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Part 1.1
The Topology-Shape-Metrics 

Approach



Topology-shape-metrics

• Approach to compute an orthogonal drawing of a graph G = (V, E)
–C. Batini, E. Nardelli, R. Tamassia: A Layout Algorithm for Data Flow 

Diagrams. IEEE Trans. Software Eng. 12(4): 538-546 (1986)
–R. Tamassia: On Embedding a Graph in the Grid with the Minimum 

Number of Bends. SIAM J. Comput. 16(3): 421-444 (1987)
–R. Tamassia, G. Di Battista, C. Batini: Automatic graph drawing and 

readability of diagrams. IEEE Trans. Systems, Man, and Cybernetics 
18(1): 61-79 (1988)
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Topology-shape-metrics

V = {u, v, w, k, p, q}
E = {(u, q), (u, v), (u, w), (v, q), (v, k), (v, w),

(q, p), (q, k), (k, p), (k, w), (w, p)}

TSM

Input: 4-graph G=(V,E) Output: orthogonal drawing  of G



Topology-shape-metrics

• Topology (embedding): set of (internal and external) faces, with 
possible crossing vertices

• Shape (orthogonal representation): vertex angles and edge bends

• Metrics (orthogonal drawing): vertex and bend coordinates  

• These abstraction levels make it possible to design a drawing 
strategy in three phases:
–planarization  compute a topology (embedding)
–orthogonalization compute a shape (orthogonal representation)
– compaction  compute a metrics (final drawing)



Topology-shape-metrics: Illustration

V = {1, 2, 3, 4, 5, 6 }

E = {(1,4), (1,5), (1,6),

(2,4), (2,5), (2,6),

(3,4), (3,5), (3,6) }
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Planarization

• Objective: Compute an embedding of G with few crossings

–G planar the planarization algorithm computes a planar embedding
• J. Hopcroft and R. E. Tarjan: Efficient planarity testing, Journal of the Association 

for Computing Machinery, 21 (4): 549–568 (1974)
• K. S. Booth, G. Luecker: Testing for the Consecutive Ones Property, Interval 

Graphs, and Graph Planarity Using PQ-Tree Algorithms. J. Comput. Syst. Sci. 
13(3): 335-379 (1976)

• J. M. Boyer, W.J. Myrvold: On the cutting edge. Simplified O(n) planarity by edge 
addition, J. of Graph Alg. and Appl. 8 (3): 241–273 (2004) 

–G non-planar the planarization algorithm computes an embedding 
with "small" number of crossings, i.e., an embedded planar graph G'
obtained by replacing crossings with dummy vertices (crossing vertices)



Planarization: Crossing minimization

• Minimizing the number of edge crossings is NP-complete
–M. Garey, D. S. Johnson. Crossing number is NP-complete. SIAM Journal 

on Algebraic and Discrete Methods. 4 (3): 312–316 (1983)

• Determining the maximum planar subgraph is also NP-complete

• A simple planarization heuristic can work in two steps:
– Step 1: compute a maximal planar embedded subgraph
– Step 2: insert the remaining edges one by one trying to minimize the 

number of crossings



Planarization heuristic: Step 1

Input graph G = (V, E)

V = {1, 2, 3, 4, 5, 6}

E = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6),

(2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5)

(4, 5), (4, 6), (5, 6)}
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Maximal planar subgraph G' = (V', E' ) of G
V' = {1, 2, 3, 4, 5, 6}
E' = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4),
(2, 5), (2, 6), (3, 4), (4, 5), (5, 6)}

(1, 2)  planar

(1, 3)  planar

(1, 4)  planar

(1, 5)  planar

(1, 6)  planar

(2, 3)  planar

(2, 4)  planar

(2, 5)  planar

(2, 6)  planar

(3, 4)  planar

(3, 5)  non-planar

(4, 5)  planar

(4, 6)  non-planar

(5, 6)  planar



Planarization heuristic: Step 1

maximal planar subgraph G' = (V', E' ) of G
V' = {1, 2, 3, 4, 5, 6}
E' = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4),
(2, 5), (2, 6), (3, 4), (4, 5), (5, 6)}
non-planar edges of G: (3, 5) e (4, 6)
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Planarization heuristic: Step 2
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Shortest path on the dual graph of G' 
between two faces incident to
vertices 4 e 6, respectively.

