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Right Angle Crossing Drawings



RAC drawings

Right Angle Crossing drawing (RAC drawing) :

• each vertex is drawn as a point in the plane 

• each edge is drawn as a poly-line

• edges cross at right angles



RAC drawings: Motivation

• Cognitive experiments suggest a positive correlation between 
large angle crossings and human understanding of graph layouts
– W. Huang: Using eye tracking to investigate graph layout effects. APVIS 

(2007)
– W. Huang, S.H. Hong, P. Eades: Effects of crossing angles. PacificVis

(2008)
– W. Huang, P. Eades, S.H. Hong: Larger crossing angles make graphs 

easier to read. JVLC 25(4) (2014)



RAC drawings: Witnesses

New York City subway map (1973)
Massimo Vignelli (1931-2014)

.. Reinterpreted by another artist



RAC drawings: Witnesses

Walking through Boston (2017) – 558 Washington St



Orthogonal and RAC drawings 

Orthogonal drawings are "ancestors" and special cases of RAC drawings 

If vertices are represented as points, orthogonal drawings require vertex-
degree at most 4, and may require higher curve complexity

RAC

Orthogonal



Research lines

• Edge density
–What is the maximum number of edges in a RAC drawing?

• Drawing algorithms
–What is the complexity of testing if a graph is RAC drawable? 

–Can we design algorithms that compute "readable" RAC drawings?

• Inclusion relationships 
–Are there interesting inclusion relationships between RAC drawable

graphs and other classes of graphs that admit drawings with specific 
forbidden types of crossings?



Terminology and elementary properties

• k-bend RAC drawing: RAC drawing with at most k bends per edge

• straight-line RAC drawing  0-bend RAC drawing

forbidden in a 0-bend RAC drawable plane graph

fan property triangle 
property



Crossing graph

CG-Lemma. The crossing graph of a straight-line RAC drawing is bipartite

• a vertex for each edge

• an edge for each pair of crossing edges

a (RAC) drawing  crossing graph of 



Crossing graph

CG-Lemma. The crossing graph of a straight-line RAC drawing is bipartite

a (RAC) drawing  crossing graph of 

• red edges do not cross (they correspond to isolated vertices in the crossing graph)
• each green edge crosses with a blue edge

– red-blue (embedded planar) graph = red + blue edges
– red-green (embedded planar) graph = red + green edges



Crossing graph

CG-Lemma. The crossing graph of a straight-line RAC drawing is bipartite

a (RAC) drawing  crossing graph of 

• Immediate consequence of CG-Lemma: m  6n – 12
– n = number of vertices; 
– m = number of edges



Edge density

Ck = class of graphs that admit a k-bend RAC drawing 

• Theorem 0. GC0  m  4n – 10 (tight)
– W. Didimo, P. Eades, G. Liotta: Drawing graphs with right angle crossings. Theor. 

Comput. Sci. 412(39) (2011)

• Theorem 1. GC1  m  6.5n – 13

• Theorem 2. GC2  m  74.2n
– K. Arikushi, R. Fulek, B. Keszegh, F. Moric, C. D. Tóth: Graphs that admit right angle 

crossing drawings. Comput. Geom. 45(4) (2012)

• Theorem 3. GC3  m = any (see later …)
– W. Didimo, P. Eades, G. Liotta: Drawing graphs with right angle crossings. Theor. 

Comput. Sci. 412(39) (2011)



Edge density: 0-bend drawings

Theorem 0. A 0-bend RAC drawing with n  4 vertices has at most 
4n-10 edges. Also, for any k  3 there exists a straight-line RAC 
drawing with n = 3k-5 vertices and 4n-10 edges

Proof ingredients.

• part I (upper bound): an interesting property of the red-blue and the red-
green graphs + several applications of Euler's formula

• part II (lower bound): constructive technique



Theorem 0 – A technical lemma

G is C0-maximal if: (i) GC0 ; (ii) G plus an edge  C0

Face-Lemma. Let  be a 0-bend RAC drawing of a C0-maximal graph G, and 
let rb and rg be a red-blue and a red-green subdrawing of , respectively. 
Then rb and rg have only external red edges and every internal face has at 
least two red edges

 rb rg



Theorem 0 – Proof of part I

• G = C0-maximal

•  = 0-bend RAC drawing of G with red-green-blue coloring

Notation:

•  = number of edges of the external boundary of 

• mr , mb , mg = number of red, blue, and green edges of 

• frb = number of faces of the red-blue graph rb

Assumption:

