Graph Stories in Small Area

27th Int. Symposium on Graph Drawing and Network Visualization (GD 2019)

Manuel Borrazzo, Giordano Da Lozzo, Fabrizio Frati, Maurizio Patrignani
$\overline{\overline{\underline{\underline{\underline{\underline{\underline{B}}}}}}}$

Department of Engineering • Roma Tre University

Graph stories

Graphs that change over time:

- vertices enter the graph one after the other, at discrete time instants
- each persists in the graph for a fixed amount of time W (window size)

Graph stories

Graphs that change over time:

- vertices enter the graph one after the other, at discrete time instants
- each persists in the graph for a fixed amount of time W (window size)

Graph stories

Graphs that change over time:

- vertices enter the graph one after the other, at discrete time instants
- each persists in the graph for a fixed amount of time W (window size)

Graph stories

Graphs that change over time:

- vertices enter the graph one after the other, at discrete time instants
- each persists in the graph for a fixed amount of time W (window size)

Graph stories

Graphs that change over time:

- vertices enter the graph one after the other, at discrete time instants
- each persists in the graph for a fixed amount of time W (window size)

Graph stories

Graphs that change over time:

- vertices enter the graph one after the other, at discrete time instants
- each persists in the graph for a fixed amount of time W (window size)

Graph stories

Graphs that change over time:

- vertices enter the graph one after the other, at discrete time instants
- each persists in the graph for a fixed amount of time W (window size)

$$
W=3
$$

Graph stories

Graphs that change over time:

- vertices enter the graph one after the other, at discrete time instants
- each persists in the graph for a fixed amount of time W (window size)

Graph stories

Graphs that change over time:

- vertices enter the graph one after the other, at discrete time instants
- each persists in the graph for a fixed amount of time W (window size)

Graph stories

Graphs that change over time:

- vertices enter the graph one after the other, at discrete time instants
- each persists in the graph for a fixed amount of time W (window size)

Graph stories

Graphs that change over time:

- vertices enter the graph one after the other, at discrete time instants
- each persists in the graph for a fixed amount of time W (window size)

Graph stories

Graphs that change over time:

- vertices enter the graph one after the other, at discrete time instants
- each persists in the graph for a fixed amount of time W (window size)

Graph stories

Definition 1

A graph story is a triple $\langle G, \tau, W\rangle$

- $G=(V, E)$ is a graph
- a bijection $\tau: V \leftrightarrow\{1, \ldots,|V|\}$
- W is a positive integer
$\rightarrow \quad$ vertex v appears in G at time $\tau(v)$
$\rightarrow \quad$ vertex v leaves G at time $\tau(v)+W$

Graph stories

Definition 1

A graph story is a triple $\langle G, \tau, W\rangle$

- $G=(V, E)$ is a graph
- a bijection $\tau: V \leftrightarrow\{1, \ldots,|V|\}$
$\rightarrow \quad$ vertex v appears in G at time $\tau(v)$
- W is a positive integer vertex v leaves G at time $\tau(v)+W$

Graph stories

Definition 1

A graph story is a triple $\langle G, \tau, W\rangle$

- $G=(V, E)$ is a graph
- a bijection $\tau: V \leftrightarrow\{1, \ldots,|V|\}$
- W is a positive integer

$\rightarrow \quad$ vertex v appears in G at time $\tau(v)$ vertex v leaves G at time $\tau(v)+W$

$$
W=3
$$

Graph stories

Definition 1

A graph story is a triple $\langle G, \tau, W\rangle$

- $G=(V, E)$ is a graph
- a bijection $\tau: V \leftrightarrow\{1, \ldots,|V|\} \rightarrow$ vertex v appears in G at time $\tau(v)$
- W is a positive integer $\rightarrow \quad$ vertex v leaves G at time $\tau(v)+W$

Drawing stories (of graph stories)

Definition 2

A drawing story for $\langle G, \tau, W\rangle$ is a sequence $\Gamma=\left\langle\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n+W-1}\right\rangle$ such that:

