a Tree ✓

1. Draw G_1 planar
2. Draw T_2 planar
 - some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$
 - remaining edges embedded planar
3. Draw G_3 quasiplanar
 - $G_3 \setminus G_1$ planar
Two Planar Graphs and a Tree

1. Draw G_1 planar
2. Draw T_2 planar
 - some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$
 - remaining edges embedded planar
3. Draw G_3 quasiplanar
 - $G_3 \setminus G_1$ planar
Two Planar Graphs and a Tree ✓

1. Draw G_1 planar
2. Draw T_2 planar
 - some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$
 - remaining edges embedded planar
3. Draw G_3 quasiplanar
 - $G_3 \setminus G_1$ planar
 - thickness 2 \Rightarrow quasiplanar
Two Planar Graphs and a Tree ✓

1. Draw G_1 planar
2. Draw T_2 planar
 - some edges fixed by G_1
 - choose planar rotation system from G_3 for edges in $G_3 \setminus G_1$
 - remaining edges embedded planar
3. Draw G_3 quasiplanar
 - $G_3 \setminus G_1$ planar
 - thickness 2 \Rightarrow quasiplanar
A 1-Planar Graph and a Planar Graph ✓

1. Decompose the 1-planar graph into a planar graph G_1 and a forest T_2 [Ackerman '14]
A 1-Planar Graph and a Planar Graph ✓

1. Decompose the 1-planar graph into a planar graph G_1 and a forest T_2 [Ackerman '14]

2. Apply the previous result (G_1 and T_2 are planar)
Triples of Planar Graphs ✓

- Let G_1, G_2 and G_3 planar graphs on V
Triples of Planar Graphs ✓

Let G_1, G_2 and G_3 planar graphs on V
Triples of Planar Graphs ✓

- Let G_1, G_2 and G_3 planar graphs on V

- **Theorem**: If $\langle G_1 \setminus G_3, G_2 \setminus G_3 \rangle$ admits a SEFE, $\langle G_1, G_2, G_3 \rangle$ admits a QuaSEFE.
Triples of Planar Graphs

Let G_1, G_2, and G_3 be planar graphs on V.

Theorem: If $\langle G_1 \setminus G_3, G_2 \setminus G_3 \rangle$ admits a SEFE, $\langle G_1, G_2, G_3 \rangle$ admits a QuaSEFE.
Triples of Planar Graphs ✓

Let G_1, G_2 and G_3 planar graphs on V

Theorem: If $\langle G_1 \setminus G_3, G_2 \setminus G_3 \rangle$ admits a SEFE, $\langle G_1, G_2, G_3 \rangle$ admits a QuaSEFE.

$H_1, H_2, H_3, H_{1,2}, H_{1,3}, H_{2,3}$
Triples of Planar Graphs ✓

- Let G_1, G_2 and G_3 planar graphs on V

- **Theorem**: If $\langle G_1 \setminus G_3, G_2 \setminus G_3 \rangle$ admits a SEFE, $\langle G_1, G_2, G_3 \rangle$ admits a QuaSEFE.
Triples of Planar Graphs ✓

Let G_1, G_2 and G_3 planar graphs on V

Theorem: If $\langle G_1 \setminus G_3, G_2 \setminus G_3 \rangle$ admits a SEFE, $\langle G_1, G_2, G_3 \rangle$ admits a QuaSEFE.
Triples of Planar Graphs ✓

- Let G_1, G_2 and G_3 planar graphs on V

- **Theorem:** If $\langle G_1 \setminus G_3, G_2 \setminus G_3 \rangle$ admits a SEFE, $\langle G_1, G_2, G_3 \rangle$ admits a QuaSEFE.

- **Corollary:** $H_1 = \emptyset \Rightarrow$ QuaSEFE
Triples of Planar Graphs ✓

Let G_1, G_2 and G_3 planar graphs on V.

Theorem: If $\langle G_1 \setminus G_3, G_2 \setminus G_3 \rangle$ admits a SEFE, $\langle G_1, G_2, G_3 \rangle$ admits a QuaSEFE.

Corollary: $H_1 = \emptyset$ \Rightarrow QuaSEFE
Triples of Planar Graphs

Let G_1, G_2 and G_3 planar graphs on V

Theorem: If $\langle G_1 \setminus G_3, G_2 \setminus G_3 \rangle$ admits a SEFE, $\langle G_1, G_2, G_3 \rangle$ admits a QuaSEFE.