• mg  mb



mb  n – 1 – /2

Theorem 0 – Proof of part I

By the Face-Lemma, each internal face of rb has at least 2 red edges and the 
external face of rb has  red edges; also each edge is shared by at most 2 

distinct faces   

2mr  2(frb – 1) +  mr  frb – 1 + /2

By Euler’s formula for planar graphs  mr + mb  n + frb – 2



Theorem 0 – Proof of part I

rg has the same external face as rb and this face consists of  edges

mr + mg  3n – 6 – ( – 3) mr + mg  3n – 3 – 

mb  n – 1 – /2

m 4n – 4 – 3/2 



Theorem 0 – Proof of part I

Two cases are possible: 

m 4n – 4 – 3/2 

Case 1:   4   m  4n – 10

Case 2:  = 3

consider the internal faces of rb that share at least one 
edge with the external face (fence faces) 

fence 
face

there are at least 1 and at 
most 3 fence faces



Theorem 0 – Proof of part I

Sub-case 1: there is a fence face with at least 4 edges

Two sub-cases are possible if  = 3 : 

By assumption we have mg  mb  mr + mg  3n – 7

mb n – 1 – /2and we had

mr + mb 3n – 6 – 1  mr + mb 3n – 7



m 4n – 9.5
 = 3

 m 4n – 10



Theorem 0 – Proof of part I

Sub-case 2: each fence face has 3 edges (in this case there are 
exactly three fence faces)






 +  +   360°

 < 90°

   90° and   90°

 2mr  2(frb – 3) + 3*3  mr  frb + 3/2 



Theorem 0 – Proof of part I

and we had mr + mb n + frb – 2

mr  frb + 3/2 

mb  n – 7/2 

and we had mr + mg  3n – 3 – 

m 4n – 9.5
 = 3

 m 4n – 10



Theorem 0 – Proof of part II

Take the union of a maximal planar graph with k
vertices (black) and its dual (white vertices), except 
the external face + three edges for each dual vertex

It has a 0-bend RAC drawing (consequence of a 
result by Brightwell and Scheinermann (1993))

The dual graph has 2k-5 vertices (white vertices) and hence the total 
number of vertices is n = 3k – 5. The number of edges is 
m = (3k – 6) + 3(2k – 5) + (3k – 6 – 3) = 12k – 30 = 4n – 10



Edge density: Open problems

Problem ED1. Improve the upper bounds for 1- and 2-bend RAC drawings 
or prove that they are tight

Problem ED2. What is the minimum number of edges that a Ck-maximal 
graph can have, for k{0, 1, 2}?



Drawing algorithms: 3-bend RAC

• Theorem 3. Every graph G belongs to C3. A 3-bend RAC drawing 
of G can be computed in O(n+m) time on an integer grid of size 
O(n2) x O(n2)

3-bend drawing of K6 O(n2)

O(n2)



Drawing algorithms: 4-bend RAC

• Theorem 4. For every graph G, a 4-bend RAC drawing of G can be 
computed in O(n+m) time on an integer grid of size O(n2) x O(n)
– E. Di Giacomo, W. Didimo, G. Liotta, H. Meijer: Area, Curve Complexity, and Crossing 

Resolution of Non-Planar Graph Drawings. Theory Comput. Syst. 49(3) (2011)

4-bend drawing of K6 O(n)

O(n2)



Drawing algorithms: 1-bend and 2-bend RAC

• -Theorem. Every -graph, with  {3, 6}, admits a /3-bend 
RAC drawing in O(n2) area, which can be computed in O(n) time
– P. Angelini, L. Cittadini, G. Di Battista, W. Didimo, F. Frati, M. Kaufmann, A. Symvonis:

On the Perspectives Opened by Right Angle Crossing Drawings. J. Graph Algorithms 
Appl. 15(1) (2011)

• Proof idea
– constructive technique based on the concept of cycle cover

–we sketch the proof for =6 (  2-bend RAC)



Drawing algorithms: 2-bend RAC

A cycle cover of a directed multi-graph is a spanning subgraph consisting 

of vertex-disjoint directed cycles 

the two red cycles 
define a cycle cover

1

3

5

9

8

7

6

2

4



Drawing algorithms: 2-bend RAC

Lemma (Eades, Symvonis, Whitesides, 2000) [ESW'00]. For any -graph G 
there exists a directed multi-graph G' with the same vertex set as G such that:

