
Computing Height-Optimal
Tangles Faster

Oksana Firman
Philipp Kindermann

Alexander Wolff
Johannes Zink

Julius-Maximilians-Universität Würzburg,

Germany

Alexander Ravsky
Pidstryhach Institute for Applied Problems

of Mechanics and Mathematics,
National Academy of Sciences of Ukraine,

Lviv, Ukraine

PK AW JZ OF Wü AR Lviv

Introduction

Given a set of n
y -monotone wires

Introduction

Given a set of n
y -monotone wires

1 ≤ i < j ≤ n

swap i j

i j

Introduction

Given a set of n
y -monotone wires

1 ≤ i < j ≤ n

swap i j

disjoint swaps

Introduction

Given a set of n
y -monotone wires

1 ≤ i < j ≤ n

swap i j

disjoint swaps

adjacent
permutations

Introduction

Given a set of n
y -monotone wires

1 ≤ i < j ≤ n

swap i j

disjoint swaps

multiple swaps

adjacent
permutations

Introduction

Given a set of n
y -monotone wires

1 ≤ i < j ≤ n

swap i j

disjoint swaps

multiple swaps

tangle T of
height h(T)

π1

π2

π3

π6

adjacent
permutations

π4

π5

Introduction

Given a set of n
y -monotone wires

1 ≤ i < j ≤ n

1 2 · · · n

swap i j

disjoint swaps

multiple swaps

tangle T of
height h(T)

π1

π2

π3

π6

π′1

π′2

π′3

π′5

adjacent
permutations

π4

π5

π′4

1 2 · · · n

Introduction

Given a set of n
y -monotone wires

. . . and given a list of
swaps L

1 ≤ i < j ≤ n

1 2 · · · n

swap i j

disjoint swaps

multiple swaps

tangle T of
height h(T)

π1

π2

π3

π6

adjacent
permutations

π4

π5

Introduction

Given a set of n
y -monotone wires

as a multiset (`i j)

. . . and given a list of
swaps L

1 ≤ i < j ≤ n

1 2 · · · n

swap i j

disjoint swaps

multiple swaps

tangle T of
height h(T)

π1

π2

π3

π6

1

3
1
1
2

adjacent
permutations

π4

π5

Introduction

Given a set of n
y -monotone wires

as a multiset (`i j)

. . . and given a list of
swaps L

1 ≤ i < j ≤ n

1 2 · · · n

swap i j

disjoint swaps

multiple swaps

tangle T of
height h(T)

π1

π2

π3

π6

1

3
1
1
2

Tangle T (L) realizes list L.

adjacent
permutations

π4

π5

Introduction

Given a set of n
y -monotone wires

as a multiset (`i j)

. . . and given a list of
swaps L

1 ≤ i < j ≤ n

1 2 · · · n

swap i j

disjoint swaps

multiple swaps

tangle T of
height h(T)

π1

π2

π3

π6

1

3
1
1
2

Tangle T (L) realizes list L.

adjacent
permutations

π4

π5

Introduction

Given a set of n
y -monotone wires

as a multiset (`i j)

. . . and given a list of
swaps L

1 ≤ i < j ≤ n

1 2 · · · n

swap i j

disjoint swaps

multiple swaps

tangle T of
height h(T)

π1

π2

π3

π6

1

3
1
1
2

Tangle T (L) realizes list L.

adjacent
permutations

not feasible

π4

π5

Introduction

Given a set of n
y -monotone wires

as a multiset (`i j)

. . . and given a list of
swaps L

1 ≤ i < j ≤ n

1 2 · · · n

swap i j

disjoint swaps

multiple swaps

tangle T of
height h(T)

π1

π2

π3

π6

A tangle T (L) is height-optimal if it has the minimum height
among all tangles realizing the list L.

