Julius-Maximilians- Chair for X .
I UNIVERSITAT INFORMATICS | ||||| | fl
WURZBURG Efficient Algorithms and

Computing Height-Optimal
Tangles Faster

Oksana Firman
Philipp Kindermann AR Lviv

lexander \/\/olff
ohannes ink
Alexander Ravsky

Lviv



Introduction

Given a set of n
y-monotone wires



Introduction

Given a set of n
y-monotone wires
I

\

1<i<j<n
swap I/



Introduction
1<i<j<n

Given a set of n .
swap iJ

y-monotone wires

L \

disjoint swaps



Introduction

1<i<j<n

Given a set of n .
swap iJ

y-monotone wires

disjoint swaps

L K adjacent

permutations



Introduction

1<i<j<n

Given a set of n .
swap iJ

y-monotone wires
disjoint swaps

L K adjacent

permutations

\ multiple swaps



Introduction

y-monotone wires

Given a set of n

1<i<j<n
swap IJ

disjoint swaps

adjacent
permutations

multiple swaps

tangle T of
height h(T)



Introduction

Given a set of n
y-monotone wires

1 2 n

1<i<j<n
swap IJ

disjoint swaps

adjacent
permutations

multiple swaps

tangle T of
height h(T)

-/



Introduction

y-monotone wires

Given a set of n

1 2 n

1<i<j<n
swap I/

disjoint swaps

adjacent
permutations

multiple swaps

tangle T of
height h(T)

...and given a list of
swaps L



Introduction

y-monotone wires

Given a set of n

1 2 n

1<i<j<n
swap I/

disjoint swaps

adjacent
permutations

multiple swaps

tangle T of
height h(T)

...and given a list of
swaps L

as a multiset (¢;;)
Ly
3y
1y
Ly
2x



Introduction

y-monotone wires

Given a set of n

1 2 n

1<i<j<n
swap I/

disjoint swaps

as a multiset (¢;;)

adjacent
permutations

multiple swaps

tangle T of
height h(T)
\ /

Tangle T(L) realizes list L.

..and given a list of

swaps L

1y

3y,
1y
1y
2y



Introduction

: 1<i<j<n
Given a set of n swap ii ...and given a list of
y-monotone wires P swaps L

disjoint swaps

1 2 « . n
. K as a multiset (¢;;)
adjacent X
T permutations
3,
3 multiple swaps 1:
T4 ) tangle T of Ly
. ( height h(T) 2x

Tangle T(L) realizes list L.




Introduction

Given a set of n
y-monotone wires

1 2 c e n
1 K
T2
3
T4 )
T ( height h(T)
\
m6 )

Tangle T(L) realizes list L.

1<i<j<n
swap I/

disjoint swaps

adjacent
permutations

multiple swaps

tangle T of

..and given a list of

swaps L

as a multiset (¢;;)

3

3y,
1y
1y
2y

/

not feasible



Introduction

1<i<j<n
Given a set Of n swa I_ R ..and given a list of
y-monotone wires P swaps L
12 -+ n disjoint swaps
1 k as a multiset (¢;;)
adjacent 1
T2 permutations X
_ 3
T3 \k multiple swaps 1o
S
T4 ) tangle T of 1y
e ( height h(T) 2x
\ /

T ——)

Tangle T(L) realizes list L.

A tangle T(L) is height-optimal if it has the minimum height

among all tangles realizing the list L.



Related Work

o (Olszewski et al. Visualizing the template

of a chaotic attractor.
GD 2018




Related Work

o (QOlszewski et al. Visualizing the template
of a chaotic attractor. ()

GD 2018 o list




Related Work

o (Olszewski et al. Visualizing the template
of a chaotic attractor. () .~
GD 2018 list

Algorithm for finding

optimal tangles ‘




Related Work

o (Olszewski et al. Visualizing the template
of a chaotic attractor. () .~
GD 2018 list

Algorithm for finding Complexity 7

optimal tangles ‘




Related Work

o Olszewski et al. Visualizing the template
of a chaotic attractor. () .~
GD 2018 list

Algorithm for finding
optimal tangles

e Wang. Novel routing schemes for IC .‘

layout part |: Two-layer channel routing.
DAC 1991

Complexity ?