• each vertex of G' has in-degree and out-degree d = /2

• G is a subgraph of the underlying undirected graph of G’

• the edges of G' can be partitioned into d edge-disjoint cycle covers 

1

5

9

8

7

6

2

4

3

G

56

1

3

9

8

7

2

4

G'

Remark: G' is a 
-regular graph if 
 is even 



Drawing algorithms: 2-bend RAC

Constructive algorithm for a 6-graph G

1. compute a 6-regular multi-digraph G’ that contains G, and

3 edge-disjoint cycle covers of G', using [ESW'00] 

2. use the cycle covers to construct a 2-bend RAC drawing of G’

3. remove dummy edges from G’



Drawing algorithms: 2-bend RAC

general idea

1

3

9

8

7

2

4

G’

56



Drawing algorithms: 2-bend RAC

1

3

9

8

7

2

4

G’

6 5

choosing the vertex order vertex having an 
outgoing edge 
(red or green) 
that goes up (if any)



Drawing algorithms: 2-bend RAC

1

3

9

8

7

2

4

G’

6 5

choosing the vertex order vertex having an 
outgoing edge 
(red or green) 
that goes up (if any)

6

4



Drawing algorithms: 2-bend RAC

1

3

9

8

7

2

4

G’

6 5

choosing the vertex order vertex having an 
outgoing edge 
(red or green) 
that goes up (if any)

6

5

1

2

3

4



Drawing algorithms: 2-bend RAC

1

3

9

8

7

2

4

G’

6 5

choosing the vertex order

vertex having an 
outgoing edge (red 
or green) that goes 
down (if any)

5

1

2

3

4



Drawing algorithms: 2-bend RAC

1

3

9

8

7

2

4

G’

6 5

choosing the vertex order

vertex having an 
outgoing edge (red 
or green) that goes 
down (if any)

5

1

2

3

4

6



Drawing algorithms: 2-bend RAC

1

3

9

8

7

2

4

G’

6 5

choosing the vertex order

vertex having an 
outgoing edge (red 
or green) that goes 
down (if any)

5

1

2

3

4

6

7

8

9



Drawing algorithms: 2-bend RAC

1

3

9

8

7

2

4

G’

6 5

drawing the red cycles

5

1

2

3

4

6

7

8

9

Each edge uses: 

• the north-port of its 
source if it goes up;

• the west-port of its source 
if it goes down



Drawing algorithms: 2-bend RAC

1

3

9

8

7

2

4

G’

6 5

drawing the green cycles

5

1

2

3

4

6

7

8

9

Each edge uses: 

• the east-port of its source 
if it goes up;

• the south-port of its 
source if it goes down



Drawing algorithms: 2-bend RAC

1

3

9

8

7

2

4

G’

6 5

adding the edges that 
close the blue cycles

5

1

2

3

4

6

7

8

9

It is the bottommost vertex 
of its blue cycle and its  
north-port is free



Drawing algorithms: 2-bend RAC

1

3

9

8

7

2

4

G’

6 5

adding the edges that 
close the blue cycles

5

1

2

3

4

6

7

8

9

It is the topmost vertex of its 
blue cycle and its  
west-port is free



Drawing algorithms: 2-bend RAC

One more case:

there is no vertex of the blue 
cycle having a red/green 
edge that goes towards other 
cycles

all the useful ports of the 
bottommost/topmost vertex 
are occupied, but the cycle 
is not connected with other 
cycles



Drawing algorithms: Summary

Graph Bends per edge Area Citation

Any 3 O(n4) Didimo, Eades, Liotta 2011

Any 4 O(n3) Di Giacomo et al. 2011

=6 2 O(n2) Angelini et al. 2011

=3 1 O(n2) Angelini et al. 2011

Any 3 O((n+m)2) Fink et al. 2012

Planar 4 O(0.5n1.5) Angelini et al. 2012

NIC-plane 1 O(n2) Chaplick et al. 2018

additional



But what about 0-bend RAC drawing algorithms?



0-bend RAC drawability

• Testing whether a graph has a 0-bend drawing is NP-hard
– E. N. Argyriou, M. A. Bekos, A. Symvonis: The Straight-Line RAC 

Drawing Problem is NP-Hard. J. Graph Algorithms Appl. 16(2) (2012)

• Testing whether a complete bipartite graph has a 0-bend 
drawing can be done in O(1) time (K2,n, K3,3, K3,4)
– W. Didimo, P. Eades, G. Liotta: A characterization of complete bipartite 

RAC graphs. Inf. Process. Lett. 110(16) (2010)

K2,n K3,4



0-bend RAC drawings of planar graphs

• Question: Can we allow right angle crossings to improve the 
area requirement of straight-line planar drawings? 

