COLORING HASSE DIAGRAMS AND DISJOINTNESS GRAPHS OF CURVES

János Pach & István Tomon
(Budapest & Zürich)
Chromatic Number vs. Clique Number

$\chi(G)$ chromatic number - minimum number of colors needed to color $V(G)$ so that no edge is monochromatic

$\omega(G)$ clique number - maximum size of a complete subgraph of G

Theorem (Erdős 1959)
For every k and ℓ, there exists a graph $G = G(k, \ell)$ with $\chi(G) = k$ and with no cycle of length $\leq \ell$.
Theorem (Gallai, Hajós)
For the intersection graph of any system of intervals along a line, we have $\chi(G) = \omega(G)$.

\[\begin{align*}
\omega &= 2 \\
\chi &= 3
\end{align*} \]
X-bounded Families of Graphs

A family of graphs G is X-bounded if there exists a function f such that $X(G) \leq f(\omega(G))$ for all $G \in G$ (Gyárfás - Lehel 1985)

Theorem (Asplund - Grünbaum 1960)

The family of intersection graphs of axis-parallel rectangles in the plane is X-bounded.
X-bounded Families of Graphs

A family of graphs \(G \) is \(X \)-bounded if there exists a function \(f \) such that \(X(G) \leq f(\omega(G)) \) for all \(G \in G \) (Gyárfás-Lehel 1985)

Theorem (Asplund-Grünbaum 1960)
The family of intersection graphs of axis-parallel rectangles in the plane is \(X \)-bounded.

The disjointness graph of a family of objects is the complement of its intersection graph.

Theorem
The family of disjointness graphs of axis-parallel rectangles in the plane is \(X \)-bounded.

\[X(G) \leq c \cdot \omega(G) \]
Not \(X \)-bounded Families of Graphs

Theorem (Pawlik-Kozik-Krawczyk-Lason-Micek-Trotter-Walczak 2014)

There exist triangle-free \((\omega = 2)\) intersection graphs of curves in the plane with arbitrarily large chromatic numbers \(X\). \[\Omega(\log \log n)\]
Not χ-bounded Families of Graphs

Theorem (Pawlik-Kozik-Krawczyk-Lasoń-Micek-Trotter-Walczak 2014)
There exist triangle-free ($\omega=2$) intersection graphs of curves in the plane with arbitrarily large chromatic numbers χ. $[\Omega(\log \log n)]$

Theorem (P.-Tardos-Tóth 2017)
There exist triangle-free ($\omega=2$) disjointness graphs of curves in the plane with arbitrarily large chromatic numbers χ. $[[\log_2 n]]$
Grounded Curves and Cover Graphs

Grounded curves on the y-axis

→

Disjointness graph

1 2 3 4
Grounded Curves and Cover Graphs

- Grounded curves on the y-axis
- Disjointness graph
- b covers a if $b > a$ and there is no $c \in P$ with $b > c > a$
- ba is an edge of the cover graph (= undirected Hasse diagram)
Theorem (Sinden 1966 ↔, Middendorf-Pfeiffer 1993 →)

G is a cover graph ⇔

- G is triangle-free and
- G is the disjointness graph of a family of grounded curves.

\[(P, \prec) \] partial order
Theorem (Sinden 1966 ↔, Middendorf-Pfeiffer 1993 →)

G is a cover graph \iff
 - G is triangle-free and
 - G is the disjointness graph of a family of grounded curves.

Theorem (P.-Tomon 2019)
For every r and n, there exists a partially ordered set of n elements whose cover graph has girth \geq r and chromatic number \geq \Omega \left(\frac{1}{r} \log n \right).
Theorem (Sinden 1966 ←, Middendorf-Pfeiffer 1993 →)

G is a cover graph \iff
- G is triangle-free and
- G is the disjointness graph of a family of grounded curves.

Theorem (P.-Tomon 2019)
For every r and n, there exists a partially ordered set of n elements whose cover graph has girth \(\geq r \) and chromatic number \(\geq \Omega \left(\frac{1}{r} \log n \right) \).

Corollary
For every r and n, there exists a family of n curves whose disjointness graph has girth \(\geq r \) and chromatic number \(\geq \Omega \left(\frac{1}{r} \log n \right) \). \[\rightarrow r=4 \text{ case] } \]
Uniquely Generated Posets

For every \(x < y \), there is a unique path \(x = v_1 \uparrow v_2 \uparrow \ldots \uparrow v_k \), where \(v_{i+1} \) covers \(v_i \).
Uniquely Generated Posets

For every $x < y$, there is a unique path $x = v_1 \prec v_2 \prec \ldots \prec v_k$, where v_{i+1} covers v_i.