• Insert a crossing vertex x in V' and update the 
dual graph of G’
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Planarization heuristic: Step 2
addition of edge (3,5)

4 5

1
3

6

2

x

Shortest path on the dual graph of G' 
between two faces incident to
vertices 3 and 5, respectively
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Planarization: Further references

• M. Jünger, P. Mutzel: Maximum Planar Subgraphs and Nice Embeddings: 
Practical Layout Tools. Algorithmica 16(1): 33-59 (1996)

• C. Gutwenger, P. Mutzel, R. Weiskircher: Inserting an Edge into a Planar 
Graph. Algorithmica 41(4): 289-308 (2005)

• M. Chimani, C. Gutwenger: Advances in the Planarization Method: Effective 
Multiple Edge Insertions. J. Graph Algorithms Appl. 16(3): 729-757 (2012)

• C. Buchheim, M. Chimani, C. Gutwenger, M. Jünger, P. Mutzel: Crossings and 
Planarization. In Handbook of Graph Drawing and Visualization, Roberto 
Tamassia (Ed.). Chapman and Hall/CRC, 43–85 (2013). 



Planarization: Open problem

• Problem 1 Design planarization heuristics that compute 
embeddings with "few" crossings per edge

• Remark: Deciding whether a graph is k-planar (i.e., it has a 
drawing with at most k crossings per edge) is NP-hard
– A. Grigoriev and H. L. Bodlaender: Algorithms for graphs embeddable

with few crossings per edge. Algorithmica 49, 1 (2007)

– V. P. Korzhik and B. Mohar: Minimal obstructions for 1-immersions and 
hardness of 1-planarity testing. J. Graph Theory 72, 1 (2013)



Orthogonalization: Shape

• Objective: Compute a shape of G with few bends

– shape (orthogonal representation): described by the angles at each vertex
and by the ordered sequence of bends along each edge
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Orthogonalization: Bend minimization

• Theorem [Tamassia 1987] Given an embedded planar 4-graph 
G=(V,E), there exists a polynomial-time algorithm that computes 
an embedding preserving orthogonal representation of G with 
minimum number of bends

• Proof idea
– orthogonal representations of G  integer feasible flows in a suitable 

network N(G)

– cost of the flow = number of bends of the orthogonal representation

– computation of a bend-minimum orthogonal representation of G
computation of a min-cost flow in N(G)



\begin{flow network}



Flow network: Basic definitions

• flow network: directed graph N = (U, A)
– every node v  U is associated with an amount of flow b(v)

• b(v) > 0  v is a producer (it produces |b(v)| units of flow)

• b(v) < 0  v is a consumer (it consumes |b(v)| units of flow)

• b(v) = 0  v is a neutral node 

– it must be  vU b(v) = 0

– every arc e  A is associated with three non-negative integers:
• l(e) = lower capacity of e

• u(e) = upper capacity of e

• c(e) = cost of e



Flow network: Basic definitions

• feasible flow in N: a function x: A  such that:
– e  A l(e)  x(e) u(e)

– v  U eout(v) x(e) −  ein(v) x(e) = b(v) 

• cost of x: C(x) = e  A c(e) x(e)

• min-cost flow in N: feasible flow of minimum cost



\end{flow network}



Orthogonalization: Flow network – part I

• flows on these arcs represent the values of the corresponding angles 

• the flow originates from vertices (producers) and move towards faces 
(consumers)