- Γ_{t} is a drawing of G_{t}
- if $v \in V\left(G_{i}\right) \cap V\left(G_{j}\right)$, then v is in the same position in Γ_{i} and in Γ_{j}
- if $e \in E\left(G_{i}\right) \cap E\left(G_{j}\right)$, then e is represented by the same curve in Γ_{i} and in Γ_{j}

Benefit: preserve the user's mental map through the sequence

i.e., $\Gamma=\left\langle\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n+W-1}\right\rangle$ is a SEFE of $\left\langle G_{1}, G_{2}, \ldots, G_{n+W-1}\right\rangle$

GD'19 - Graph Stories in Small Area

Drawing stories (of graph stories)

Our focus: drawings stories that are planar, straight-line (\rightarrow SGE), and on the grid

A graph story $\langle G, \tau, W\rangle$ may admit such drawing stories even if G is not planar

For instance, if $\mathbf{W}=\mathbf{3}$ just place the vertices in general positions on a grid

Drawing stories (of graph stories)

Our focus: drawings stories that are planar, straight-line (\rightarrow SGE), and on the grid

A graph story $\langle G, \tau, W\rangle$ may admit such drawing stories even if G is not planar

For instance, if $\mathbf{W}=\mathbf{3}$ just place the vertices in general positions on a grid

A graph story $\langle G, \tau, W\rangle$ always admits such drawing stories if G is planar

A naive approach would produce drawing stories on the $O(n) \times O(n)$ grid (de Fraysseix, Pach and Pollack, Schnyder, ...)

${ }_{\mathrm{Fig}} .2$

this may result in unnecessarily large drawings

Drawing stories in small area

We studied (straight-line planar grid) drawing stories of planar graph stories with the goal of producing drawing stories $\Gamma=\left\langle\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n+W-1}\right\rangle$ such that each $\Gamma_{t} \in \Gamma$ has an area that is a function of W, not of n

Drawing stories in small area

We studied (straight-line planar grid) drawing stories of planar graph stories with the goal of
producing drawing stories $\Gamma=\left\langle\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n+W-1}\right\rangle$ such that each $\Gamma_{t} \in \Gamma$ has an area that is a function of W, not of n

Theorem 1 [Planar Graph Stories]

There are n-vertex planar graph stories whose every drawing story lies on an $\Omega(n) \times \Omega(n)$ grid

Theorem 2 [Path Stories]

Any n-vertex path story $\langle P, \tau, W\rangle$ admits a drawing story that lies on a $2 W \times 2 W$ grid, which is computable in $O(n)$ time

Theorem 3 [Tree Stories]

Any n-vertex tree story $\langle T, \tau, W\rangle$ admits a drawing story that lies on an $(8 W+1) \times(8 W+1)$ grid, which is computable in $O(n)$ time

Tree stories

Dendrological Gardens, Průhonice

Tree stories: bucketing

Theorem 3 [Tree Stories]
Any n-vertex tree story $\langle T, \tau, W\rangle$ admits a drawing story that lies on an $(8 \mathrm{~W}+1) \times(8 \mathrm{~W}+1)$ grid, which is computable in $O(n)$ time

Key idea: vertices are assigned to buckets according to τ

Tree stories: bucketing

Theorem 3 [Tree Stories]

Any n-vertex tree story $\langle T, \tau, W\rangle$ admits a drawing story that lies on an $(8 \mathrm{~W}+1) \times(8 \mathrm{~W}+1)$ grid, which is computable in $O(n)$ time

Key idea: vertices are assigned to buckets according to τ
buckets

- $v \in B_{i}$ iff $i=\left\lfloor\frac{\tau(v)}{W}\right\rfloor$
- intra-bucket edges: $a, b \in B_{i}$
- inter-bucket edges: $c \in B_{i}, d \in B_{j}$, with $i \neq j$

Tree stories: bucketing

Theorem 3 [Tree Stories]

Any n-vertex tree story $\langle T, \tau, W\rangle$ admits a drawing story that lies on an $(8 \mathrm{~W}+1) \times(8 \mathrm{~W}+1)$ grid, which is computable in $O(n)$ time