Theorem (P.-Tomon 2019)

(i) If P is a uniquely generated poset with n vertices, then for its cover graph G, we have $\chi(G) \leq \lceil \log_2 n \rceil + 1$.

(ii) For every $r > 3$ and $n > n_0(r)$, there exists a uniquely generated poset with n vertices whose cover graph G has girth $\geq r$ and $\chi(G) \geq \Omega \left(\frac{1}{r} \log_2 n \right)$.
Theorem (P.-Tomon 2019)

(i) If \(P \) is a uniquely generated poset with \(n \) vertices, then for its cover graph \(G \), we have \(\chi(G) \leq \lceil \log_2 n \rceil + 1 \).

Proof. Use greedy coloring with 1, 2, 3, ...
Let \(T(v) = \{ u \in P : u < v \} \) (tree)

\[
|T(v)| \geq 1 + \sum_{i=1}^{k-1} |T(u_i)|
\]

\[
\geq 1 + \sum_{i=1}^{k-1} 2^{i-1}
\]

\[
= 2^{k-1}
\]
Theorem.

(ii) For every $r > 3$ and $n > n_0(r)$, there exists a uniquely generated poset with n vertices whose cover graph G has girth $\geq r$ and $\chi(G) = \Omega(\frac{1}{r} \log_2 n)$.

Proof. Let $k = \frac{\log n}{10r}$, $m = \frac{n}{k} = 10r \frac{n}{\log n}$

$$|A_1| = \ldots = |A_k| = m$$

$$P_{ij} = \frac{2^{j-i}}{m} < \frac{1}{10r} \frac{\log n}{n^{1-1/10r}}$$
Proof. Let \(k = \frac{\log n}{10r} \), \(m = \frac{n}{k} = 10r \frac{n}{\log n} \)

\[|A_i| = \ldots = |A_k| = m \]

\[P_{ij} = \frac{2^{j-i}}{m} < \frac{1}{10r} \frac{\log n}{n^{1-1/10r}} \]
Proof. Let $k = \frac{\log n}{10r}$, $m = n/k = 10r\frac{n}{\log n}$

$G \cdots \cdots A_i \cdots \cdots A_j \cdots \cdots A_k \cdots \cdots$

$|A_i| = \ldots = |A_k| = m$

$P_{ij} = \frac{2^{j-i}}{m} < \frac{1}{10r} \frac{\log n}{n^{1-1/10r}}$

Claim. With positive probability G satisfies

1. there is no independent set of size m,
2. there are $\leq \frac{n}{3}$ cycles of length $< r$,
3. there are $\leq \frac{n}{3}$ pairs $u, v \in V(G)$ with 2 edge-disjoint monotone paths connecting them.
Proof. Let \(k = \frac{\log n}{10r} \), \(m = \frac{n}{k} = 10r \frac{n}{\log n} \)

\[
G \quad A_1 \ldots A_i \ldots A_j \ldots A_k \quad |A_i| = \ldots = |A_k| = m
\]

\[
P_{ij} = \frac{2^{j-i}}{m} < \frac{1}{10r} \frac{\log n}{n^{1-1/10r}}
\]

Claim. With positive probability \(G \) satisfies
(1) there is no independent set of size \(m \),
(2) there are \(\leq \frac{n}{3} \) cycles of length \(< r \),
(3) there are \(\leq \frac{n}{3} \) pairs \(u, v \in V(G) \) with 2 edge-disjoint monotone paths connecting them.

Then
- delete a vertex from each "bad" cycle + pair,
- define \(u < v \) if there is a monotone increasing path from \(u \) to \(v \).
Problem. Determine or estimate $k(n)$, the maximum chromatic number of the cover graph of an n-element partially ordered set.

\[k(n) = O(\sqrt{n}) \]
\[k(n) = O(\sqrt{n/\log n}) \quad \text{Ajtai-Komlós-Szemeredi 1980} \]
\[k(n) = \Omega(\log n / \log \log \log n) \quad \text{Brightwell-Nešetřil 1991} \]
\[k(n) = \Omega(\log n) \quad \text{P.-Tamon 2019} \]