
Orthogonal Drawings of Graphs

and Their Relatives

Part 1 - Topology-shape-metrics

Walter Didimo

University of Perugia

walter.didimo@unipg.it

Summary

• Part 1.1 – The topology-shape-metrics approach

• Part 1.2 – Engineering the topology-shape-metrics approach

• Part 1.3 – Ortho-polygon drawings

Part 1.1
The Topology-Shape-Metrics

Approach

Topology-shape-metrics

• Approach to compute an orthogonal drawing of a graph G = (V, E)
–C. Batini, E. Nardelli, R. Tamassia: A Layout Algorithm for Data Flow

Diagrams. IEEE Trans. Software Eng. 12(4): 538-546 (1986)
–R. Tamassia: On Embedding a Graph in the Grid with the Minimum

Number of Bends. SIAM J. Comput. 16(3): 421-444 (1987)
–R. Tamassia, G. Di Battista, C. Batini: Automatic graph drawing and

readability of diagrams. IEEE Trans. Systems, Man, and Cybernetics
18(1): 61-79 (1988)

u v

q

k p

w

Topology-shape-metrics

V = {u, v, w, k, p, q}
E = {(u, q), (u, v), (u, w), (v, q), (v, k), (v, w),

(q, p), (q, k), (k, p), (k, w), (w, p)}

TSM

Input: 4-graph G=(V,E) Output: orthogonal drawing  of G

Topology-shape-metrics

• Topology (embedding): set of (internal and external) faces, with
possible crossing vertices

• Shape (orthogonal representation): vertex angles and edge bends

• Metrics (orthogonal drawing): vertex and bend coordinates

• These abstraction levels make it possible to design a drawing
strategy in three phases:
–planarization  compute a topology (embedding)
–orthogonalization compute a shape (orthogonal representation)
– compaction  compute a metrics (final drawing)

Topology-shape-metrics: Illustration

V = {1, 2, 3, 4, 5, 6 }

E = {(1,4), (1,5), (1,6),

(2,4), (2,5), (2,6),

(3,4), (3,5), (3,6) }

1
2

3

4

5

6planarization

introduction of
crossing vertices if the
graph is not planar

21

3

4

5

6

1 2

3

4

5

6

compaction

crossing vertices

removal

Planarization

• Objective: Compute an embedding of G with few crossings

–G planar the planarization algorithm computes a planar embedding
• J. Hopcroft and R. E. Tarjan: Efficient planarity testing, Journal of the Association

for Computing Machinery, 21 (4): 549–568 (1974)
• K. S. Booth, G. Luecker: Testing for the Consecutive Ones Property, Interval

Graphs, and Graph Planarity Using PQ-Tree Algorithms. J. Comput. Syst. Sci.
13(3): 335-379 (1976)

• J. M. Boyer, W.J. Myrvold: On the cutting edge. Simplified O(n) planarity by edge
addition, J. of Graph Alg. and Appl. 8 (3): 241–273 (2004)

–G non-planar the planarization algorithm computes an embedding
with "small" number of crossings, i.e., an embedded planar graph G'
obtained by replacing crossings with dummy vertices (crossing vertices)

Planarization: Crossing minimization

• Minimizing the number of edge crossings is NP-complete
–M. Garey, D. S. Johnson. Crossing number is NP-complete. SIAM Journal

on Algebraic and Discrete Methods. 4 (3): 312–316 (1983)

• Determining the maximum planar subgraph is also NP-complete

• A simple planarization heuristic can work in two steps:
– Step 1: compute a maximal planar embedded subgraph
– Step 2: insert the remaining edges one by one trying to minimize the

number of crossings

Planarization heuristic: Step 1

Input graph G = (V, E)

V = {1, 2, 3, 4, 5, 6}

E = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6),

(2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5)

(4, 5), (4, 6), (5, 6)}

1
4

3

5

6

2

4 5

1

3

6

2

Maximal planar subgraph G' = (V', E') of G
V' = {1, 2, 3, 4, 5, 6}
E' = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4),
(2, 5), (2, 6), (3, 4), (4, 5), (5, 6)}

(1, 2)  planar

(1, 3)  planar

(1, 4)  planar

(1, 5)  planar

(1, 6)  planar

(2, 3)  planar

(2, 4)  planar

(2, 5)  planar

(2, 6)  planar

(3, 4)  planar

(3, 5)  non-planar

(4, 5)  planar

(4, 6)  non-planar

(5, 6)  planar

Planarization heuristic: Step 1

maximal planar subgraph G' = (V', E') of G
V' = {1, 2, 3, 4, 5, 6}
E' = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4),
(2, 5), (2, 6), (3, 4), (4, 5), (5, 6)}
non-planar edges of G: (3, 5) e (4, 6)

4 5

1

3

6

2

4 5

1
3

6

2

Planarization heuristic: Step 2

4 5

1
3

6

2

Shortest path on the dual graph of G'
between two faces incident to
vertices 4 e 6, respectively.