Corollary: $H_1 = \emptyset \Rightarrow$ QuaSEFE

Corollary: $H_{1,2}$ is forest of paths \Rightarrow QuaSEFE
Triples of Planar Graphs

Let \(G_1, G_2 \) and \(G_3 \) planar graphs on \(V \).

Theorem: If \(\langle G_1 \setminus G_3, G_2 \setminus G_3 \rangle \) admits a SEFE, \(\langle G_1, G_2, G_3 \rangle \) admits a QuaSEFE.

Corollary: \(H_1 = \emptyset \) \(\Rightarrow \) QuaSEFE

Corollary: \(H_{1,2} \) is forest of paths \(\Rightarrow \) QuaSEFE

Theorem: If \(H \) is a forest of paths, \(\langle G_1, G_2, G_3 \rangle \) admits a QuaSEFE.
Sunflower Instances ✓

- **Sunflower Instance**: Planar Graphs G_1, \ldots, G_k s.t. each edge is either in exactly one G_i or in all G_i (i.e. in $H := \bigcap G_i$)
Sunflower Instances ✓

- **Sunflower Instance**: Planar Graphs G_1, \ldots, G_k s.t. each edge is either in exactly one G_i or in all G_i (i.e. in $H := \bigcap G_i$)
 - Deciding if SEFE exists is NP-hard [Angelini et al. '15]
 - for $k \geq 3$ [Schaefer '13]
Sunflower Instances ✓

- **Sunflower Instance**: Planar Graphs G_1, \ldots, G_k s.t. each edge is either in exactly one G_i or in all G_i (i.e. in $H := \bigcap G_i$)
 - Deciding if SEFE exists is NP-hard [Angelini et al. ’15] for $k \geq 3$
 - **Corollary**: A sunflower instance with $k = 3$ planar graphs admits a QuaSEFE.
Sunflower Instances ✓

- **Sunflower Instance**: Planar Graphs G_1, \ldots, G_k s.t. each edge is either in exactly one G_i or in all G_i (i.e. in $H := \bigcap G_i$)
 - Deciding if SEFE exists is NP-hard [Angelini et al. ’15] [Schaefer ’13] for $k \geq 3$
 - **Corollary**: A sunflower instance with $k = 3$ planar graphs admits a QuaSEFE.
- **Theorem**: For any k, a sunflower instance with k planar graphs admits a QuaSEFE.
Sunflower Instances ✓

- **Sunflower Instance:** Planar Graphs G_1, \ldots, G_k s.t. each edge is either in exactly one G_i or in all G_i (i.e. in $H := \bigcap G_i$)
 - Deciding if SEFE exists is NP-hard \cite{Angelini et al. '15} for $k \geq 3$
 - **Corollary:** A sunflower instance with $k = 3$ planar graphs admits a QuaSEFE.

- **Theorem:** For any k, a sunflower instance with k planar graphs admits a QuaSEFE.
 - 1. Draw H planar
Sunflower Instances ✓

- *Sunflower Instance*: Planar Graphs G_1, \ldots, G_k s.t. each edge is either in exactly one G_i or in all G_i (i.e. in $H := \bigcap G_i$)
 - Deciding if SEFE exists is NP-hard \cite{Angelini15} for $k \geq 3$
 - **Corollary**: A sunflower instance with $k = 3$ planar graphs admits a QuaSEFE.

- **Theorem**: For any k, a sunflower instance with k planar graphs admits a QuaSEFE.
 - 1. Draw H planar
 - 2. Draw each $G_i \setminus H$ planar
Sunflower Instances ✓

- **Sunflower Instance**: Planar Graphs G_1, \ldots, G_k s.t. each edge is either in exactly one G_i or in all G_i (i.e. in $H := \bigcap G_i$)
 - Deciding if SEFE exists is NP-hard for $k \geq 3$ [Angelini et al. '15]
 [Schaefer '13]
- **Corollary**: A sunflower instance with $k = 3$ planar graphs admits a QuaSEFE.
- **Theorem**: For any k, a sunflower instance with k planar graphs admits a QuaSEFE.
 1. Draw H planar
 2. Draw each $G_i \setminus H$ planar
 - each G_i is drawn with thickness 2
Theorem: There are two matchings M_1 and M_2 that do not admit a QuaSEFE for a fixed drawing of M_1.
Theorem: There are two matchings M_1 and M_2 that do not admit a QuaSEFE for a fixed drawing of M_1.