• nodes of N(G)  vertices and faces of G

• arc (v, f) in N(G)  angle at v in face f



Orthogonalization: Flow network – part I

• flow and angles

– k units of flow  (k+1)90° angle

– a vertex v produces 4-deg(v) units of flow

vertex of deg. 4 
produces flow 0

0

0

0 0

0

vertex of deg. 3 
produces flow 1

1

0

1

0

vertex of deg. 2 
produces flow 2

2

1

1

vertex of deg. 2 
produces flow 2

2

0

2

vertex of deg. 1 
produces flow 3

3

3



Orthogonalization: Flow network – part I

• flow, angles, and face capacities
– cap(f) = capacity of a face f  how many units of flow it can 

consume without generating bends on its boundary 

face of deg 4 
with 0 bends

00

0 0

face of deg 4 
with 1 bend

10

0 0

face of deg 4 
with 2 bends

00

0 2

face of deg 5 
with 0 bends

0
0

0
1

0

face of deg 5 
with 1 bend

0
0

0
1

1



Orthogonalization: Flow network – part I

• General rule for an internal face f 
– cap(f) = deg(f) - 4

• Implications:
– if f receives k > cap(f) units of flow  f generates k - cap(f) bends on its 

boundary, each forming a 90° angle inside f

– deg(f) < 4  cap(f) is negative  f produces (4 – deg(f)) units of flow

deg(f) = 2deg(f) = 3



Orthogonalization: Flow network – part I

• for the external face h: cap(h) = deg(h) + 4
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Orthogonalization: Flow network – part I

• flow, angles, and face capacities – summarizing
– a vertex v produces 4 – deg(v) units of flow
– an internal face f of degree > 3 consumes deg(f) – 4 units of flow
– an internal face f of degree  3 produces 4 – deg(f) units of flow
– the external face h consumes deg(h) + 4 units of flow
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Orthogonalization: Flow network – part II

• How to model bends in the flow network? If a face f 
receives more than cap(f) units of flow, it must forward 
the excess to an adjacent face:
– insert face-to-face arcs in N(G) to allow flow exchange 

between adjacent faces
– k units of flow on an arc (f, g) correspond to k bends along an 

edge shared by f and g; each bend forms an angle of 90° inside 
f and of 270° inside g

– face-to-face arcs have cost 1, so that the number of bends 
equals the total flow cost



Orthogonalization: Flow network – part II

• face-to-face arcs
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Orthogonalization: Flow network

• Flow network: putting all together
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Orthogonalization: Flow network
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• Final flow network N(G) 



Orthogonalization: Flow and shape

• Example of flow and its corresponding shape
– only arcs with non-zero flow are shown
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Orthogonalization: Flow and shape

• Why an integer feasible flow always exists in N(G)

1) produced flow − consumed flow = 0

vV (4−deg(v)) + f int:deg(f)  3 (4 − deg(f)) − f int:deg(f) > 3 (deg(f) − 4) − (deg(h) + 4) ) = 

4|V| − 2|E| − fF (deg(f) − 4) − 8 = 

4 (|V| − |E| + |F| − 2) = 0    (by Euler’s formula)

2) face-to-face arcs allow unbounded flow exchange



Orthogonalization: Computational cost

• Computing a min-cost flow of O(n) given value in N(G)
– O(n2 log n) [Tamassia 1987]
– O(n7/4 log n)  [Garg and Tamassia 1996]
– O(n3/2)  [Cornelsen and Karrenbauer 2011]

• Open Problem. Is there an o(n3/2)-time algorithm for the 
bend-minimization problem of plane 4-graphs?