• Insert a crossing vertex x in V' and update the
dual graph of G’

4 5

1
3

6

2

x

addition of edge (4,6)

Planarization heuristic: Step 2
addition of edge (3,5)

4 5

1
3

6

2

x

Shortest path on the dual graph of G'
between two faces incident to
vertices 3 and 5, respectively

4 5

1
3

6

2

x

w

Insert a crossing vertex w in V'

Planarization: Further references

• M. Jünger, P. Mutzel: Maximum Planar Subgraphs and Nice Embeddings:
Practical Layout Tools. Algorithmica 16(1): 33-59 (1996)

• C. Gutwenger, P. Mutzel, R. Weiskircher: Inserting an Edge into a Planar
Graph. Algorithmica 41(4): 289-308 (2005)

• M. Chimani, C. Gutwenger: Advances in the Planarization Method: Effective
Multiple Edge Insertions. J. Graph Algorithms Appl. 16(3): 729-757 (2012)

• C. Buchheim, M. Chimani, C. Gutwenger, M. Jünger, P. Mutzel: Crossings and
Planarization. In Handbook of Graph Drawing and Visualization, Roberto
Tamassia (Ed.). Chapman and Hall/CRC, 43–85 (2013).

Planarization: Open problem

• Problem 1 Design planarization heuristics that compute
embeddings with "few" crossings per edge

• Remark: Deciding whether a graph is k-planar (i.e., it has a
drawing with at most k crossings per edge) is NP-hard
– A. Grigoriev and H. L. Bodlaender: Algorithms for graphs embeddable

with few crossings per edge. Algorithmica 49, 1 (2007)

– V. P. Korzhik and B. Mohar: Minimal obstructions for 1-immersions and
hardness of 1-planarity testing. J. Graph Theory 72, 1 (2013)

Orthogonalization: Shape

• Objective: Compute a shape of G with few bends

– shape (orthogonal representation): described by the angles at each vertex
and by the ordered sequence of bends along each edge

90

270

9090

9090

180

180

360

270

90

90
180

90

90 90

270

90

27090

270

270

270

90

Orthogonalization: Bend minimization

• Theorem [Tamassia 1987] Given an embedded planar 4-graph
G=(V,E), there exists a polynomial-time algorithm that computes
an embedding preserving orthogonal representation of G with
minimum number of bends

• Proof idea
– orthogonal representations of G  integer feasible flows in a suitable

network N(G)

– cost of the flow = number of bends of the orthogonal representation

– computation of a bend-minimum orthogonal representation of G
computation of a min-cost flow in N(G)

\begin{flow network}

Flow network: Basic definitions

• flow network: directed graph N = (U, A)
– every node v  U is associated with an amount of flow b(v)

• b(v) > 0  v is a producer (it produces |b(v)| units of flow)

• b(v) < 0  v is a consumer (it consumes |b(v)| units of flow)

• b(v) = 0  v is a neutral node

– it must be vU b(v) = 0

– every arc e  A is associated with three non-negative integers:
• l(e) = lower capacity of e

• u(e) = upper capacity of e

• c(e) = cost of e

Flow network: Basic definitions

• feasible flow in N: a function x: A  such that:
– e  A l(e)  x(e) u(e)

– v  U eout(v) x(e) −  ein(v) x(e) = b(v)

• cost of x: C(x) = e  A c(e) x(e)

• min-cost flow in N: feasible flow of minimum cost

\end{flow network}

Orthogonalization: Flow network – part I

• flows on these arcs represent the values of the corresponding angles

• the flow originates from vertices (producers) and move towards faces
(consumers)