Gi _Initial and
IVEN: final permutations



Related Work

o Olszewski et al. Visualizing the template

of a chaotic attractor. ()
GD 2018 list

Algorithm for finding
optimal tangles

Complexity ?

e Wang. Novel routing schemes for IC

layout part |: Two-layer channel routing.
DAC 1991

Gi _Initial and
IVEN: final permutations

e Bereg et al. Drawing Permutations with Few Corners.
GD 2013

minimize

Ob_jeCtIVEZ the number of bends



Overview

e Complexity:
NP-hardness by
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e New algorithm: using dynamic programming;
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2|L]

o(simn) —= o((¥+1%em)

e Experiments: comparison with [Olszewski et al., GD'18]

'QQQQQQQQQQQQQQQQQQQQ'

A A4 44 44 4 4 4 4l 4 Al 4 Al 4 4 4 A 4 4 4 A 4



Complexity

Theorem.
TANGLE-HEIGHT MINIMIZATION Is NP-hard.



Complexity
Theorem.

TANGLE-HEIGHT MINIMIZATION i1s NP-hard.

Proof.
Reduction from 3-PARTITION



Complexity

Theorem.

TANGLE-HEIGHT MINIMIZATION is NP-hard.
Proof.

Reduction from 3-PARTITION

Given: Multiset A of 3m positive integers.




Complexity

Theorem.

TANGLE-HEIGHT MINIMIZATION is NP-hard.
Proof.

Reduction from 3-PARTITION

Given: Multiset A of 3m positive integers.
Question: Can A be partitioned into m groups of

three elements s.t. each group sums up to
the same value B?

W e [ I s
re l

R
B R W > L

g
[ 3.,=B




Complexity

Theorem.

TANGLE-HEIGHT MINIMIZATION is NP-hard.

Proof. B -, B

Reduction f 3-PARTITION . i
cduction from o-. o B is poly in m

Given: Multiset A of 3m positive integers.

Question: Can A be partitioned into m groups of

three elements s.t. each group sums up to
the same value B?

\\m
w

IR | St 2

> [ Xa=5




Complexity

Theorem.

TANGLE-HEIGHT MINIMIZATION Is NP-hard.

Proof. B -, B

Reduction f 3-PARTITION . L2
cduction from o-. o B is poly in m

Given: Multiset A of 3m positive integers.

Question: Can A be partitioned into m groups of

three elements s.t. each group sums up to
the same value B?

ai ar as QS! a3m—2 a3m—1 a3m

ZlZB- >, =B >m=1B

Given: Instance A of 3-PARTITION.



Complexity

Theorem.

TANGLE-HEIGHT MINIMIZATION Is NP-hard.

Proof. B -, B

Reduction f 3-PARTITION . L2
cduction from o-. o B is poly in m

Given: Multiset A of 3m positive integers.

Question: Can A be partitioned into m groups of

three elements s.t. each group sums up to
the same value B?

di

d3m—2 d3m—1 d3m
S~

2h) d3

2125- >, =B >m=1B

Given: Instance A of 3-PARTITION.
Task: Construct L s.t. there is T realizing L with height at
most H = 2m>(>" A)+7m? iff Ais a yes-instance.



Complexity

Theorem.
TANGLE-HEIGHT MINIMIZATION Is NP-hard.
Proof.
Reduction from 3-PARTITION
ai a as d3m—2 d3m—1 d3m
21 = B 22 = B Zm = B
I [ R I
- >
> A

Given: Instance A of 3-PARTITION.
Task: Construct L s.t. there is T realizing L with height at
most H = 2m>(>" A)+7m? iff Ais a yes-instance.



Complexity

Theorem.
TANGLE-HEIGHT MINIMIZATION Is NP-hard.
Proof.
Reduction from 3-PARTITION
d1 do d3 33t2 d3m—1 d3m
21 =B Zz =5 I Zm =5
I [ R R
- >
> A

Given: Instance A of 3-PARTITION.
Task: Construct L s.t. there is T realizing L with height at
most H = 2m>(>" A)+7m? iff Ais a yes-instance.