Orthogonalization: Exercise

Exercise (partial answer). Prove the following

Theorem (unpublished). Let G be an embedded planar 4-graph 
with n vertices and all internal faces of degree less than 5. 
There exists an O(n)-time algorithm that computes an embedding-
preserving bend-minimum orthogonal representation of G



Orthogonalization: Solution



Orthogonalization: Solution



Orthogonalization: Solution
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Orthogonalization: Solution
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Orthogonalization: Solution
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Orthogonalization: Solution
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Compaction

• Objective: Assign vertex and bend coordinates such that the final 
drawing has either small area or small total edge length

– for some orthogonal representations it is impossible to minimize both 
these parameters together

minimum total edge lengthminimum area

area = 36
tel = 48

area = 42
tel = 47



Compaction: Complexity

• Minimizing the area (or the total edge length) of an orthogonal 
representation is NP-hard

– M. Patrignani: On the complexity of orthogonal compaction. Comput. 
Geom. 19(1): 47-67 (2001)

• The problem is polynomial-time solvable if all faces are rectangles

– this result is generalized to a larger class of orthogonal representations 
called turn-regular (see later) 

• S. S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, L. Vismara: Turn-
regularity and optimal area drawings of orthogonal representations. Comput. 
Geom. 16(1): 53-93 (2000)



Compaction: General strategy

1. Transform the shape into a rectangular shape 

a) replace every bend with a dummy vertex

b) add dummy edges and vertices until all faces are rectangles

2. Compute vertex coordinates

3. Remove all dummy edges and vertices



Compaction: Step 1

a) replace every bend with a dummy vertex



Compaction: Step 1

b) add dummy edges and vertices until all faces are rectangles

RR

R R

RL

split recursively each internal face
every time a subsequence RRL is 
found while walking clockwise



Compaction: Step 1

b) add dummy edges and vertices until all faces are rectangles

RR

R R

RR

split recursively each internal face
every time a subsequence RRL is 
found while walking clockwiseRR



Compaction: Step 1

b) add dummy edges and vertices until all faces are rectangles 

… a more complex example
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Compaction: Step 1

b) add dummy edges and vertices until all faces are rectangles 

… a more complex example
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Compaction: Step 1

b) add dummy edges and vertices until all faces are rectangles

split recursively the external face
every time a subsequence LRL or LRR 
is found while walking 
counterclockwise

R

LL

L L

L



Compaction: Step 1

b) add dummy edges and vertices until all faces are rectangles

split recursively the external face
every time a subsequence LRL or LRR 
is found while walking 
counterclockwise

LL

L L



Compaction: Step 2

• Compute vertex coordinates

• assign the x-coordinates so that 
the width is minimized

• assign the y-coordinates so that 
the height is minimized

• for a rectangular shape this 
leads to minimum area



Compaction: Step 2

• Compute vertex coordinates

• Find the x-coordinates so that the width is 
minimized

− create super-nodes that group the vertices in 
the same vertical chain

− connect two super-nodes with a left-to-right 
directed edge if the corresponding chains are 
connected in the shape

− assign to chains the x-coordinates computed 
by an optimal topological numbering of their 
super-nodes0 1 2 3



Compaction: Step 2

• Compute vertex coordinates

• Find the y-coordinates so that the height is 
minimized

− uses a super-node that groups the vertices in the 
same horizontal chain

− connect two super-nodes with a bottom-to-top 
directed edge if the corresponding chains are 
connected in the shape

− assign to chains the y-coordinates computed by 
an optimal topological numbering of their super-
nodes
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Compaction: Step 3

• Remove dummy edges and vertices

0 1 2 3

0

1

2

3

the described algorithm 
works in O(n) time



Compaction: Total edge length

total edge length = 19 total edge length = 18

For a rectangular shape of given width and height, it is 
possible to minimize the total edge length within its 
dimensions in polynomial time



Compaction: Total edge length

• use two flow networks, one for the vertical compaction (Nver) and 
the other for the horizontal compaction (Nhor) 
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Compaction: Total edge length

• The flow on each arc corresponds to the length of the 
corresponding edge of the orthogonal shape 
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Compaction: Total edge length

the fact that the node of the network associated with each internal face 
is a neutral node guarantees the consistency of the face dimensions
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Compaction: Further issues