• Remind: straight-line planar drawings may require (n2) area
– H. de Fraysseix, J. Pach, R. Pollack: How to draw a planar graph on a grid. 

Combinatorica 10(1) (1990)

nested triangles



0-bend RAC drawings of planar graphs

• Answer: NO! 

• Area-Theorem. There exist infinitely many planar graphs for 
which every 0-bend RAC drawing requires quadratic area
– P. Angelini, L. Cittadini, G. Di Battista, W. Didimo, F. Frati, M. 

Kaufmann, A. Symvonis: On the Perspectives Opened by Right 
Angle Crossing Drawings. J. Graph Algorithms Appl. 15(1) (2011)



0-bend RAC drawings of planar graphs

G

• Proof:

replace each 
edge with K4

G'



0-bend RAC drawings of planar graphs

• Proof:

G' Uncrossability-Lemma: in any 0-bend RAC 
drawing of G' no two edges of G cross

Consequence: the area of any 0-bend RAC 
drawing G' is not smaller than the area of 
every 0-bend planar drawing of G  



0-bend RAC drawings of planar graphs

Uncrossability-Lemma (Proof)

• Stronger claim: no two different K4 in G' cross each other in a 
0-bend RAC drawing of G'

u

z

v

w

u’

z’

v’

w’
G'1

G'2 contains at least three vertices (which form a cycle) that do not 
belong to G'1; denote these three vertices with the red color

G'2



0-bend RAC drawings of planar graphs

u

v
G'1

By the triangle property, we 
cannot have two red vertices 
inside an internal face and the 
other one outside this face

z

u

v
G'1

For the same reason we cannot 
have two vertices inside (u,v,z) 
and one outsidez



0-bend RAC drawings of planar graphs

u

v
G'1

One vertex inside each internal 
face implies either the violation 
of the triangle property or the 
violation of the fan property
when we consider the fourth 
vertex

z

u

v
G'1

Two vertices outside (u,v,z) and 
one inside violate the 
fan propertyz



0-bend RAC drawings of planar graphs

u

v
G'1

subcase 1: all the three red 
vertices are in the same 
internal face f

─ the fourth vertex must be inside f or 
on its boundary, otherwise the triangle 
property is violated (no crossing)

z

u

v
G'1

subcase 2: all the three red 
vertices are in the external face

─ the fourth vertex must be in the 
external face or on its boundary, 
otherwise the fan property is violated 
(no crossing)

z



0-bend RAC drawings of planar graphs

Similar case analyses can be done for the other possible 
embeddings of G'1

u

z

v

w

u

z

vw



Drawing algorithms: Open Problems

• Problem DA1. What is the complexity of testing whether a graph 
admits a 1-bend or a 2-bend RAC drawing?

• Problem DA2. Is it possible to realize any n-vertex graph as a k-bend 
RAC drawing in O(n2) area, for some k ≥ 3?

• Problem DA3. Is it possible to draw every 3-graph as a 0-bend RAC 
drawing?

• Problem DA4. Design polynomial-time heuristics for computing RAC 
drawings with few bends in total or with few bent edges



Inclusion Relationships

• Question: Are there interesting inclusion relationships between 
RAC drawable graphs and other classes of graphs that admit 
drawings with specific forbidden types of crossings?



Inclusion Relationships

• Question: Are there interesting inclusion relationships between 
RAC drawable graphs and other classes of graphs that admit 
drawings with specific forbidden types of crossings?

• Immediate: 0-bend RAC drawable graphs are fan-crossing free

0-bend RAC

fan-crossing free
same density as 1-planar graphs 
(4n-8)
O. Cheong, S. Har-Peled, H. Kim, H. Kim:
On the number of edges of fan-crossing 
free graphs. Algorithmica 73(4) (2015)



Inclusion Relationships: RAC and 1-planar

• Question: What is the relationship between 0-bend RAC 
drawable graphs and 1-planar graphs?

• Observation: What about 1-planar graphs with no more than 4n-10 edges?