• nodes of N(G)  vertices and faces of G

• arc (v, f) in N(G)  angle at v in face f

Orthogonalization: Flow network – part I

• flow and angles

– k units of flow  (k+1)90° angle

– a vertex v produces 4-deg(v) units of flow

vertex of deg. 4
produces flow 0

0

0

0 0

0

vertex of deg. 3
produces flow 1

1

0

1

0

vertex of deg. 2
produces flow 2

2

1

1

vertex of deg. 2
produces flow 2

2

0

2

vertex of deg. 1
produces flow 3

3

3

Orthogonalization: Flow network – part I

• flow, angles, and face capacities
– cap(f) = capacity of a face f  how many units of flow it can

consume without generating bends on its boundary

face of deg 4
with 0 bends

00

0 0

face of deg 4
with 1 bend

10

0 0

face of deg 4
with 2 bends

00

0 2

face of deg 5
with 0 bends

0
0

0
1

0

face of deg 5
with 1 bend

0
0

0
1

1

Orthogonalization: Flow network – part I

• General rule for an internal face f
– cap(f) = deg(f) - 4

• Implications:
– if f receives k > cap(f) units of flow  f generates k - cap(f) bends on its

boundary, each forming a 90° angle inside f

– deg(f) < 4  cap(f) is negative  f produces (4 – deg(f)) units of flow

deg(f) = 2deg(f) = 3

Orthogonalization: Flow network – part I

• for the external face h: cap(h) = deg(h) + 4

2

2

2

2

2

2

2

2

2

2

2

1

Orthogonalization: Flow network – part I

• flow, angles, and face capacities – summarizing
– a vertex v produces 4 – deg(v) units of flow
– an internal face f of degree > 3 consumes deg(f) – 4 units of flow
– an internal face f of degree  3 produces 4 – deg(f) units of flow
– the external face h consumes deg(h) + 4 units of flow

1

2 1
2

2

01

0

-1

0

1

-10 1

l(e) = 0

u(e) = 4 – deg(v)

c(e) = 0

f
e

v

Orthogonalization: Flow network – part II

• How to model bends in the flow network? If a face f
receives more than cap(f) units of flow, it must forward
the excess to an adjacent face:
– insert face-to-face arcs in N(G) to allow flow exchange

between adjacent faces
– k units of flow on an arc (f, g) correspond to k bends along an

edge shared by f and g; each bend forms an angle of 90° inside
f and of 270° inside g

– face-to-face arcs have cost 1, so that the number of bends
equals the total flow cost

Orthogonalization: Flow network – part II

• face-to-face arcs

1

2 1
2

2

01

0

-1

0

1

-10 1

l(e) = 0

u(e) = +

c(e) = 1

gef

Orthogonalization: Flow network

• Flow network: putting all together

1

2 1
2

2

01

0

-1

0

1

-10 1
1

2 1
2

2

01

0

-1

0

1

-10 1

+

Orthogonalization: Flow network

1

2 1
2

2

01

0

-1

0

1

-10 1

• Final flow network N(G)

Orthogonalization: Flow and shape

• Example of flow and its corresponding shape
– only arcs with non-zero flow are shown

1 2

02

1 1

21

0

1

0

-10

-1

1
21

2

2
1

1 2

1

Orthogonalization: Flow and shape

• Why an integer feasible flow always exists in N(G)

1) produced flow − consumed flow = 0

vV (4−deg(v)) + f int:deg(f)  3 (4 − deg(f)) − f int:deg(f) > 3 (deg(f) − 4) − (deg(h) + 4)) =

4|V| − 2|E| − fF (deg(f) − 4) − 8 =

4 (|V| − |E| + |F| − 2) = 0 (by Euler’s formula)

2) face-to-face arcs allow unbounded flow exchange

Orthogonalization: Computational cost

• Computing a min-cost flow of O(n) given value in N(G)
– O(n2 log n) [Tamassia 1987]
– O(n7/4 log n) [Garg and Tamassia 1996]
– O(n3/2) [Cornelsen and Karrenbauer 2011]

• Open Problem. Is there an o(n3/2)-time algorithm for the
bend-minimization problem of plane 4-graphs?