Observation: The dummy vertices and edges added in the 
rectangularization phase represent a constraint, which may strongly 
affect the result of the compaction algorithm 

Example 1



Compaction: Further issues

Observation: The dummy vertices and edges added in the 
rectangularization phase represent a constraint, which may strongly 
affect the result of the compaction algorithm 

Example 2



Compaction: Turn-regularity

A planar orthogonal representation is turn-regular if it has no pairs of 
kitty-corners (opposing reflex vertices) inside a face

not turn-regular turn-regular



Compaction: Turn-regularity

Two orthogonal representations of the same plane graph

not turn-regular turn-regular



Compaction: Turn-regularity

Theorem. Let H be an orthogonal representation of an embedded planar 
4-graph with n vertices. It is possible to test in O(n) time whether H is turn-
regular. In the positive case, an orthogonal drawing of H of minimum area 
can be computed in O(n) time.

S. S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, L. 
Vismara: Turn-regularity and optimal area drawings of orthogonal 
representations. Comput. Geom. 16(1): 53-93 (2000)



Part 1.2
Engineering the Topology-Shape-

Metrics Approach



Practical considerations

• Real graphs typically contain high-degree vertices (with degree 
larger than 4)

• Many applications usually need to customize a generic drawing 
algorithm by imposing some drawing constraints
– vertices represented as boxes of prescribed sizes

– specific edges that cannot cross or that cannot bend

–…

• In the following we briefly discuss the above issues



High-degree vertices: First strategy

• After the planarization step, replace each high-degree vertex 
with a dummy face, having all vertices of degree 3

• Apply the topology-shape-metrics approach with some 
constraints that guarantee that each dummy face is drawn as a 
rectangle

• In the final drawing dummy faces will be shown as boxes



High-degree vertices: First strategy

• After the planarization step, replace each high-degree vertex 
with a dummy face, having all vertices of degree 3

dummy face



High-degree vertices: First strategy

• Apply the topology-shape-metrics approach with some constraints 
that guarantee that each dummy face is drawn as a rectangle

dummy face



High-degree vertices: First strategy

• constraints on the orthogonalization algorithm

• each edge of the dummy face boundary 
is forced to be straight

• this is done by deleting the face-to-face 
arcs incident to the dummy face node in 
the flow network



High-degree vertices: First strategy

• In the final drawing dummy faces will be shown as boxes



Drawbacks of this strategy

• No control on the dimensions of high-degree vertices
– the corresponding dummy faces may be stretched a lot in the compaction phase

• Real-world applications may require all vertices of the same dimensions



High-degree vertices: Second strategy

• Use a different model with all vertices of the same size (Kandinsky) 
– Fößmeier and Kaufmann: Drawing high degree graphs with low bend

numbers, Graph Drawing (1995)



High-degree vertices: Kandinsky

1. introduction of angles of 0°

2. each face has an area strictly greater than 0

angle of 0°

1 2



High-degree vertices: Kandinsky

• Unfortunately, minimizing the number of bends in the 
Kandinsky model is NP-complete:
– T. Bläsius, G. Brückner, I. Rutter: Complexity of Higher-Degree 

Orthogonal Graph Embedding in the Kandinsky Model. ESA (2014)

• But the problem is polynomial-time solvable with few additional 
restrictions (simple Kandinsky)
– P. Bertolazzi, G. Di Battista, W. Didimo: Computing Orthogonal 

Drawings with the Minimum Number of Bends. IEEE Trans. Computers 
49(8): 826-840 (2000)



High-degree vertices: simple Kandinsky

1. there cannot be two edges incident to the same side of a vertex if there is at least 
one unused side of the vertex 