–P. Eades, G. Liotta: Right angle crossing graphs and 1-planarity. Discrete 
Applied Mathematics 161(7-8) (2013)

• Remind: a 1-planar graph is drawable with at most 1 crossing per edge:

–1 planar graphs have at most 4n-8 edges (tight) [J. Pach, G. Tóth: Graphs 
Drawn with Few Crossings per Edge. Combinatorica 17(3) (1997)]



Inclusion Relationships: RAC and 1-planar

• This family of graphs is 1-planar but not 0-bend RAC

Gi-1
G0

Go has n=8 vertices and 4n-10=22 edges; 
for i≥0, Gi has n=8+4i vertices and 4n-10 edges



Inclusion Relationships: RAC and 1-planar

• This graph is 0-bend RAC but not 1-planar

n=85

0-bend RAC drawing



Inclusion Relationships: RAC and 1-planar

• This graph is 0-bend RAC but not 1-planar

n=85

u

v
w

z



Inclusion Relationships: RAC and 1-planar

Summary



Inclusion Relationships: 1-bend RAC and 1-planar

• Question: What about 1-bend RAC and 1-planar?

M. A. Bekos, W. Didimo, G. Liotta, S. 
Mehrabi, F. Montecchiani: On RAC 
drawings of 1-planar graphs. Theor. 
Comput. Sci. 689 (2017)1-planar

1-bend RAC



Some definitions

1-plane graph 
(not necessarily simple)



Some definitions

1-plane graph 
(not necessarily simple)

kite



Some definitions

1-plane graph 
(not necessarily simple)

empty kite



Some definitions

1-plane graph 
(not necessarily simple)

not a kite!



Observation

triangulated 1-plane graph 
(not necessarily simple)



Observation

triangulated 1-plane graph 
(not necessarily simple)

every pair of crossing edges 
forms an empty kite except 
possibly for a pair of crossing 
edges on the outer face

empty kite



Observation

triangulated 1-plane graph 
(not necessarily simple)

every pair of crossing edges 
forms an empty kite except 
possibly for a pair of crossing 
edges on the outer face

not a kite



Algorithm Outline

G
simple 1-plane

G+

triangulated 1-plane
(multi-edges)

G*

hierarchical 
contraction of G+



1-bend 1-planar 
RAC drawing of 

G

+

1-bend 1-planar RAC 
drawing of G+

augmentation 
(the embedding 
may change)

recursive
procedure

recursive 
procedure

removal of 
dummy elements

input

output

1

2

3

4



Algorithm Outline

G
simple 1-plane

G+

triangulated 1-plane
(multi-edges)

G*

hierarchical 
contraction of G+



1-bend 1-planar 
RAC drawing of 

G

+

1-bend 1-planar RAC 
drawing of G+

augmentation 
(the embedding 
may change)

recursive 
procedure

recursive 
procedure

removal of 
dummy elements

input

output

1

2

3

4



Augmentation

G
simple 1-plane



Augmentation

G
simple 1-plane

for each 
pair of crossing edges 
add an enclosing 
4-cycle



Augmentation

G
simple 1-plane

for each 
pair of crossing edges 
add an enclosing 
4-cycle



Augmentation

G
simple 1-plane

for each 
pair of crossing edges 
add an enclosing 
4-cycle



Augmentation

G
simple 1-plane

for each 
pair of crossing edges 
add an enclosing 
4-cycle



Augmentation

G
simple 1-plane

remove those 
multiple edges that 
belong to the input 
graph



Augmentation

G
simple 1-plane



Augmentation

G
simple 1-plane

remove one 
(multiple) edge from 
each face of degree 
two, if any



Augmentation

G
simple 1-plane

triangulate faces of 
degree > 3 by 
inserting a star
inside them



Augmentation

G+

triangulated 1-
plane



Algorithm Outline

G
simple 1-plane

G+

triangulated 1-plane
(multi-edges)

G*

hierarchical 
contraction of G+



1-bend 1-planar 
RAC drawing of 

G

+

1-bend 1-planar RAC 
drawing of G+

augmentation 
(the embedding 
may change)