Orthogonalization: Exercise

Exercise (partial answer). Prove the following

Theorem (unpublished). Let G be an embedded planar 4-graph
with n vertices and all internal faces of degree less than 5.
There exists an O(n)-time algorithm that computes an embedding-
preserving bend-minimum orthogonal representation of G

Orthogonalization: Solution

Orthogonalization: Solution

Orthogonalization: Solution

0

00
0

0
1

0

1

-10

0

Orthogonalization: Solution

1
-10

0

0

0

0

0

0

0

1

Orthogonalization: Solution

1
-10

0

0

0

0

0

0

0

run a BFS visit
from the
external face

1

Orthogonalization: Solution

1
-10

0

0

0

0

0

0

0

#bends =  (sp() – 1) +
 2(sp() – 1)
+  sp() = 1 + 2 + 3 = 6

1

Compaction

• Objective: Assign vertex and bend coordinates such that the final
drawing has either small area or small total edge length

– for some orthogonal representations it is impossible to minimize both
these parameters together

minimum total edge lengthminimum area

area = 36
tel = 48

area = 42
tel = 47

Compaction: Complexity

• Minimizing the area (or the total edge length) of an orthogonal
representation is NP-hard

– M. Patrignani: On the complexity of orthogonal compaction. Comput.
Geom. 19(1): 47-67 (2001)

• The problem is polynomial-time solvable if all faces are rectangles

– this result is generalized to a larger class of orthogonal representations
called turn-regular (see later)

• S. S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, L. Vismara: Turn-
regularity and optimal area drawings of orthogonal representations. Comput.
Geom. 16(1): 53-93 (2000)

Compaction: General strategy

1. Transform the shape into a rectangular shape

a) replace every bend with a dummy vertex

b) add dummy edges and vertices until all faces are rectangles

2. Compute vertex coordinates

3. Remove all dummy edges and vertices

Compaction: Step 1

a) replace every bend with a dummy vertex

Compaction: Step 1

b) add dummy edges and vertices until all faces are rectangles

RR

R R

RL

split recursively each internal face
every time a subsequence RRL is
found while walking clockwise

Compaction: Step 1

b) add dummy edges and vertices until all faces are rectangles

RR

R R

RR

split recursively each internal face
every time a subsequence RRL is
found while walking clockwiseRR

Compaction: Step 1

b) add dummy edges and vertices until all faces are rectangles

… a more complex example

R

R

R

RR

LL

RR

R L

L

R

R

R

RR

L

RR

R L

L

R

RR

R

R

R

RR

RR

R L

L

R

RR

R R

R

Compaction: Step 1

b) add dummy edges and vertices until all faces are rectangles

… a more complex example

R

R

R

RR

RR

R L

L

R

RR

R R

R

R

R

R

RR

RR

R

L

R

RR

R R

R

RR

R

R

R

R

RR

RR

R

R

RR

R R

R

RR

R

R

RR

Compaction: Step 1

b) add dummy edges and vertices until all faces are rectangles

split recursively the external face
every time a subsequence LRL or LRR
is found while walking
counterclockwise

R

LL

L L

L

Compaction: Step 1

b) add dummy edges and vertices until all faces are rectangles

split recursively the external face
every time a subsequence LRL or LRR
is found while walking
counterclockwise

LL

L L

Compaction: Step 2

• Compute vertex coordinates

• assign the x-coordinates so that
the width is minimized

• assign the y-coordinates so that
the height is minimized

• for a rectangular shape this
leads to minimum area

Compaction: Step 2

• Compute vertex coordinates

• Find the x-coordinates so that the width is
minimized

− create super-nodes that group the vertices in
the same vertical chain

− connect two super-nodes with a left-to-right
directed edge if the corresponding chains are
connected in the shape

− assign to chains the x-coordinates computed
by an optimal topological numbering of their
super-nodes0 1 2 3

Compaction: Step 2

• Compute vertex coordinates

• Find the y-coordinates so that the height is
minimized

− uses a super-node that groups the vertices in the
same horizontal chain

− connect two super-nodes with a bottom-to-top
directed edge if the corresponding chains are
connected in the shape

− assign to chains the y-coordinates computed by
an optimal topological numbering of their super-
nodes

0

1

2

3

Compaction: Step 3

• Remove dummy edges and vertices

0 1 2 3

0

1

2

3

the described algorithm
works in O(n) time

Compaction: Total edge length

total edge length = 19 total edge length = 18

For a rectangular shape of given width and height, it is
possible to minimize the total edge length within its
dimensions in polynomial time

Compaction: Total edge length

• use two flow networks, one for the vertical compaction (Nver) and
the other for the horizontal compaction (Nhor)

3 -30

0

0 0

3

0 0

0

0

-3Nver Nhor

Compaction: Total edge length

• The flow on each arc corresponds to the length of the
corresponding edge of the orthogonal shape

