Graph Stories in Small Area

27th Int. Symposium on Graph Drawing and Network Visualization (GD 2019)

Manuel Borrazzo, **Giordano Da Lozzo**, Fabrizio Frati, Maurizio Patrignani

Department of Engineering \cdot Roma Tre University

Graphs that change over time:

vertices enter the graph one after the other, at discrete time instants

Graphs that change over time:

vertices enter the graph one after the other, at discrete time instants

Graphs that change over time:

vertices enter the graph one after the other, at discrete time instants

Graphs that change over time:

vertices enter the graph one after the other, at discrete time instants

Graphs that change over time:

vertices enter the graph one after the other, at discrete time instants

Graphs that change over time:

vertices enter the graph one after the other, at discrete time instants

Graphs that change over time:

vertices enter the graph one after the other, at discrete time instants

Graphs that change over time:

vertices enter the graph one after the other, at discrete time instants

Graphs that change over time:

vertices enter the graph one after the other, at discrete time instants

Graphs that change over time:

vertices enter the graph one after the other, at discrete time instants

Graphs that change over time:

vertices enter the graph one after the other, at discrete time instants

Graphs that change over time:

vertices enter the graph one after the other, at discrete time instants

Definition 1

- A graph story is a triple $\langle G, \tau, W \rangle$
 - G = (V, E) is a graph
 - a bijection $\tau: V \leftrightarrow \{1, \ldots, |V|\}$
 - *W* is a positive integer

time

Definition 1

Definition 1

Definition 1

Drawing stories (of graph stories)

Definition 2

A drawing story for $\langle G, \tau, W \rangle$ is a sequence $\Gamma = \langle \Gamma_1, \Gamma_2, \dots, \Gamma_{n+W-1} \rangle$ such that:

- $\Gamma_t \text{ is a drawing of } G_t$
- ▶ if $v \in V(G_i) \cap V(G_j)$, then v is in the same position in Γ_i and in Γ_j
- ▶ if $e \in E(G_i) \cap E(G_j)$, then *e* is represented by the **same curve** in Γ_i and in Γ_j

i.e.,
$$\Gamma = \langle \Gamma_1, \Gamma_2, \dots, \Gamma_{n+W-1} \rangle$$
 is a **SEFE** of $\langle G_1, G_2, \dots, G_{n+W-1} \rangle$

Drawing stories (of graph stories)

Our focus: drawings stories that are **planar**, **straight-line** (\rightarrow **SGE**), and **on the grid**

A graph story $\langle G, \tau, W \rangle$ may admit such drawing stories even if *G* is **not planar**

For instance, if **W=3** just place the vertices in **general positions on a grid**

Drawing stories (of graph stories)

Drawing stories in small area

We studied (straight-line planar grid) drawing stories of planar graph stories with the goal of producing drawing stories $\Gamma = \langle \Gamma_1, \Gamma_2, \dots, \Gamma_{n+W-1} \rangle$ such that each $\Gamma_t \in \Gamma$ has an **area** that is a function of *W*, not of *n*

Drawing stories in small area

We studied (straight-line planar grid) drawing stories of planar graph stories with the goal of

producing drawing stories $\Gamma = \langle \Gamma_1, \Gamma_2, \dots, \Gamma_{n+W-1} \rangle$ such that

each $\Gamma_t \in \Gamma$ has an **area** that is a function of *W*, not of *n*

Theorem 1 [Planar Graph Stories]

There are *n*-vertex **planar graph stories** whose every drawing story lies on an $\Omega(n) \times \Omega(n)$ grid

Theorem 2 [Path Stories]

Any *n*-vertex **path story** $\langle P, \tau, W \rangle$ admits a drawing story that lies on a 2*W* × 2*W* grid, which is computable in *O*(*n*) time

Theorem 3 [Tree Stories]

Any *n*-vertex tree story $\langle T, \tau, W \rangle$ admits a drawing story that lies on an $(8W + 1) \times (8W + 1)$ grid, which is computable in O(n) time

Tree stories

Dendrological Gardens, Průhonice

Tree stories: bucketing

Theorem 3 [Tree Stories]

Any *n*-vertex tree story $\langle T, \tau, W \rangle$ admits a drawing story that lies on an (8W +1) × (8W +1) grid, which is computable in O(n) time

•
$$v \in B_i$$
 iff $i = \lfloor \frac{\tau(v)}{W} \rfloor$

Tree stories: bucketing

Theorem 3 [Tree Stories]

Any *n*-vertex tree story $\langle T, \tau, W \rangle$ admits a drawing story that lies on an (8W +1) × (8W +1) grid, which is computable in O(n) time

Tree stories: bucketing

Theorem 3 [Tree Stories]

Any *n*-vertex tree story $\langle T, \tau, W \rangle$ admits a drawing story that lies on an (8W +1) × (8W +1) grid, which is computable in O(n) time

GD'19 - Graph Stories in Small Area

Tree stories: strategy

Theorem 3 [Tree Stories]