Key idea: vertices are assigned to buckets according to τ

buckets

Tree stories: strategy

Theorem 3 [Tree Stories]

Any n-vertex tree story $\langle T, \tau, W\rangle$ admits a drawing story that lies on an $(8 W+1) \times(8 W+1)$ grid, which is computable in $O(n)$ time

High-level Strategy:

- partition $V(T)$ into buckets $B_{1}, \ldots, B_{\left\lceil\frac{n}{W}\right\rceil}$

$$
\begin{aligned}
& \text { \&oo } \\
& T\left[B_{i}\right] \text { is a forest }
\end{aligned}
$$

- draw T s.t. forests $T\left[B_{i} \cup B_{i+1}\right]$ are straight-line planar on an $(8 \mathrm{~W}+1) \times(8 \mathrm{~W}+1)$ grid

Tree Stories: requirements

Requirement 1: For $n \gg W$, we need a strategy for reusing space

can only fit $O\left(W^{2}\right)$ vertices

Requirement 2: Since we construct the drawing story for $\langle G, \tau, W\rangle$ by drawing the forests $T\left[B_{1} \cup B_{2}\right], T\left[B_{2} \cup B_{3}\right], \ldots, T\left[B_{\left\lceil\frac{n}{W}\right\rceil-1} \cup B_{\left\lceil\frac{n}{W}\right\rceil}\right]$ independently, we need these drawings to coincide on their shared vertices

- i.e., the drawings for $T\left[B_{i} \cup B_{i+1}\right]$ and $T\left[B_{i+1} \cup B_{i+2}\right]$ should induce the same drawing of $T\left[B_{i+1}\right]$

Drawing Γ^{\prime} of $T\left[B_{i} \cup B_{i+1}\right]$

Drawing $\Gamma^{\prime \prime}$ of $T\left[B_{i+1} \cup B_{i+2}\right]$

How to meet the requirements:

- we construct special drawings of the forests $T\left[B_{i} \cup B_{i+1}\right]$'s that wrap around the origin
- all trees of $T\left[B_{j}\right]$ are drawn close to one of the axis
- trees from $T\left[B_{j}\right]$ and $T\left[B_{j+2}\right]$ will reuse the same drawing space
- the drawing of the $T\left[B_{j}\right]$'s must provide strong visibility properties for inter-bucket edges

Algorithm's Phases 1/5

Phase 1: a) assign each vertex to the bucket B_{i} it belongs to
b) remove from T edges between non-consecutive buckets (never visualized)

$$
\langle T, \tau, W\rangle
$$

Algorithm's Phases 1/5

Phase 1: a) assign each vertex to the bucket B_{i} it belongs to
b) remove from T edges between non-consecutive buckets (never visualized)

$$
\langle T, \tau, W\rangle
$$

Algorithm's Phases 2/5

Phase 2: - add inter- or intra-bucket edges to reconnect T, while ensuring that the new intra-bucket edges only connect consecutive buckets

$$
\langle T, \tau, W\rangle
$$

Algorithm's Phases 2/5

Phase 2: - add inter- or intra-bucket edges to reconnect T, while ensuring that the new intra-bucket edges only connect consecutive buckets

pertinent components: maximal connected component of vertices in the same bucket B_{i}

Algorithm's Phases 3/5

Phase 3: - root T at a vertex in a pertinent component of B_{1}

- assign pertinent components to sets R_{i} 's based on "distance" from the root

Property 2

The children of a vertex $v \in R_{i}$ are either in R_{i} or in R_{i+1}

Algorithm's Phases 4/5

Phase 4: - turn T into an (rooted) ordered tree such that: left-to-right order of the children of $v \in R_{i}$: children in $R_{i} \prec$ children in R_{i+1} (recall Property 2)

Algorithm's Phases 4/5

Phase 4: - turn T into an (rooted) ordered tree such that: left-to-right order of the children of $v \in R_{i}$: children in $R_{i} \prec$ children in R_{i+1} (recall Property 2)