![Diagram of a graph with labeled vertices](image-url)
Theorem: There are two matchings M_1 and M_2 that do not admit a QuaSEFE for a fixed drawing of M_1.

$M_2 = M_1 \setminus \{(v_{17}, v_{18}), (v_{19}, v_{20})\} \cup \{(v_{18}, v_{20})\}$
Theorem: There are two matchings M_1 and M_2 that do not admit a QuaSEFE for a fixed drawing of M_1.

$M_2 = M_1 \setminus \{(v_{17}, v_{18}), (v_{19}, v_{20})\} \cup \{(v_{18}, v_{20})\}$
Theorem: There are two matchings M_1 and M_2 that do not admit a QuaSEFE for a fixed drawing of M_1.

\[M_2 = M_1 \setminus \{(v_{17}, v_{18}), (v_{19}, v_{20})\} \cup \{(v_{18}, v_{20})\} \]
Theorem: There are two matchings M_1 and M_2 that do not admit a QuaSEFE for a fixed drawing of M_1.

$M_2 = M_1 \setminus \{(v_{17}, v_{18}), (v_{19}, v_{20})\} \cup \{(v_{18}, v_{20})\}$
Theorem: There are two matchings M_1 and M_2 that do not admit a QuaSEFE for a fixed drawing of M_1.

$$M_2 = M_1 \setminus \{(v_{17}, v_{18}), (v_{19}, v_{20})\} \cup \{(v_{18}, v_{20})\}$$
Theorem: There are two matchings M_1 and M_2 that do not admit a QuaSEFE for a fixed drawing of M_1.

$M_2 = M_1 \setminus \{ (v_{17}, v_{18}), (v_{19}, v_{20}) \} \cup \{ (v_{18}, v_{20}) \}$
Theorem: There are two matchings M_1 and M_2 that do not admit a QuaSEFE for a fixed drawing of M_1.

\[M_2 = M_1 \setminus \{(v_{17}, v_{18}), (v_{19}, v_{20})\} \cup \{(v_{18}, v_{20})\} \]
Theorem: There are two matchings M_1 and M_2 that do not admit a QuaSEFE for a fixed drawing of M_1.

$$M_2 = M_1 \setminus \{(v_{17}, v_{18}), (v_{19}, v_{20})\} \cup \{(v_{18}, v_{20})\}$$
Open Problems

- Do the following always admit a QuaSEFE?
Open Problems

- Do the following always admit a QuaSEFE?
 - two 1-planar graphs
Open Problems

- Do the following always admit a QuaSEFE?
 - two 1-planar graphs
 - a quasiplanar graph and a matching
Open Problems

- Do the following always admit a QuaSEFE?
 - two 1-planar graphs
 - a quasiplanar graph and a matching
 - three outerplanar graphs
Open Problems

- Do the following always admit a QuaSEFE?
 - two 1-planar graphs
 - a quasiplanar graph and a matching
 - three outerplanar graphs
 - four paths
Open Problems

- Do the following always admit a QuaSEFE?
 - two 1-planar graphs
 - a quasiplanar graph and a matching
 - three outerplanar graphs
 - four paths

- What is the computational complexity of QuaSEFE?
Open Problems

- Do the following always admit a QuaSEFE?
 - two 1-planar graphs
 - a quasiplanar graph and a matching
 - three outerplanar graphs
 - four paths
- What is the computational complexity of QuaSEFE?
- Extend to other beyond planar graph classes such as k-planar graphs.
Open Problems

- Do the following always admit a QuaSEFE?
 - two 1-planar graphs
 - a quasiplanar graph and a matching
 - three outerplanar graphs
 - four paths
- What is the computational complexity of QuaSEFE?
- Extend to other beyond planar graph classes such as k-planar graphs.
 - Main difficulty: find a similarly catchy name for the problem
Open Problems

- Do the following always admit a QuaSEFE?
 - two 1-planar graphs
 - a quasiplanar graph and a matching
 - three outerplanar graphs
 - four paths
- What is the computational complexity of QuaSEFE?
- Extend to other beyond planar graph classes such as k-planar graphs.
 - Main difficulty: find a similarly catchy name for the problem

Thank you for your attention!