Any *n*-vertex tree story $\langle T, \tau, W \rangle$ admits a drawing story that lies on an (8W +1) × (8W +1) grid, which is computable in O(n) time

Tree Stories: requirements

Requirement 1: For n >> W, we need a strategy for **reusing space**

Requirement 2: Since we construct the drawing story for $\langle G, \tau, W \rangle$ by drawing the forests $T[B_1 \cup B_2], T[B_2 \cup B_3], \ldots, T[B_{\lceil \frac{n}{W} \rceil - 1} \cup B_{\lceil \frac{n}{W} \rceil}]$ independently, we need these drawings to **coincide** on their shared vertices

▶ i.e., the drawings for $T[B_i \cup B_{i+1}]$ and $T[B_{i+1} \cup B_{i+2}]$ should induce the same drawing of $T[B_{i+1}]$

- all trees of T[B_j] are drawn close to one of the axis
- trees from $T[B_j]$ and $T[B_{j+2}]$ will **reuse the same drawing space**
- the drawing of the $T[B_j]$'s must provide strong visibility properties for inter-bucket edges

Algorithm's Phases 1/5

Phase 1: a) assign each vertex to the bucket B_i it belongs to

b) remove from T edges between **non-consecutive buckets** (*never visualized*)

Algorithm's Phases 1/5

Phase 1: a) assign each vertex to the bucket B_i it belongs to

b) remove from T edges between **non-consecutive buckets** (*never visualized*)

Algorithm's Phases 2/5

Phase 2: - add inter- or intra-bucket edges to reconnect *T*, while ensuring that the new intra-bucket edges only connect consecutive buckets

 $U \in B_j \quad v \in B_j$ $|j-1| > 1 \Rightarrow |\tau(u) - \tau(v)| > W$ $U \in B_j \quad v \in B_j$ $|j-1| > 1 \Rightarrow |\tau(u) - \tau(v)| > W$ $U \in B_j \quad v \in B_j$ |j-1| = 1

 $\langle T, \tau, W \rangle$

Algorithm's Phases 2/5

Phase 2: - add inter- or intra-bucket edges to reconnect T, while ensuring that the new intra-bucket edges only connect consecutive buckets

pertinent components: maximal connected component of vertices in the same bucket B_i

Algorithm's Phases 3/5

Phase 3: - **root** T at a vertex in a pertinent component of B_1

- assign pertinent components to sets R_i 's based on "distance" from the root

Property 2

The children of a vertex $v \in R_i$ are either in R_i or in R_{i+1}

Algorithm's Phases 4/5

Algorithm's Phases 4/5

Algorithm's Phases 4/5

Algorithm's Phases 5/5

Algorithm's Phases 5/5

2. within the same R_i , according to a **counter-clockwise Eulerian tour** of T

Definition 4

Let $\mathcal{F} = \langle T_1, T_2, ..., T_k \rangle$ be a list of rooted ordered trees, with a total of $m \leq W$ vertices. A \land -drawing Γ of \mathcal{F} is a planar straight-line strictly-upward strictly-leftward orderpreserving grid drawing of \mathcal{F} on the $(4W+1) \times (4W+1)$ grid with special visibility properties

Definition 4

Let $\mathcal{F} = \langle T_1, T_2, ..., T_k \rangle$ be a list of rooted ordered trees, with a total of $m \leq W$ vertices. A \land -drawing Γ of \mathcal{F} is a planar straight-line strictly-upward strictly-leftward orderpreserving grid drawing of \mathcal{F} on the $(4W+1) \times (4W+1)$ grid with special visibility properties

Open Problems

Planar Graph Stories

- Do other notable families of planar graphs admit straight-line planar drawing stories on a grid of size polynomial in W or polynomial in W and sublinear in n?
 - e.g.: outerplanar and series-parallel graphs
- What bounds can be shown if G is not a tree, but **each** G_t is a forest?
- Which bounds can be shown if we allow bends?

Different Models

- the same vertex is allowed to appear several times
- multiple vertices may appear simultaneously (and still $|V(G_t)| \leq W$)
- how about edges, and not vertices, appearing over time?

Graph Stories in Small Area

27th Int. Symposium on Graph Drawing and Network Visualization (GD 2019)

Manuel Borrazzo, **Giordano Da Lozzo**, Fabrizio Frati, Maurizio Patrignani

DEPARTMENT OF ENGINEERING · ROMA TRE UNIVERSITY

RELINCE BERNIE

Thanks for your attention!!

Planar Graph Stories

- Do other notable families of planar graphs admit straight-line planar drawing stories on a grid of size polynomial in W or polynomial in W and sublinear in n?
 - e.g.: outerplanar and series-parallel graphs
- What bounds can be shown if G is not a tree, but each G_t is a forest?
- ▶ Which bounds can be shown if we allow **bends**?

Different Models

- ▶ the same vertex is allowed to appear several times
- **multiple vertices** may appear simultaneously (and still $|V(G_t)| \leq W$)
- how about edges, and not vertices, appearing over time?

GD'19 - Graph Stories in Small Area

Open Problems