1

3
1
1
2

Tangle T (L) realizes list L.

adjacent
permutations

π4

π5

Related Work
• Olszewski et al. Visualizing the template

of a chaotic attractor.
GD 2018

Related Work
• Olszewski et al. Visualizing the template

of a chaotic attractor.
GD 2018

m
list

Related Work
• Olszewski et al. Visualizing the template

of a chaotic attractor.
GD 2018

m
list

Algorithm for finding
optimal tangles

Related Work
• Olszewski et al. Visualizing the template

of a chaotic attractor.
GD 2018

m
list

Algorithm for finding
optimal tangles

Complexity ??

Related Work
• Olszewski et al. Visualizing the template

of a chaotic attractor.
GD 2018

m
list

• Wang. Novel routing schemes for IC
layout part I: Two-layer channel routing.
DAC 1991

Given:
initial and
final permutations

Algorithm for finding
optimal tangles

Complexity ??

Related Work
• Olszewski et al. Visualizing the template

of a chaotic attractor.
GD 2018

m
list

• Wang. Novel routing schemes for IC
layout part I: Two-layer channel routing.
DAC 1991

Given:
initial and
final permutations

Objective: minimize
the number of bends

• Bereg et al. Drawing Permutations with Few Corners.
GD 2013

Algorithm for finding
optimal tangles

Complexity ??

Overview

• Complexity:
NP-hardness by
reduction from
3-Partition.

• New algorithm: using dynamic programming;
asymptotically faster than [Olszewski et al., GD’18].

O
(
ϕ2|L|

5|L|/n
n
)

O
((2|L|

n2 + 1
) n2

2 ϕnn
)

• Experiments: comparison with [Olszewski et al., GD’18]

Complexity

Tangle-Height Minimization is NP-hard.
Theorem.

Complexity

Reduction from 3-Partition

Tangle-Height Minimization is NP-hard.
Theorem.

Proof.

Complexity

Reduction from 3-Partition

Tangle-Height Minimization is NP-hard.
Theorem.

Proof.
3-Partition

Given: Multiset A of 3m positive integers.

a1 a2 a3 a3m−2 a3m· · · a3m−1

Complexity

Reduction from 3-Partition

Tangle-Height Minimization is NP-hard.
Theorem.

Proof.
3-Partition

∑
1 = B · · · ∑

m = B

Given: Multiset A of 3m positive integers.
Can A be partitioned into m groups of
three elements s.t. each group sums up to
the same value B?

Question:

a1 a2 a3 a3m−2 a3m· · ·∑
2 = B

a3m−1

Complexity

Reduction from 3-Partition

Tangle-Height Minimization is NP-hard.
Theorem.

Proof.
3-Partition

B
4 < ai <

B
2

B is poly in m

∑
1 = B · · · ∑

m = B

Given: Multiset A of 3m positive integers.
Can A be partitioned into m groups of
three elements s.t. each group sums up to
the same value B?

Question:

a1 a2 a3 a3m−2 a3m· · ·∑
2 = B

a3m−1

Complexity

Reduction from 3-Partition

Tangle-Height Minimization is NP-hard.
Theorem.

Proof. B
4 < ai <

B
2

B is poly in m

∑
1 = B · · · ∑

m = B

Given: Multiset A of 3m positive integers.
Can A be partitioned into m groups of
three elements s.t. each group sums up to
the same value B?

Given: Instance A of 3-Partition.

Question:

a1 a2 a3 a3m−2 a3m· · ·∑
2 = B

a3m−1

Complexity

Reduction from 3-Partition

Tangle-Height Minimization is NP-hard.
Theorem.

Proof. B
4 < ai <

B
2

B is poly in m

∑
1 = B · · · ∑

m = B

Given: Multiset A of 3m positive integers.
Can A be partitioned into m groups of
three elements s.t. each group sums up to
the same value B?

Given: Instance A of 3-Partition.
Task: Construct L s.t. there is T realizing L with height at

most H = 2m3(
∑

A)+7m2 iff A is a yes-instance.

Question:

a1 a2 a3 a3m−2 a3m· · ·∑
2 = B

a3m−1

Complexity

Reduction from 3-Partition

Tangle-Height Minimization is NP-hard.
Theorem.