Complexity

Theorem.
TANGLE-HEIGHT MINIMIZATION Is NP-hard.
Proof.
Reduction from 3-PARTITION
d1 do d3 33t2 d3m—1 d3m
21 =B Zz =5 I Zm =5
I [ R R
- >
YA +1

Given: Instance A of 3-PARTITION.
Task: Construct L s.t. there is T realizing L with height at
most H = 2m>(>" A)+7m? iff Ais a yes-instance.



Complexity
Theorem.

TANGLE-HEIGHT MINIMIZATION i1s NP-hard.

Proof.
Reduction from 3-PARTITION

|

1:B-

Given: Instance A of 3-PARTITION.
Task:
H=2m’ A+1)+7m’



Transforming the Instance A into a List L

w w,

X




Transforming the Instance A into a List L

w w,

2m swaps %




Transforming the Instance A into a List L
z

&1




Transforming the Instance A into a List L

&1

wow
M = 2m3 75’
Mal




Transforming the Instance A into a List L

/
a1 w  w! &q
N

R Ma?(j
4

/
&1



Transforming the Instance A into a List L

&1

wow
M = 2m3 75’
M31
A




Transforming the Instance A into a List L

&1

wow 9l
M =2m?3 [
M31
@///'




Transforming the Instance A into a List L

&1

W oW O]
M =2m?> 17
Mal
What is not possible?
B
split
LN




Transforming the Instance A into a List L

/
SRS w  w! &g &y

M =2m3 7=
Mal




Transforming the Instance A into a List L

/ /
SRS w  w! &g &y

M =2m?> b
31’
What is not possible?
put it on the same level
with other a-a’ swaps
77;




Transforming the Instance A into a List L




Making Sure That the “Pockets” Can't Be Squeezed
62829181
%]L/ o o

—X
—

l—x

B161




Making Sure That the “Pockets” Can't Be Squeezed

B261 B1
W v o

02 32 01 1 1

—

/<n ‘% }{
B1961 202



Making Sure That the “Pockets” Can't Be Squeezed

iﬁiﬁlﬁl .
02 32 01 1 1
—_—
B1 01 B2 02

B161 202



Making Sure That the “Pockets” Can't Be Squeezed
62829181
%]L/ o o

—X
—

l—x

B161




Making Sure That the “Pockets” Can't Be Squeezed
62829181
%]L/ o o

—X
—

l—x

B161




Making Sure That the “Pockets” Can't Be Squeezed
62829181
%]L/ o o

—X
—

l—x

B161




Making Sure That the “Pockets” Can't Be Squeezed
62829181
%]L/./ o o

R ==

l—x

B161




Making Sure That the “Pockets” Can't Be Squeezed
62829181
%]L/ o o

—X
—

l—x

B161




Making Sure That the “Pockets” Can't Be Squeezed
62829181
%]L/ o o

—X
—

l—x

B161




v

CCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Making Sure That the “Pockets” Can't Be Squeezed
518
W



2MB

MB

PUrOTETITITVITITITYTTITVIVIVIVIVIvIvIvIvYY

Bl

!/ /! c/ / /
618171928272

/

BAAAAANAAAAAAANAAANAAAANANAN ’v"""""""""""""""""""""’;

/

/

617172

/
1

””””””””””

“““““““““‘m

w W

-

—
2038

B

g

o —

AL b A A AAAAAAANAAANAAANANAANAAAANA

VWP TOTOTYTOTITITITVTVTITOTVTYTTVITVITVTVTV TV oIV TP IToIvIvIivIvrviervivivrerviviviewewy

