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Any arrangement A of n unit circles has
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arbitrary radii pp(A) < 20n — 2 if every
pair of circles in A intersect.
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Arrangements of Circles, Triangles

For any arrangement A of (pseudo)circles
p3(A) < zn? +O(n).

Lower bound example A with p3(A) = 1% + O(n) can be
constructed from a line arrangement .4’ with

p3(A") = %nz +O(n) .



Arrangements of Circles, Restrictions

Types of restrictions:

Any arrangement A of » junit'circles has
p5(A) = O(n*/3logn) digonal faces;

if, in addition, every pair of circles in A
intersect then ps(A) < 1+ 05

),

For any arrangement A of n circles with
arbitrary radii p5(A) < 20n — 2 if every
pair of circles in 4 intersect.
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In an arrangement of orthogonal
circles every two circles either
are disjoint or orthogonal.

No three pairwise orthogonal
circles can share the same point.
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Inversion

Inversion of a point P with respect to « is a
point P’ on the ray C,P so that

’C(XP,’ ‘ ’C(XP‘ — ré.

o
xX—@ ®
@ P/
Properties: @

® cach circle passing through C,
is mapped to a line;

® 1 an inversion that maps 2
disjoint circles into 2 concentric @)
circles;

® Inversion preserves
angles.
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Local Properties

Lem. There are no four pairwise orthogonal circles.
Proof: Assume for contradiction there exist such four circles.
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Main Lemma

Consider an arrangement .4
of orthogonal circles.

Def. A Smallest circle in A is a circle
with the smallest radius.

Def. Consider a subset S C A of
maximum cardinality such that
for each pair of circles one is
nested in the other. The
innermost circle « in S is called a
deepest circle in A.

Lem.Among the deepest circles a smallest one has at
most 8 neighbours.
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Main Lemma

Lem. x Let S be the set of neighbours of « s.t.
S does not contain nested circles and
each circle in S has radius at least
as large as «, then |S| < 6.

Proof: & can have at most « \. ) )
6% = 6 neighbours. y

at least 60°



Main Lemma Proof

Lem. Among the deepest circles a smallest circle « has at
most 8 neighbours.



Main Lemma Proof

Lem. Among the deepest circles a smallest circle « has at
most 8 neighbours.

Proof: If there are no nested circles, then, by
Lem.x, « has at most 6 neighbours.



Main Lemma Proof

Lem. Among the deepest circles a smallest circle « has at
most 8 neighbours.

Proof: If there are no nested circles, then, by
Lem.x, « has at most 6 neighbours.

Otherwise « is nested by
at least one more circle p.



Main Lemma Proof

Lem. Among the deepest circles a smallest circle « has at
most 8 neighbours.

Proof: If there are no nested circles, then, by
Lem.x, « has at most 6 neighbours.

Otherwise « is nested by
at least one more circle p.

Consider 2 types of
neighbours of «, those that

do not intersect B | do intersect S B




Main Lemma Proof

Lem. Among the deepest circles a smallest circle « has at
most 8 neighbours.

Proof: If there are no nested circles, then, by
Lem.x, « has at most 6 neighbours.

Otherwise « is nested by
at least one more circle p.

Consider 2 types of
neighbours of «, those that

do not intersect B | do intersect S B

® are not nested




Main Lemma Proof

Lem. Among the deepest circles a smallest circle « has at
most 8 neighbours.

Proof: If there are no nested circles, then, by
Lem.x, « has at most 6 neighbours.

Otherwise « is nested by
at least one more circle p.

Consider 2 types of
neighbours of «, those that

do not intersect B | do intersect S B

® are not nested
® are larger than a




Main Lemma Proof

Lem. Among the deepest circles a smallest circle « has at
most 8 neighbours.

Proof: If there are no nested circles, then, by
Lem.x, « has at most 6 neighbours.

Otherwise « is nested by
at least one more circle p.

Consider 2 types of
neighbours of «, those that

do not intersect B | do intersect S B

® are not nested
® are larger than a

| by Lem.x
A4
® at most 6




Main Lemma Proof

Lem. Among the deepest circles a smallest circle « has at
most 8 neighbours.

Proof: If there are no nested circles, then, by
Lem.x, « has at most 6 neighbours.

Otherwise « is nested by
at least one more circle p.

Consider 2 types of
neighbours of «, those that

do not intersect B | do intersect S B

® are not nested ® are orthogonal to
® are larger than «|  two disjoint circles,
\H/by Lem.x that is, « and B

® at most 6




Main Lemma Proof

Recall:

Lem. Two disjoint circles can be orthogonal to at most two
other circles.

Proof:

® are not nested ® are orthogonal to
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Main Lemma Proof

Lem. Among the deepest circles a smallest circle « has at
most 8 neighbours.

Proof: If there are no nested circles, then, by
Lem.x, « has at most 6 neighbours.

Otherwise « is nested by
at least one more circle p.

Consider 2 types of
neighbours of «, those that

do not intersect B | do intersect S B

® are not nested ® are orthogonal to
® are larger than «|  two disjoint circles,
\H/by Lem.x that is, « and B

® at most 6 ® at most 2
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Main Result

Thm. Every arrangement of n orthogonal circles has at
most 16n intersection points and 17n + 2 faces.

Proof: The number of intersection points follows by
inductively applying the main lemma.

The bound on the number of faces follows then by
Euler’s formula.
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Estimating the Number of Small Faces

Consider a face f with sides formed by circular arcs 4, b, c.

Z(f,b) <0

X

Let Z(f,a) be the angle at arc a forming a side of f.
We call Y5, Z(f,a;) the total angle of f.

Thm. (Gauss—Bonnet) [for orthogonal circles]

For every face f in an arrangement of orthogonal circles

its total angle is 271 — @ In particular 7t if |f| = 2 and
Zif |[f| = 3.
2
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Counting Small Faces

Thm. For every arrangement .4 of n orthogonal circles

2p2(A) + p3(A) < 4n.

Proof: @ Faces do not overlap;

® cach circle contributes 27t angle to faces, thus,
the arrangement has 2n7t total angle available
for faces;

® by Gauss—Bonnet each digonal face takes 77 and
each triangular face takes 71/2 of the total angle
sum from the arrangement.

p2(A)m + Pg(A)% < 2n7.
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Intersection Graphs

Orthogonal circle intersection graph:
— a vertex for each circle
— an edge between two circles if they are orthogonal. t I

Properties:
® are K4-free and induced Cy-free;

® always have a vertex of degree at most 8.

Lem. d an orthogonal circle intersection graph that
contains K, as a minor for each n.

Proof (idea):
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Intersection Graphs of Unit Circles

Orthogonal unit circle intersection graph:
— a vertex for each unit circle
— an edge between two circles if they are orthogonal. C

Properties:
® are a subclass of the contact graphs of unit circles

also known as penny graphs. @

® 1 penny graphs which are not orthogonal unit

circle intersection graphs.

an induced Cy4 a k-star, k > 4



Intersection Graphs of Unit Circles

Thm. Recognizing orthogonal unit circle intersection
graphs is NP-hard.



it Circles

Intersection Graphs of Un

Thm. Recognizing orthogonal unit circle intersection
graphs is NP-hard.
Proof (idea): Logic engine which emulates

3-Sat (NAE3SAT) problem.
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Open Problems

Bounds on the # of faces that we have so far:

digonal faces | triangular faces | all faces
upper bound | 2n 4n 17n + 2
lower bound | 2n — 2 3n —3 ?

What is the complexity of recognizing general
orthogonal circle intersection graphs?




