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Arrangements of Circles, Triangles
For any arrangement A of (pseudo)circles
p3(A) ≤ 2

3 n2 + O(n). [Felsner & Scheucher 2018]

Lower bound example A with p3(A) = 2
3 n2 + O(n) can be

constructed from a line arrangement A′ with
p3(A′) = 1

3 n2 + O(n) . [Füredi & Palásti 1984]
[Felsner, S.: Geometric Graphs and
Arrangements, 2004]



Arrangements of Circles, Restrictions

Any arrangement A of n unit circles has
p◦2(A) = O(n4/3 log n) digonal faces;

if, in addition, every pair of circles in A
intersect, then p◦2(A) ≤ n + 3.

For any arrangement A of n circles with
arbitrary radii p◦2(A) ≤ 20n− 2 if every
pair of circles in A intersect.

Types of restrictions:
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Inversion
Inversion of a point P with respect to α is a
point P′ on the ray CαP so that
|CαP′| · |CαP| = r2

α.

• each circle passing through Cα

is mapped to a line;

α

Cα P P′

• inversion preserves
angles.

• ∃ an inversion that maps 2
disjoint circles into 2 concentric
circles;

Properties:
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α

at least 60◦

Let S be the set of neighbours of α s.t.
S does not contain nested circles and
each circle in S has radius at least
as large as α, then |S| ≤ 6.

Lem. ?

α can have at most
360◦
60◦ = 6 neighbours.

Proof:
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β

Proof:

αOtherwise α is nested by
at least one more circle β.

Consider 2 types of
neighbours of α, those that

do not intersect β

• are not nested
• are larger than α

• at most 6
by Lem.?

• are orthogonal to
two disjoint circles,
that is, α and β

Among the deepest circles a smallest circle α has at
most 8 neighbours.

Lem.

• at most 2

do intersect β

If there are no nested circles, then, by
Lem.?, α has at most 6 neighbours.
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Main Result
Every arrangement of n orthogonal circles has at
most 16n intersection points and 17n + 2 faces.

Thm.

Proof: The number of intersection points follows by
inductively applying the main lemma.

The bound on the number of faces follows then by
Euler’s formula.
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In particular π if | f | = 2 and
π
2 if | f | = 3.
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Counting Small Faces

For every arrangement A of n orthogonal circles
2p2(A) + p3(A) ≤ 4n.

Thm.

Proof:

• by Gauss–Bonnet each digonal face takes π and
each triangular face takes π/2 of the total angle
sum from the arrangement.

• Faces do not overlap;

• each circle contributes 2π angle to faces, thus,
the arrangement has 2nπ total angle available
for faces;

p2(A)π + p3(A)π
2 ≤ 2nπ.
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Intersection Graphs of Unit Circles

• are a subclass of the contact graphs of unit circles
also known as penny graphs.

• ∃ penny graphs which are not orthogonal unit
circle intersection graphs.

an induced C4 a k-star, k ≥ 4

Properties:

Orthogonal unit circle intersection graph:
– a vertex for each unit circle
– an edge between two circles if they are orthogonal.
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Intersection Graphs of Unit Circles
Recognizing orthogonal unit circle intersection
graphs is NP-hard.

Thm.

Proof (idea): Logic engine which emulates
Not-All-Equal-3-Sat (NAE3SAT) problem.

x ∧ ¬y ∧ ¬z
¬x ∧ y ∧ ¬z
x ∧ ¬y ∧ ¬z

[Di Battista et al., GD’99]
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Open Problems

Bounds on the # of faces that we have so far:

What is the complexity of recognizing general
orthogonal circle intersection graphs?

upper bound

lower bound

digonal faces triangular faces all faces

2n 4n

2n− 2 3n− 3 ?

17n + 2
[Gauss–Bonnet] [Gauss–Bonnet] Main Thm.