Y17v290

I”””””””””’.
A AA 44 44 44 44 A A A 4 A 4l 44 4 4 Al 4l 44 4 44 4

a

P AAAAAAAANAAAANAAAAAAMNAANANI

an

Making Sure That the “Pockets” Can't Be Squeezed
518
-

qine

ks
@\

]
=

v¥1B161728292



2MB

MB

B AAAAAAAAAAANAAANAAAAANAAAIAANAAAAAANAAAAAAANAAANAAAANAANAANANAAN
PUYTETETITYTITITYITITVTVTPTTVITVTPTPTV TV TPTVITT TV TV ITPTVIV IV I PT VT v vIvIvIvivivivie s _.\6

ueezed

Making Sure That the “Pockets” Can't Be Sqg

!/ /! c/ / /
918171928272

/

i

BAAAAANAAAAAAANAAANAAAAANANAN
w((“““““((“““h

-

/o .
1

(87

/

w W

g

Ma4

/\/Ia5

—37

o —

AL b A A AAAAAAANAAANAAANANAANAAAANA

A AA 44 40 44 A 4 44 a4 4d 44 44 4 d 4d 44 44 44 44 44 44 44 4 4

Y17v290

I”””””””””’q
A A4 44 44 44 44 44 4 A At A A 4t A ) i A 4 A 4t

s S

6..

v"""""""""""""""""""‘.

an

ks
@\

]
=

qine

/

a
v¥1B1617v28262




Proof of Correctness

M =2m?3

A is a yes-instance

H=2m"A)+7m?
Is the maximum allowed
height for the reduction

71725%

B261 81
| &

2MB

MB

Q
-~

! ol 1 <! ot /7
018171926272

4
‘L*I

M31

an

qN¢

v1B19

3

6.
1728202

ceal ok B

(8

6o’ <! !t <t 1/
520581017172



B17192827

/
1

2MB

MB

v"""""""""""""""""""’.

d
/

””””””””””
((““““(““‘((“h

BAAAAAAAAAAANAANAANAANAAAANAAANANAN
PUrYTETITITVTITOTVTVTTVPIVIVIVvIvIvIvIvIvIeIev Yy _.\6

i

-

g

Ma4

/\/Ia5

\

w

/
%]‘/0‘6”'@1 w  w! &q

Y17v2962 8261 B1

r"""""""""""""""""""""“

s

s

6°
2

o

eV

I o\
B AAAAAAANAANAANAANANAANAIANY Nl
VWV T VTV TV TV IV IV IV VIV IV IV VI v IV IV Y —
-0
v"""""""""""""""""""‘.I/ —
|

an

Proof of Correctness

qine

M =2m?3
-
by construction

A is a yes-instance

H=2m(A)+7m?
Is the maximum allowed

height for the reduction



Proof of Correctness

M =2m?3

A is a yes-instance

by construction

v
height < H

H=2m"A)+7m?
Is the maximum allowed
height for the reduction

71725%

B261 81
| &

2MB

MB

Q
-~

! ol 1 <! ot /7
018171926272

4
‘L*I

M31

an

qN¢

v1B19

3

6.
1728202

ceal ok B

(8

6o’ <! !t <t 1/
520581017172



Proof of Correctness

M =2m?3

A Is a no-instance

H=2m"A)+7m?
Is the maximum allowed
height for the reduction

71725%

B261 81
| &

2MB

MB

Q
-~

! ol 1 <! ot /7
018171926272

4
‘L*I

M31

an

qN¢

v1B19

3

6.
1728202

ceal ok B

(8

6o’ <! !t <t 1/
520581017172



2MB

MB

BSYYS

/

PUYTETETITYTITITYITITVTVTPTTVITVTPTPTV TV TPTVITT TV TV ITPTVIV IV I PT VT v vIvIvIvivivivie s

!/ _ 7

B1719

/
1

o

/

””””"""""”””””””””””” ,

””””””””””

‘(((((“((““((((‘I

-

i

N N

/ N
_ > *V

L

S S =

Mal
Ma4
/\/Ia5

g

I”””””””””’.