Proof.

Given: Instance A of 3-Partition.
Task: Construct L s.t. there is T realizing L with height at

most H = 2m3(
∑

A)+7m2 iff A is a yes-instance.

∑
A

∑
1 = B · · · ∑

m = B

a1 a2 a3 a3m−2 a3m−1 a3m· · ·∑
2 = B

Complexity

Reduction from 3-Partition

Tangle-Height Minimization is NP-hard.
Theorem.

Proof.

Given: Instance A of 3-Partition.
Task: Construct L s.t. there is T realizing L with height at

most H = 2m3(
∑

A)+7m2 iff A is a yes-instance.

∑
A

∑
1 = B · · · ∑

m = B

a1 a2 a3 a3m−2 a3m−1 a3m· · ·∑
2 = B +1

Complexity

Reduction from 3-Partition

Tangle-Height Minimization is NP-hard.
Theorem.

Proof.

Given: Instance A of 3-Partition.
Task: Construct L s.t. there is T realizing L with height at

most H = 2m3(
∑

A)+7m2 iff A is a yes-instance.

∑
A +1

∑
1 = B · · · ∑

m = B

a1 a2 a3 a3m−2 a3m−1 a3m· · ·∑
2 = B +1

Complexity

Reduction from 3-Partition

Tangle-Height Minimization is NP-hard.
Theorem.

Proof.

Given: Instance A of 3-Partition.

∑
A +1

Task: construct L s.t. there is T realizing L with height at
most H = 2m3(

∑
A)+7m2 iff A is a yes-instance+1

∑
1 = B · · · ∑

m = B

a1 a2 a3 a3m−2 a3m−1 a3m· · ·∑
2 = B +1

Transforming the Instance A into a List L
ω ω′

ω ω′

Transforming the Instance A into a List L
ω ω′

ω ω′

2m swaps

Transforming the Instance A into a List L

α1

ω ω′

ω ω′

α1 α′1

α′1

Transforming the Instance A into a List L

α1

ω ω′

ω ω′

α1 α′1

α′1

Ma1
M = 2m3

Transforming the Instance A into a List L

α1

ω ω′

ω ω′

α1 α′1

α′1

Ma1
M = 2m3

Transforming the Instance A into a List L

α1

ω ω′

ω ω′

α1 α′1

α′1

Ma1
M = 2m3

Transforming the Instance A into a List L

α1

ω ω′

ω ω′

α1 α′1

α′1

Ma1
M = 2m3

Transforming the Instance A into a List L

α1

ω ω′

ω ω′

α1 α′1

α′1

Ma1
M = 2m3

What is not possible?

split

Transforming the Instance A into a List L

α1

ω ω′

ω ω′

α1 α′1

α′1

α2 α′2

α2 α′2

Ma1
M = 2m3

Ma2

Transforming the Instance A into a List L

α1

ω ω′

ω ω′

α1 α′1

α′1

α2 α′2

α2 α′2

Ma1
M = 2m3

Ma2

What is not possible?