3 -30

0

0 0

Nver

f g

l(e) = 1

u(e) = +

c(e) = 1

e
1

1

1

2 2

1 1
1

It produces flow = height

It consumes flow = height

Compaction: Total edge length

the fact that the node of the network associated with each internal face
is a neutral node guarantees the consistency of the face dimensions

0

1

1

2
2

2

Compaction: Further issues

Observation: The dummy vertices and edges added in the
rectangularization phase represent a constraint, which may strongly
affect the result of the compaction algorithm

Example 1

Compaction: Further issues

Observation: The dummy vertices and edges added in the
rectangularization phase represent a constraint, which may strongly
affect the result of the compaction algorithm

Example 2

Compaction: Turn-regularity

A planar orthogonal representation is turn-regular if it has no pairs of
kitty-corners (opposing reflex vertices) inside a face

not turn-regular turn-regular

Compaction: Turn-regularity

Two orthogonal representations of the same plane graph

not turn-regular turn-regular

Compaction: Turn-regularity

Theorem. Let H be an orthogonal representation of an embedded planar
4-graph with n vertices. It is possible to test in O(n) time whether H is turn-
regular. In the positive case, an orthogonal drawing of H of minimum area
can be computed in O(n) time.

S. S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, L.
Vismara: Turn-regularity and optimal area drawings of orthogonal
representations. Comput. Geom. 16(1): 53-93 (2000)

Part 1.2
Engineering the Topology-Shape-

Metrics Approach

Practical considerations

• Real graphs typically contain high-degree vertices (with degree
larger than 4)

• Many applications usually need to customize a generic drawing
algorithm by imposing some drawing constraints
– vertices represented as boxes of prescribed sizes

– specific edges that cannot cross or that cannot bend

–…

• In the following we briefly discuss the above issues

High-degree vertices: First strategy

• After the planarization step, replace each high-degree vertex
with a dummy face, having all vertices of degree 3

• Apply the topology-shape-metrics approach with some
constraints that guarantee that each dummy face is drawn as a
rectangle

• In the final drawing dummy faces will be shown as boxes

High-degree vertices: First strategy

• After the planarization step, replace each high-degree vertex
with a dummy face, having all vertices of degree 3

dummy face

High-degree vertices: First strategy

• Apply the topology-shape-metrics approach with some constraints
that guarantee that each dummy face is drawn as a rectangle

dummy face

High-degree vertices: First strategy

• constraints on the orthogonalization algorithm

• each edge of the dummy face boundary
is forced to be straight

• this is done by deleting the face-to-face
arcs incident to the dummy face node in
the flow network

High-degree vertices: First strategy

• In the final drawing dummy faces will be shown as boxes

Drawbacks of this strategy

• No control on the dimensions of high-degree vertices
– the corresponding dummy faces may be stretched a lot in the compaction phase

• Real-world applications may require all vertices of the same dimensions

High-degree vertices: Second strategy

• Use a different model with all vertices of the same size (Kandinsky)
– Fößmeier and Kaufmann: Drawing high degree graphs with low bend

numbers, Graph Drawing (1995)

High-degree vertices: Kandinsky

1. introduction of angles of 0°

2. each face has an area strictly greater than 0

angle of 0°

1 2

High-degree vertices: Kandinsky

• Unfortunately, minimizing the number of bends in the
Kandinsky model is NP-complete:
– T. Bläsius, G. Brückner, I. Rutter: Complexity of Higher-Degree

Orthogonal Graph Embedding in the Kandinsky Model. ESA (2014)

• But the problem is polynomial-time solvable with few additional
restrictions (simple Kandinsky)
– P. Bertolazzi, G. Di Battista, W. Didimo: Computing Orthogonal

Drawings with the Minimum Number of Bends. IEEE Trans. Computers
49(8): 826-840 (2000)

High-degree vertices: simple Kandinsky

1. there cannot be two edges incident to the same side of a vertex if there is at least
one unused side of the vertex