Algorithm's Phases 4/5

Phase 4: - turn T into an (rooted) ordered tree such that:
left-to-right order of the children of $v \in R_{i}$: children in $R_{i} \prec$ children in R_{i+1}
(recall Property 2)

GD'19 - Graph Stories in Small Area

Algorithm's Phases 5/5

Phase 5: - define rooted ordered forests for each B_{i}, i.e, lists of rooted ordered trees goal: establish which component is close to which semi-axis and in which order

GD'19-Graph Stories in Small Area

Algorithm's Phases 5/5

Phase 5: - define rooted ordered forests for each B_{i}, i.e, lists of rooted ordered trees goal: establish which component is close to which semi-axis and in which order

special ordering:

1. primarily, according to the ordering of the R_{i} 's
2. within the same R_{i}, according to a counter-clockwise Eulerian tour of T

$\Lambda-,>-, \vee-$, and $\angle-$ Drawings of Rooted Ordered Forests

Definition 4

Let $\mathcal{F}=\left\langle T_{1}, T_{2}, \ldots, T_{k}\right\rangle$ be a list of rooted ordered trees, with a total of $m \leq W$ vertices.
A Λ-drawing Γ of \mathcal{F} is a planar straight-line strictly-upward strictly-leftward orderpreserving grid drawing of \mathcal{F} on the $(4 W+1) \times(4 W+1)$ grid with special visibility properties

GD'19-Graph Stories in Small Area

$\Lambda-,>-, \vee-$, and $\angle-$ Drawings of Rooted Ordered Forests

Definition 4

Let $\mathcal{F}=\left\langle T_{1}, T_{2}, \ldots, T_{k}\right\rangle$ be a list of rooted ordered trees, with a total of $m \leq W$ vertices.
A Λ-drawing Γ of \mathcal{F} is a planar straight-line strictly-upward strictly-leftward orderpreserving grid drawing of \mathcal{F} on the $(4 W+1) \times(4 W+1)$ grid with special visibility properties

GD'19-Graph Stories in Small Area

Drawing of $T\left[B_{i} \cup B_{i+1}\right]$...at last!

How to draw $T\left[B_{1} \cup B_{2}\right]$:

- compute the $\mathrm{\Lambda}, \mathrm{Z}, \mathrm{V},<-$ drawings for the forests

$$
\mathcal{F}_{1} \boldsymbol{\wedge}, \mathcal{F}_{2} \rightarrow, \mathcal{F}_{1} \boldsymbol{\nabla}, \mathcal{F}_{2} \boldsymbol{4}
$$

- draw the inter-bucket edges

No two inter-bucket edges cross each other because of the ordering of the pertinent components in the forests (Phase 5)

Open Problems

Planar Graph Stories

- Do other notable families of planar graphs admit straight-line planar drawing stories on a grid of size polynomial in W or polynomial in \mathbf{W} and sublinear in \mathbf{n} ?
- e.g.: outerplanar and series-parallel graphs
- What bounds can be shown if G is not a tree, but each G_{t} is a forest?
- Which bounds can be shown if we allow bends?

Different Models

- the same vertex is allowed to appear several times
- multiple vertices may appear simultaneously (and still $\left|V\left(G_{t}\right)\right| \leq W$)
- how about edges, and not vertices, appearing over time?

Graph Stories in Small Area

27th Int. Symposium on Graph Drawing and Network Visualization (GD 2019)

Fabrizio Frati, Maurizio Patrignani

Thanks for your attention!!

Department of Engineering • Roma Tre University

Open Problems

Planar Graph Stories

- Do other notable families of planar graphs admit straight-line planar drawing stories on a grid of size polynomial in W or polynomial in \mathbf{W} and sublinear in n ?
- e.g.: outerplanar and series-parallel graphs
- What bounds can be shown if G is not a tree, but each G_{t} is a forest?
- Which bounds can be shown if we allow bends?

Different Models

- the same vertex is allowed to appear several times
- multiple vertices may appear simultaneously (and still $\left|V\left(G_{t}\right)\right| \leq W$)
- how about edges, and not vertices, appearing over time?

[^0]
[^0]: GD'19 - Graph Stories in Small Are