put it on the same level
with other α-α′ swaps

Transforming the Instance A into a List L

α1

ω ω′

ω ω′

α6 α1· · · α′1 α′6

α6· · · α′1 α′6· · ·

· · ·

Ma1

Ma4

Ma5

Ma2

Ma3

Ma6

M = 2m3

Making Sure That the “Pockets” Can’t Be Squeezed
ω ω′

ω ω′
δ2β1δ1 β2

β2δ2 β1δ1

Making Sure That the “Pockets” Can’t Be Squeezed
ω ω′

ω ω′
δ2β1δ1 β2

β2δ2 β1δ1

β2δ2 β1δ1

Making Sure That the “Pockets” Can’t Be Squeezed
ω ω′

ω ω′
δ2β1δ1 β2

β2δ2 β1δ1

β2δ2 β1δ1

β2 δ2β1 δ1

Making Sure That the “Pockets” Can’t Be Squeezed
ω ω′

ω ω′
δ2β1δ1 β2

β2δ2 β1δ1

Making Sure That the “Pockets” Can’t Be Squeezed
ω ω′

ω ω′
δ2β1δ1 β2

β2δ2 β1δ1

Making Sure That the “Pockets” Can’t Be Squeezed
ω ω′

ω ω′
δ2β1δ1 β2

β2δ2 β1δ1

Making Sure That the “Pockets” Can’t Be Squeezed
ω ω′

ω ω′
δ2β1δ1 β2

β2δ2 β1δ1

Making Sure That the “Pockets” Can’t Be Squeezed
ω ω′

ω ω′
δ2β1δ1 β2

β2δ2 β1δ1

Making Sure That the “Pockets” Can’t Be Squeezed
ω ω′

ω ω′
δ2β1δ1 β2

β2δ2 β1δ1

Making Sure That the “Pockets” Can’t Be Squeezed
ω ω′

ω ω′
γ2γ1 δ2β1δ1 β2

β2γ2γ1 δ2 β1δ1

2M
B

M
B

M = 2m3

Making Sure That the “Pockets” Can’t Be Squeezed
ω ω′

ω ω′

γ′1 γ′2δ′1 β′2δ′2β′1

β′1 γ′1γ
′
2δ′1β′2δ

′
2

2M
B

M
B

γ2γ1 δ2β1δ1 β2

β2γ2γ1 δ2 β1δ1

2M
B

M
B

M = 2m3

Making Sure That the “Pockets” Can’t Be Squeezed

α1

ω ω′

ω ω′

γ′1 γ′2δ′1 β′2δ′2β′1

β′1 γ′1γ
′
2δ′1β′2δ

′
2

α6 α1· · · α′1 α′6

α6· · · α′1 α′6· · ·

2M
B

M
B

· · ·

γ2γ1 δ2β1δ1 β2

β2γ2γ1 δ2 β1δ1

Ma1

Ma4

Ma5

Ma2

Ma3

Ma6

2M
B

M
B

M = 2m3

Proof of Correctness

α1

ω ω′

ω ω′

γ′1 γ′2δ′1 β′2δ′2β′1

β′1 γ′1γ
′
2δ′1β′2δ

′
2

α6 α1· · · α′1 α′6

α6· · · α′1 α′6· · ·

2M
B

M
B

· · ·

γ2γ1 δ2β1δ1 β2

β2γ2γ1 δ2 β1δ1

Ma1

Ma4

Ma5

Ma2

Ma3

Ma6

2M
B

M
B

M = 2m3

A is a yes-instance

H = 2m3(
∑

A) + 7m2

is the maximum allowed
height for the reduction

Proof of Correctness

α1

ω ω′

ω ω′

γ′1 γ′2δ′1 β′2δ′2β′1

β′1 γ′1γ
′
2δ′1β′2δ

′
2

α6 α1· · · α′1 α′6

α6· · · α′1 α′6· · ·

2M
B

M
B

· · ·

γ2γ1 δ2β1δ1 β2

β2γ2γ1 δ2 β1δ1

Ma1

Ma4

Ma5

Ma2

Ma3

Ma6

2M
B

M
B

M = 2m3

A is a yes-instance

by construction

H = 2m3(
∑

A) + 7m2

is the maximum allowed
height for the reduction

Proof of Correctness

α1

ω ω′

ω ω′

γ′1 γ′2δ′1 β′2δ′2β′1

β′1 γ′1γ
′
2δ′1β′2δ

′
2

α6 α1· · · α′1 α′6

α6· · · α′1 α′6· · ·

2M
B

M
B

· · ·

γ2γ1 δ2β1δ1 β2

β2γ2γ1 δ2 β1δ1

Ma1

Ma4

Ma5

Ma2

Ma3

Ma6

2M
B

M
B

M = 2m3

A is a yes-instance

by construction

height ≤ H

H = 2m3(
∑

A) + 7m2

is the maximum allowed
height for the reduction

Proof of Correctness

α1

ω ω′

ω ω′

