

An SPQR-Tree-Like Embedding Representation for Upward Planarity

Guido Brückner¹, <u>Markus Himmel¹</u>, Ignaz Rutter²

 1 Karlsruhe Institute of Technology \cdot 2 University of Passau

- Have been used to efficiently solve a range of problems
 - Optimization [e.g. Didimo et al. '18], extension [Angelini et al. '15], ...

- Have been used to efficiently solve a range of problems
 - Optimization [e.g. Didimo et al. '18], extension [Angelini et al. '15], ...

- Have been used to efficiently solve a range of problems
 - Optimization [e.g. Didimo et al. '18], extension [Angelini et al. '15], ...
- Can we find a similar data structure for the upward planar case?

Upward planarity testing

Upward planarity testing is NP-hard in general [Garg, Tamassia '94]

Upward planarity testing

Upward planarity testing is NP-hard in general [Garg, Tamassia '94]...

- \dots but linear-time if G is single-source
- Sufficient to only consider biconnected graphs
- Basic idea: Decomposition at 2-vertex cuts
- "Shape" of the rest of the graph \longleftrightarrow suitable marker graph

Upward planarity testing

Upward planarity testing is NP-hard in general [Garg, Tamassia '94]...

- \dots but linear-time if G is single-source
- Sufficient to only consider biconnected graphs
- Basic idea: Decomposition at 2-vertex cuts
- "Shape" of the rest of the graph \longleftrightarrow suitable marker graph

Linear-time algorithm by Bertolazzi et al. '98 based on SPQR-trees
Simpler algorithm by Hutton and Lubiw '96 using general decompositions

A decomposition result by Hutton and Lubiw

Lemma

Bijective correspondence between embeddings of G and combinations of embeddings of H_1 and H_2 where

Marker graphs determined by a set of rules

- H₁ or H₂ is single component
- Fixed edge e^{*} or its marker are leftmost

- Upward planar embedding ↔→ upward planar skeleton embeddings
- Each sequence of decompositions ~→ new characterization of upward planar embeddings

- Upward planar embedding ↔ upward planar skeleton embeddings
- Each sequence of decompositions ~→ new characterization of upward planar embeddings
 - Actually, order is irrelevant

Important question: Which decomposition tree should we use?

- SPQR-tree is nice for planar embeddings, but offers too many choices
- Idea: Modify SPQR-tree to have upward planar skeletons

■ Problem: Permuting edges at P-nodes ~>> non-upward-planar skeleton

Problem: Permuting edges at P-nodes \rightsquigarrow non-upward-planar skeleton

Solution: Split P-nodes by marker type

Relevant here: A and .

P-Node Splits

Problem: Permuting edges at P-nodes \rightsquigarrow non-upward-planar skeleton

Solution: Split P-nodes by marker type

Relevant here: A and .

■ Problem: Flipping operation at R-nodes ~> non-upward-planar skeleton

Problem: Flipping operation at R-nodes ~> non-upward-planar skeleton
 Solution: Contract arcs of the tree that do not give embedding choices
 Upward planarity test for embedded single-source graphs [Bertolazzi et al. '98]

Problem: Flipping operation at R-nodes ~> non-upward-planar skeleton
 Solution: Contract arcs of the tree that do not give embedding choices
 Upward planarity test for embedded single-source graphs [Bertolazzi et al. '98]

The UP-Tree

■ SPQR-tree + P-node splits + arc contractions =: UP-tree

Theorem

For each biconnected single-source DAG G and e^* incident to s there is a decomposition tree T computable in linear time that

- represents the upward planar embeddings of G in which e^{*} is leftmost
- does so using P-nodes and R-nodes
- Example: Partial upward embedding problem solvable in quadratic time

The UP-Tree

■ SPQR-tree + P-node splits + arc contractions =: UP-tree

Theorem

For each biconnected single-source DAG G and e^* incident to s there is a decomposition tree T computable in linear time that

- represents the upward planar embeddings of G in which e^{*} is leftmost
- does so using P-nodes and R-nodes
- NB: Dependency on *e*^{*} is necessary:

Conclusion

Theorem

For each biconnected single-source DAG G and e^* incident to s there is a decomposition tree T computable in linear time that

- represents the upward planar embeddings of G in which e^{*} is leftmost
- does so using P-nodes and R-nodes

Future work: Survey more algorithms that use SPQR-trees and adapt to upward planar case