C‘(‘(“‘C‘(““(‘(“

Y17v2962 8261 B1

Proof of Correctness

/
%]‘/0‘6”-0‘1 w  w! &q

6°
2

a

r"""""""""""""""""""""“v"""""""‘""""""""""""

U

v18106172829

an

qine

M =2m?
I
minimum height

2m3(3° A+ 1)
2m? (3" A) + 7m?
Is the maximum allowed

A Is a no-instance

H

height for the reduction



Proof of Correctness

/

/

!/ _ 7

/
B171928272

/
1

2MB

MB

A AT R AR AR

d
/

””””””””””
((““““(““‘((‘I

BAAAAAAAAAAANAANAANAANAAAANAAANANAN
PUrYTETITITVTITOTVTVTTVPIVIVIVvIvIvIvIvIvIeIev Yy _.\6

i

-

g

Ma4

/\/Ia5

\

/
%]‘/0‘6”-0‘1 w  w! &q

Y17v2962 8261 B1

r"""""""""""""""""""""“

L

S S =

6..

IV

o

eV

I o\
B AAAAAAANAANAANAANANAANAIANY Nl
C‘((‘(((‘((((((((((‘ —
-0
v"""""""‘""""""""""""J —
|

an

M =2m?3

A Is a no-instance

|
minimum height

2m3 (T A+ 1)

qine

v
height > H

2m3(z A) + m°
Is the maximum allowed
height for the reduction

H =



Proof of Correctness

2MB

~ MB
~ QAN
~
2/' JOCOG0500000000000020000000000000000000002000000000000000200000000608¢
W TS,
~ RIRIRIR IR IR IR IR I IR IR IR IR IR IR IR IR IR IR IR
& LT N A " " " VIt Tt VIt "It "I I "I TR "I TR TR
~Nv )/
~
w~O

L
B/L
L
S | I
A A AAAAANAANANN

QY
Q> VIWTOTWTWIV TV TWIvIv eIy

r""""""‘"""""""""""’C"""‘v"""""""""""(

an

qine

M =2m?3

A is a no-instance
I
minimum height
2m3 (> A+ 1)
height > H

v

Theorem.

TANGLE-HEIGHT MINIMIZATION Is NP-hard.



Overview

e New algorithm: using dynamic programming;
asymptotically faster than [Olszewski et al., GD'18].

2|L| z

0(dman) ——= O((F +1) em)

e Experiments: comparison with [Olszewski et al., GD"18]



Improving Exact Algorithms

TANGLE-HEIGHT MINIMIZATION can be solved in ...

Simple lists

General lists



Improving Exact Algorithms

TANGLE-HEIGHT MINIMIZATION can be solved in ...

n — number of wires

Simple lists
[Olszewski et al., GD'18]

20(n2)

General lists



Improving Exact Algorithms

TANGLE-HEIGHT MINIMIZATION can be solved in ...

n — number of wires
Simple lists
[Olszewski et al., GD'18] our runtime
2O(n2) 2O(nlog n)

General lists



Improving Exact Algorithms

TANGLE-HEIGHT MINIMIZATION can be solved in ...

n — number of wires
|L| — length of the list L (= > 4;j)
¢ — golden ratio (~ 1.618)
Simple lists
[Olszewski et al., GD'18] our runtime

20(,72) 20(nlog n)

General lists

[Olszewski et al., GD'18]
2|L]

O(%n)



Improving Exact Algorithms

TANGLE-HEIGHT MINIMIZATION can be solved in ...

Simple lists
[Olszewski et al., GD'18]

20(n2)

General lists

[Olszewski et al., GD'18]
2|

O(%n)

n — number of wires
|L| — length of the list L (= > ¢;;)
@ — golden ratio (=~ 1.618)

our runtime
20(n log n)

our runtime



Improving Exact Algorithms

TANGLE-HEIGHT MINIMIZATION can be solved in ...

Simple lists
[Olszewski et al., GD'18]
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General lists
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n — number of wires
|L| — length of the list L (= > ¢;;)
@ — golden ratio (=~ 1.618)

our runtime
20(n log n)
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polynomial in |L]|
for fixed n
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check whether the map iIs indeed a permutation
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Overview

e Complexity:
NP-hardness by
reduction from
3-PARTITION.
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e New algorithm: using dynamic programming;
asymptotically faster than [Olszewski et al., GD'18].
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