γ′1 γ′2δ′1 β′2δ′2β′1

β′1 γ′1γ
′
2δ′1β′2δ

′
2

α6 α1· · · α′1 α′6

α6· · · α′1 α′6· · ·

2M
B

M
B

· · ·

γ2γ1 δ2β1δ1 β2

β2γ2γ1 δ2 β1δ1

Ma1

Ma4

Ma5

Ma2

Ma3

Ma6

2M
B

M
B

M = 2m3

A is a yes-instanceno

H = 2m3(
∑

A) + 7m2

is the maximum allowed
height for the reduction

Proof of Correctness

α1

ω ω′

ω ω′

γ′1 γ′2δ′1 β′2δ′2β′1

β′1 γ′1γ
′
2δ′1β′2δ

′
2

α6 α1· · · α′1 α′6

α6· · · α′1 α′6· · ·

2M
B

M
B

· · ·

γ2γ1 δ2β1δ1 β2

β2γ2γ1 δ2 β1δ1

Ma1

Ma4

Ma5

Ma2

Ma3

Ma6

2M
B

M
B

M = 2m3

A is a yes-instanceno

H = 2m3(
∑

A) + 7m2

is the maximum allowed
height for the reduction

minimum height
2m3(

∑
A + 1)

Proof of Correctness

α1

ω ω′

ω ω′

γ′1 γ′2δ′1 β′2δ′2β′1

β′1 γ′1γ
′
2δ′1β′2δ

′
2

α6 α1· · · α′1 α′6

α6· · · α′1 α′6· · ·

2M
B

M
B

· · ·

γ2γ1 δ2β1δ1 β2

β2γ2γ1 δ2 β1δ1

Ma1

Ma4

Ma5

Ma2

Ma3

Ma6

2M
B

M
B

M = 2m3

A is a yes-instanceno

height > H

H = 2m3(
∑

A) + 7m2

is the maximum allowed
height for the reduction

minimum height
2m3(

∑
A + 1)

Proof of Correctness

α1

ω ω′

ω ω′

γ′1 γ′2δ′1 β′2δ′2β′1

β′1 γ′1γ
′
2δ′1β′2δ

′
2

α6 α1· · · α′1 α′6

α6· · · α′1 α′6· · ·

2M
B

M
B

· · ·

γ2γ1 δ2β1δ1 β2

β2γ2γ1 δ2 β1δ1

Ma1

Ma4

Ma5

Ma2

Ma3

Ma6

2M
B

M
B

M = 2m3

A is a yes-instanceno

height > H

H = 2m3(
∑

A) + 7m2

is the maximum allowed
height for the reduction

minimum height
2m3(

∑
A + 1)

Tangle-Height Minimization is NP-hard.
Theorem.

X

Overview

• Complexity:
NP-hardness by
reduction from
3-Partition.

• New algorithm: using dynamic programming;
asymptotically faster than [Olszewski et al., GD’18].

O
(
ϕ2|L|

5|L|/n
n
)

O
((2|L|

n2 + 1
) n2

2 ϕnn
)

• Experiments: comparison with [Olszewski et al., GD’18]

Improving Exact Algorithms

Simple lists

Tangle-Height Minimization can be solved in . . .

General lists

Improving Exact Algorithms

Simple lists

Tangle-Height Minimization can be solved in . . .

General lists

[Olszewski et al., GD’18]

2O(n2)

n – number of wires

Improving Exact Algorithms

Simple lists

Tangle-Height Minimization can be solved in . . .

General lists

[Olszewski et al., GD’18]

2O(n2) 2O(n log n)

our runtime

n – number of wires

Improving Exact Algorithms

Simple lists

Tangle-Height Minimization can be solved in . . .

General lists

[Olszewski et al., GD’18]

2O(n2) 2O(n log n)

our runtime

[Olszewski et al., GD’18]

O
(
ϕ2|L|

5|L|/n
n
)

n – number of wires
– length of the list L (=

∑
`i j)

– golden ratio (≈ 1.618)
|L|
ϕ

Improving Exact Algorithms

Simple lists

Tangle-Height Minimization can be solved in . . .