2. If there are multiple edges incident to the same side of a vertex, all of them except
the first (in clockwise order) must bend in the same direction (e.g. to the right)

forbidden

1 2

High-degree vertices: simple Kandinsky

• To compute a bend-minimum orthogonal representation in the simple
Kandinsky model extend Tamassia's flow network
– each high-degree vertex v becomes a consumer instead of a producer; it

consumes flow deg(v) – 4, received by its incident faces

face-to-vertex arcs

-1

l(e) = 0

u(e) = 1

c(e) = 1

High-degree vertices: simple Kandinsky

• Interpretation of the flow on the new kind of arcs

– one unit of flow on an arc (f,v) represents an angle of 0° and causes 1 bend

-1

1
0

0
0

0

1

High-degree vertices: simple Kandinsky

• Compaction of simple Kandinsky

– reduced to the compaction algorithm for classical orthogonal shapes

simple Kandinsky
orthogonal shape

local
compression

Succinct
Kandinsky

3

2

dummy vertices

segment

thickness

compaction
algorithm and

decompression

simple Kandinsky
drawing

Handling constraints

• The topology-shape-metrics approach makes it possible to deal
with several types of constraints in each phase:

– topology constraints

– shape constraints

– metrics constraints

Topology constraints

• Some topology constraints
– edges that cannot cross (uncrossable edges)

– subsets of vertices that must lie on the same face boundary

– groups of edges that must be consecutive around a common end-vertex

• Handled in the planarization phase

Topology constraints

• Some topology constraints
– edges that cannot cross (uncrossable edges)

to make an edge uncrossable, the planarization algorithm is modified
by removing the corresponding edge in the dual graph; a shortest path
in the dual cannot cross the primal edge

Topology constraints

• Some topology constraints
– subsets of vertices that must lie on the same face boundary

the planarization algorithm is applied after the insertion of a
“star-gadget” of uncrossable edges

6

1

5

2

3

4

7

6

1

5

2

3

4

7

planarization
algorithm

Topology constraints

• Some topology constraints
– groups of edges that must be consecutive around a common end-vertex

the planarization algorithm is applied after the insertion of a suitable
“star-gadget” for each group

a

b

c

d

e

v

insert
gadgets

v

a
ce

b

d

uncrossable

planarize
and remove

gadget

a
ce

b

d

v

Topology constraints

• Other topology constraints
– C. Gutwenger, K. Klein, P. Mutzel: Planarity Testing and Optimal Edge

Insertion with Embedding Constraints. J. Graph Algorithms Appl. 12(1):
73-95 (2008)

– G. Liotta, I. Rutter, A. Tappini: Graph Planarity Testing with Hierarchical
Embedding Constraints. CoRR abs/1904.12596 (2019)

Shape constraints

• Some shape constraints
− deciding the number of bends on an edge (e.g., no bend or any

number or a specific number)

− deciding the turn direction of an edge (left or right)

− bounding or fixing the values of vertex angles

• Handled in the orthogonalization phase by suitably modifying
capacities and/or costs of the arcs of the flow network
– R. Tamassia: On Embedding a Graph in the Grid with the Minimum

Number of Bends. SIAM J. Comput. 16(3): 421-444 (1987)

Shape constraints

• Some shape constraints
1. deciding the number of bends on an edge (e.g., no bend or any number or a

specific number)

2. deciding the turn direction of an edge (left or right)

3. bounding or fixing the values of vertex angles

modify the cost of the face-to-
face arcs or fix the flow

1

delete one of the two
face-to-face arcs

2

change lower and upper
capacities of the
vertex-to-face arc

3

Metrics constraints

• Some metrics constraints
− deciding vertex dimensions (width and the height of each single vertex)

− deciding the attaching point of each edge

• Handled in the compaction phase

Metrics constraints

• Some metrics constraints
− deciding vertex dimensions (width and height of each single vertex)

− G. Di Battista, W. Didimo, M. Patrignani, M. Pizzonia: Orthogonal and quasi-
upward drawings with vertices of arbitrary size. Graph Drawing (1999)

• Idea

– start from a drawing of a succinct Kandinsky shape

– expand vertices iteratively, by inserting extra rows and columns in the drawing,
according to the desired vertex dimensions (expressed in terms of grid units)

– compact the drawing again

– uncompress edges to get the final drawing

Metrics constraints

– start from a drawing of a succinct Kandinsky shape

drawing of a
succinct
Kandinsky shape

Metrics constraints

– expand vertices iteratively, by inserting extra rows and columns in the drawing,
according to the desired vertex dimensions (expressed in terms of grid units)

width = 2
height = 1

Metrics constraints

– compact the drawing again

– replace each box with a “suitable” number of vertices of zero dimension (points)