recursive 
procedure

recursive 
procedure

removal of 
dummy elements

input

output

1

2

3

4



Property of G+

G+

triangulated 
1-plane

- triangular faces
- multiple edges 

never crossed
- only empty kites



Property of G+

G+

triangulated 
1-plane

- triangular faces
- multiple edges 

never crossed
- only empty kites

structure of each 
separation pair



Property of G+

G+

triangulated 
1-plane

- triangular faces
- multiple edges 

never crossed
- only empty kites

structure of each 
separation pair



Hierarchical contraction

G+

triangulated 
1-plane

contract all inner 
components of each 
separation pair into a 
thick edge

structure of each 
separation pair



Hierarchical contraction

G+

triangulated 
1-plane

contraction

contract all inner 
components of each 
separation pair into a 
thick edge



Hierarchical contraction

G+

triangulated 
1-plane

contraction

contract all inner 
components of each 
separation pair into a 
thick edge



Hierarchical contraction

G+

triangulated 
1-plane



Hierarchical contraction

G+

triangulated 
1-plane



Hierarchical contraction

G+

triangulated 1-
plane

G*

hierarchical 
contraction



Hierarchical contraction

G+

triangulated 
1-plane

G*

hierarchical 
contraction

simple 
3-connected 
triangulated 

1-plane graph



Algorithm Outline

G
simple 1-plane

G+

triangulated 1-plane
(multi-edges)

G*

hierarchical 
contraction of G+



1-bend 1-planar 
RAC drawing of 

G

+

1-bend 1-planar RAC 
drawing of G+

augmentation 
(the embedding 
may change)

recursive
procedure

recursive
procedure

removal of 
dummy elements

input

output

1

2

3

4



Drawing procedure

apply Chiba et 
al. 1984

convex faces and 
prescribed outerface

remove 
crossing edges 3-connected 

plane graph

reinsert 
crossing edges

partial drawing



Drawing procedure

partial drawing



Drawing procedure

partial drawing



Drawing procedure

partial drawing



Drawing procedure

partial drawing remove
crossing edges



Drawing procedure

partial drawing



Drawing procedure

partial drawing

apply Chiba et 
al. 1984



Drawing procedure

partial drawing

reinsert 
crossing edges



Drawing procedure

partial drawing



Drawing procedure

partial drawing



Drawing procedure

partial drawing

remove
crossing edges



Drawing procedure

partial drawing



Drawing procedure

partial drawing

apply Chiba et 
al. 1984



Drawing procedure

partial drawing

reinsert 
crossing edges



Drawing procedure

new partial 
drawing



Drawing procedure

new partial 
drawing
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Inclusion Relationships: RAC and 1-planar

• Further advances:
–embedding preserving 1-bend 1-planar RAC

–O(n2) area for 1-bend RAC NIC-plane

–O(n9) area for 2-bend RAC 1-plane

S. Chaplick, F. Lipp, A. Wolff, J. Zink:

Compact Drawings of 1-Planar Graphs with Right-Angle Crossings 
and Few Bends. Graph Drawing 2018: 137-151



Inclusion Relationships: Open Problems

• Problem IR1. Are there fan-crossing free graphs with at most 
4n-10 edges that are neither 1-planar nor 0-bend RAC drawable?

• Problem IR2. Characterize the 0-bend RAC drawable graphs that 
are 1-planar

• Problem IR3. Characterize the 1-plane graphs that are 0-bend 
RAC drawable



Other variants of orthogonal drawings

• Quasi-orthogonal drawings
– G. W. Klau and P. Mutzel: Quasi-Orthogonal Drawing of Planar Graphs, Tech. Rep. 

Max–Planck–Institut fuer Informatik Saarbruecken, Germany (1998)



Other variants of orthogonal drawings

• Smooth orthogonal drawings
– M. A. Bekos, M. Kaufmann, S. G. Kobourov, A. Symvonis: Smooth Orthogonal 

Layouts. J. Graph Algorithms Appl. 17(5) (2013)
– M. A. Bekos, H. Förster, M. Kaufmann: On Smooth Orthogonal and Octilinear

Drawings: Relations, Complexity and Kandinsky Drawings. Algorithmica 81(5) (2019)



Other variants of orthogonal drawings

• 1-bend orthogonal partial edge drawings 
– T. Bruckdorfer, M. Kaufmann, F. Montecchiani: 1-Bend Orthogonal Partial Edge 

Drawing. J. Graph Algorithms Appl. 18(1) (2014)



Other variants of orthogonal drawings

• Slanted orthogonal drawings 
– M. A. Bekos, M. Kaufmann, R. Krug, T. Ludwig, S. Näher, V. Roselli: J. Graph 

Algorithms Appl. 18(3) (2014)



Other variants of orthogonal drawings

• Overloaded orthogonal drawings
– W. Didimo, E. M. Kornaropoulos, F. Montecchiani, I. G. Tollis: A Visualization 

Framework and User Studies for Overloaded Orthogonal Drawings. Comput. Graph. 
Forum 37(1): 288-300 (2018)