General lists

[Olszewski et al., GD’18]

2O(n2) 2O(n log n)

our runtime

[Olszewski et al., GD’18]

O
(
ϕ2|L|

5|L|/n
n
)

O
((2|L|

n2 + 1
) n2

2 ϕnn
)our runtime

n – number of wires
– length of the list L (=

∑
`i j)

– golden ratio (≈ 1.618)
|L|
ϕ

Improving Exact Algorithms

Simple lists

Tangle-Height Minimization can be solved in . . .

General lists

[Olszewski et al., GD’18]

2O(n2) 2O(n log n)

our runtime

[Olszewski et al., GD’18]

O
(
ϕ2|L|

5|L|/n
n
)

O
((2|L|

n2 + 1
) n2

2 ϕnn
)our runtime

polynomial in |L|

n – number of wires
– length of the list L (=

∑
`i j)

– golden ratio (≈ 1.618)
|L|
ϕ

polynomial in |L|
for fixed n

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.
L′ is a sublist of L if
`′i j ≤ `i j

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.
L′ is a sublist of L if
`′i j ≤ `i j

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

L′ is a sublist of L if
`′i j ≤ `i j

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency.

L′ is a sublist of L if
`′i j ≤ `i j

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency.
i

L′ is a sublist of L if
`′i j ≤ `i j

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency.
i

for each wire i :
// find a position where it is after applying L′

L′ is a sublist of L if
`′i j ≤ `i j

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency.
i

for each wire i :
// find a position where it is after applying L′

i 7→ i + |{j : j > i and `′i j is odd}| − |{j : j < i and `′i j is odd}|

L′ is a sublist of L if
`′i j ≤ `i j

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency.
i

for each wire i :
// find a position where it is after applying L′

i 7→ i + |{j : j > i and `′i j is odd}| − |{j : j < i and `′i j is odd}|

L′ is a sublist of L if
`′i j ≤ `i j

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency.
i

for each wire i :
// find a position where it is after applying L′

i 7→ i + |{j : j > i and `′i j is odd}| − |{j : j < i and `′i j is odd}|

L′ is a sublist of L if
`′i j ≤ `i j

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency.
i

for each wire i :
// find a position where it is after applying L′

i 7→ i + |{j : j > i and `′i j is odd}| − |{j : j < i and `′i j is odd}|

L′ is a sublist of L if
`′i j ≤ `i j

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency.
i

for each wire i :
// find a position where it is after applying L′

i 7→ i + |{j : j > i and `′i j is odd}| − |{j : j < i and `′i j is odd}|
check whether the map is indeed a permutation

L′ is a sublist of L if
`′i j ≤ `i j

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency.

idn L′

L′ is a sublist of L if
`′i j ≤ `i j

Compute the final permutation idn L′.

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency. π1
π2
...

πh
idn L′

Choose the shortest tangle T (L′′).

L′ is a sublist of L if
`′i j ≤ `i j

Compute the final permutation idn L′.

πh and idn L′ are adjacent
L′′∪ add. swaps = L′

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency. π1
π2
...

πh
idn L′

Choose the shortest tangle T (L′′).

L′ is a sublist of L if
`′i j ≤ `i j

Compute the final permutation idn L′.

πh and idn L′ are adjacent
L′′∪ add. swaps = L′

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency. π1
π2
...

πhAdd the final permutation to its end.
idn L′

Choose the shortest tangle T (L′′).

L′ is a sublist of L if
`′i j ≤ `i j

Compute the final permutation idn L′.

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency. π1
π2
...

πhAdd the final permutation to its end.
idn L′

Running time

O(λ · (Fn+1 − 1) · n) ≤

Choose the shortest tangle T (L′′).

L′ is a sublist of L if
`′i j ≤ `i j

Compute the final permutation idn L′.