– replace each bend with a dummy vertex

Metrics constraints

– compact the drawing again

– create a dummy cage that includes the drawing and divide it into horizontal strips
(extra dummy vertices and segments are created)

horizontal strip

cage

Metrics constraints

– compact the drawing again

– compact horizontally by computing a min-cost-flow in a suitable network

9

-9

- flow represents edge lengths;

- produced flow = width of the cage

- arcs associated with box-vertex segments
have fixed flow value (lower cap. = upper
capacity)

- arcs associated with dummy segments
have cost 0

Metrics constraints

– compact the drawing again

– do the same to compact vertically – and repeat until no improvement happens

– decompress edges to get the final drawing

Further references

• M. Eiglsperger, U. Fößmeier, M. Kaufmann: Orthogonal graph drawing with
constraints. SODA 2000: 3-11

• M. Eiglsperger, M. Kaufmann: Fast Compaction for Orthogonal Drawings
with Vertices of Prescribed Size. Graph Drawing 2001: 124-138

Implementations

• Some graph drawing libraries that implement the topology-shape-
metrics approach or other orthogonal drawing algorithms:
– GDToolkit [G. Di Battista, W. Didimo: GDToolkit. Handbook of Graph

Drawing and Visualization 2013: 571-597]

– OGDF [M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, P.
Mutzel: The Open Graph Drawing Framework (OGDF). Handbook of
Graph Drawing and Visualization 2013: 543-569]

–Tom Sawyer Software (www.tomsawyer.com/)

–Yfiles [R. Wiese, M. Eiglsperger, M. Kaufmann: yFiles - Visualization and
Automatic Layout of Graphs. Graph Drawing Software 2004: 173-191]

Applications: Hermes

A. Carmignani, G. Di Battista, W. Didimo,
F. Matera, M. Pizzonia: Visualization of
the High Level Structure of the Internet
with HERMES. J. Graph Algorithms Appl.
6(3): 281-311 (2002)

Applications: DBDraw

G. Di Battista, W. Didimo, M. Patrignani,
M. Pizzonia: Drawing database schemas.
Softw., Pract. Exper. 32(11): 1065-1098
(2002)

video

Movies/dbdraw.exe

Applications: WhatsOnWeb (WOW)

url

cluster

inclusion
(parental edge)

most relevant least relevant

inter-cluster edge

E. Di Giacomo, W. Didimo, L. Grilli, G. Liotta:
Graph Visualization Techniques for Web
Clustering Engines. IEEE Trans. Vis. Comput.
Graph. 13(2): 294-304 (2007)

video

Movies/WOW-ortho.avi

Applications: Hybrid visualizations

V. Batagelj, F. Brandenburg, W. Didimo,
G. Liotta, P. Palladino, M. Patrignani:
Visual Analysis of Large Graphs Using
(X,Y)-Clustering and Hybrid Visualizations.
IEEE Trans. Vis. Comput. Graph. 17(11):
1587-1598 (2011)

video

Movies/vhxy.mp4

Applications: MatchOMan (MOM)

E. Di Giacomo, W. Didimo, G.Liotta, P.
Palladino: Visual Analysis of One-To-
Many Matched Graphs. J. Graph
Algorithms Appl. 14(1): 97-119 (2010)

Part 1.3
Ortho-polygon Drawings

From edge complexity to vertex complexity

• If vertices are drawn as polygons, one may save edge bends

6

4

7

5

9

1 2

3

8

0

rectangle visibility
representation

A. M. Dean and J. P. Hutchinson.
Rectangle-visibility representations
of bipartite graphs. Discrete
Appl. Math., 75(1):9–25, (1997)

From edge complexity to vertex complexity

• It can be tested in polynomial time if an embedded graph admits a rectangle
visibility representation
– T. C. Biedl, G. Liotta, F. Montecchiani: Embedding-Preserving Rectangle Visibility

Representations of Nonplanar Graphs. Discrete & Computational Geometry 60(2): 345-
380 (2018)

1-plane graph that does
not admit a rectangle
visibility representation

Ortho-polygon drawings

• Generalization of rectangle visibility representations – a vertex can be
an ortho-polygon with both convex and reflex corners

ortho-polygon
drawing with
vertex-complexity 1

vertex-complexity = maximum number of reflex corners in a vertex

Ortho-polygon drawings: Existence

• Not all embedded graphs admit an ortho-polygon drawing

• Necessity:
– the embedded graph is biplanar, i.e., the edge set can be partitioned

into two planar subsets (e.g., vertical and horizontal in the drawing)

Ortho-polygon drawings: Existence

• Biplanarity is not sufficient

this face is not realizable,
because it should have more
than 4 convex corners and no
reflex corners

Ortho-polygon drawings: Existence

• Not all embedded graphs admit an ortho-polygon drawing

• Necessity:
– the embedded graph is biplanar, i.e., the edge set can be partitioned

into two planar subsets (e.g., vertical and horizontal in the drawing)

–each face with only crossing-vertices has degree four

Ortho-polygon drawings: Existence

• Questions:
– can we test whether an embedded graph admits an ortho-polygon

drawing?
– can we compute (if any) an ortho-polygon drawing with minimum

vertex complexity? (i.e., minimum number of reflex corners per vertex)
– if yes, can we also minimize the total number of reflex corners within

the minimum vertex complexity?

Ortho-polygon drawings: Existence

• Questions:
– can we test whether an embedded graph admits an ortho-polygon

drawing?
– can we compute (if any) an ortho-polygon drawing with minimum

vertex complexity? (i.e., minimum number of reflex corners per vertex)
– if yes, can we also minimize the total number of reflex corners within

the minimum vertex complexity?

• Answer: yes, by using a variant of Tamassia's flow network we can
solve everything in polynomial time
– E. Di Giacomo, W. Didimo, W. S. Evans, G. Liotta, H. Meijer, F. Montecchiani, S. K.

Wismath: Ortho-polygon Visibility Representations of Embedded Graphs. Algorithmica
80(8): 2345-2383 (2018)

Ortho-polygon drawings: Expansion graph

G G*

a

b

c

d

e

f

g
h

l

m

n

k

j

i

Ortho-polygon drawings: Characterization

a

b

c

d

e

f

g
h

l

m

n

k

j

i

orthogonal drawing of G*ortho-polygon drawing of G

Ortho-polygon drawings: Characterization

orthogonal drawing of G*

e

g

h

m
i

• P1. each red vertex has a 180°
angle inside its node-face

• P2. each real edge has no
bend

Ortho-polygon drawings: Flow network

• P1. each red vertex has a 180°
angle inside its node-face

• P2. each real edge has no
bendf

1
1

1

1

1

cost 0

cost 1

test and computation of an
ortho-polygon drawing, with
minimum number of reflex
corners in total

Ortho-polygon drawings: Flow network

• P1. each red vertex has a 180°
angle inside its node-face

• P2. each real edge has no
bendf

1

h 1

11

cost 0

cost 1

test and computation of an
ortho-polygon drawing, with
minimum number of reflex
corners in total and at most
h reflex corners per face

f

1

Ortho-polygon drawings: Flow network

f

1

h 1

11

cost 0

cost 1

each of the four units of flow
corresponding to a convex
corner in f will traverse a
node-face at most once

f
h  4n

1

apply a binary search within
[0,4n] for the determining
the best value for h

Ortho-polygon drawings: Flow network

f

1

h 1

11

cost 0

cost 1

Computational complexity
• flow network size = O(n)
• flow value = O(n)
• flow cost  = O(n2)

f

1

Min-cost flow algorithm time for fixed h:
O(3/4 n log1/2 n) = O(n5/2 log1/2 n)

Min-cost flow algorithm time ×
binary-search time (O(log n)):
O(n5/2 log3/2 n)

Ortho-polygon drawings: 1-plane graphs

• Remarks:
–every 1-plane graph admits an ortho-polygon drawing:

• 2-connected 1-plane graphs may require vertex complexity (n)

• 3-connected 1-plane graphs may require vertex complexity 2

• 3-connected 1-plane graphs always admit an ortho-polygon drawing with
vertex complexity at most 5 [G. Liotta, F. Montecchiani, A. Tappini: Ortho-
Polygon Visibility Representations of 3-Connected 1-Plane Graphs. Graph
Drawing 2018: 524-537]

Ortho-polygon drawings: Example

2-connected 1-
plane graph with
vertex complexity 3

Ortho-polygon drawings: Open problems

• Problem 1. Reduce the time-complexity of computing ortho-
polygon drawings of minimum vertex complexity on general
graphs

• Problem 2. Reduce the theoretical gap between upper bound
(5) and lower bound (2) on the vertex complexity of ortho-
polygon drawings of 3-connected 1-planar graphs

Ortho-polygon drawings: Experiments