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency. π1
π2
...

πhAdd the final permutation to its end.
idn L′

Running time

O(λ · (Fn+1 − 1) · n) ≤

Choose the shortest tangle T (L′′).

L′ is a sublist of L if
`′i j ≤ `i j

Compute the final permutation idn L′.

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency. π1
π2
...

πhAdd the final permutation to its end.
idn L′

Running time

O(λ · (Fn+1 − 1) · n) ≤

Choose the shortest tangle T (L′′).

Fn is the n-th Fibonacci number

L′ is a sublist of L if
`′i j ≤ `i j

Compute the final permutation idn L′.

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency. π1
π2
...

πhAdd the final permutation to its end.
idn L′

Running time

O(λ · (Fn+1 − 1) · n) ≤

Choose the shortest tangle T (L′′).

L′ is a sublist of L if
`′i j ≤ `i j

Compute the final permutation idn L′.

λ =
∏
i<j

(`i j + 1) ≤
(

2|L|
n2

+ 1
)n2/2

Fn ∈ O(ϕn)

Dynamic Programming Algorithm

O
((2|L|

n2 + 1
)n2/2

ϕnn
)

Let L = (`i j) be the given list of swaps.

λ = # of distinct sublists of L.

Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency. π1
π2
...

πhAdd the final permutation to its end.
idn L′

Running time

O(λ · (Fn+1 − 1) · n) ≤

Choose the shortest tangle T (L′′).

L′ is a sublist of L if
`′i j ≤ `i j

Compute the final permutation idn L′.

λ =
∏
i<j

(`i j + 1) ≤
(

2|L|
n2

+ 1
)n2/2

Fn ∈ O(ϕn)

Overview

• Complexity:
NP-hardness by
reduction from
3-Partition.

• New algorithm: using dynamic programming;
asymptotically faster than [Olszewski et al., GD’18].

O
(
ϕ2|L|

5|L|/n
n
)

O
((2|L|

n2 + 1
) n2

2 ϕnn
)

• Experiments: comparison with [Olszewski et al., GD’18]

[Olszewski et al., GD’18]

O
(
ϕ2|L|

5|L|/n
n
)

O
((2|L|

n2 + 1
) n2

2 ϕnn
)Our algorithm

ru
n

ti
m

e
[s

ec
]

length |L| of the list L

0 10 20 30 40 50

0.0001

0.01

1

100

3600

Experiments

0 10 20 30 40 0 10 20 30 40

Open Problems

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Open Problems

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

Can we decide a feasibility of a list faster than finding its
optimal realization?

Open Problems

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

Can we decide a feasibility of a list faster than finding its
optimal realization?

Problem 3
A list (`i j) is non-separable
if ∀i<k<j :

(
`ik = `kj = 0 implies `i j = 0

)
.

i k j

Open Problems

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

Can we decide a feasibility of a list faster than finding its
optimal realization?

Problem 3
A list (`i j) is non-separable
if ∀i<k<j :

(
`ik = `kj = 0 implies `i j = 0

)
.

i k j

necessary

Open Problems

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

Can we decide a feasibility of a list faster than finding its
optimal realization?

Problem 3

For lists where all entries are even, is this sufficient?

A list (`i j) is non-separable
if ∀i<k<j :

(
`ik = `kj = 0 implies `i j = 0

)
.

i k j

necessary

Open Problems

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

Can we decide a feasibility of a list faster than finding its
optimal realization?

Problem 3

For lists where all entries are even, is this sufficient?

A list (`i j) is non-separable
if ∀i<k<j :

(
`ik = `kj = 0 implies `i j = 0

)
.

i k j

necessary

Thank you!

	Introduction
	Related Work
	Overview
	Complexity
	\large Transforming the Instance A into a List L
	\large Making Sure That the ``Pockets'' Can't Be Squeezed
	Proof of Correctness
	Overview
	Improving Exact Algorithms
	Dynamic Programming Algorithm
	Overview
	Open Problems