2. If there are multiple edges incident to the same side of a vertex, all of them except 
the first (in clockwise order) must bend in the same direction (e.g. to the right) 

forbidden 

1 2



High-degree vertices: simple Kandinsky

• To compute a bend-minimum orthogonal representation in the simple 
Kandinsky model extend Tamassia's flow network
– each high-degree vertex v becomes a consumer instead of a producer; it 

consumes flow deg(v) – 4, received by its incident faces

face-to-vertex arcs

-1

l(e) = 0

u(e) = 1

c(e) = 1



High-degree vertices: simple Kandinsky

• Interpretation of the flow on the new kind of arcs

– one unit of flow on an arc (f,v) represents an angle of 0° and causes 1 bend
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0
0

0

1



High-degree vertices: simple Kandinsky

• Compaction of simple Kandinsky

– reduced to the compaction algorithm for classical orthogonal shapes

simple Kandinsky 
orthogonal shape

local 
compression

Succinct 
Kandinsky

3

2

dummy vertices

segment

thickness

compaction 
algorithm and 

decompression 

simple Kandinsky 
drawing



Handling constraints

• The topology-shape-metrics approach makes it possible to deal 
with several types of constraints in each phase:

– topology constraints

– shape constraints

– metrics constraints



Topology constraints

• Some topology constraints
– edges that cannot cross (uncrossable edges)

– subsets of vertices that must lie on the same face boundary

– groups of edges that must be consecutive around a common end-vertex

• Handled in the planarization phase



Topology constraints

• Some topology constraints
– edges that cannot cross (uncrossable edges)

to make an edge uncrossable, the planarization algorithm is modified 
by removing the corresponding edge in the dual graph; a shortest path 
in the dual cannot cross the primal edge



Topology constraints

• Some topology constraints
– subsets of vertices that must lie on the same face boundary

the planarization algorithm is applied after the insertion of a 
“star-gadget” of uncrossable edges
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Topology constraints

• Some topology constraints
– groups of edges that must be consecutive around a common end-vertex

the planarization algorithm is applied after the insertion of a suitable 
“star-gadget” for each group

a
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d

e

v

insert 
gadgets
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a
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planarize
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Topology constraints

• Other topology constraints
– C. Gutwenger, K. Klein, P. Mutzel: Planarity Testing and Optimal Edge 

Insertion with Embedding Constraints. J. Graph Algorithms Appl. 12(1): 
73-95 (2008)

– G. Liotta, I. Rutter, A. Tappini: Graph Planarity Testing with Hierarchical 
Embedding Constraints. CoRR abs/1904.12596 (2019)



Shape constraints

• Some shape constraints
− deciding the number of bends on an edge (e.g., no bend or any 

number or a specific number)

− deciding the turn direction of an edge (left or right)

− bounding or fixing the values of vertex angles

• Handled in the orthogonalization phase by suitably modifying 
capacities and/or costs of the arcs of the flow network
– R. Tamassia: On Embedding a Graph in the Grid with the Minimum 

Number of Bends. SIAM J. Comput. 16(3): 421-444 (1987)



Shape constraints

• Some shape constraints
1. deciding the number of bends on an edge (e.g., no bend or any number or a 

specific number)

2. deciding the turn direction of an edge (left or right)

3. bounding or fixing the values of vertex angles

modify the cost of the face-to-
face arcs or fix the flow

1

delete one of the two 
face-to-face arcs

2

change lower and upper 
capacities of the 
vertex-to-face arc

3



Metrics constraints

• Some metrics constraints
− deciding vertex dimensions (width and the height of each single vertex)

− deciding the attaching point of each edge

• Handled in the compaction phase



Metrics constraints

• Some metrics constraints
− deciding vertex dimensions (width and height of each single vertex)

− G. Di Battista, W. Didimo, M. Patrignani, M. Pizzonia: Orthogonal and quasi-
upward drawings with vertices of arbitrary size. Graph Drawing (1999)

• Idea

– start from a drawing of a succinct Kandinsky shape

– expand vertices iteratively, by inserting extra rows and columns in the drawing, 
according to the desired vertex dimensions (expressed in terms of grid units)

– compact the drawing again

– uncompress edges to get the final drawing 



Metrics constraints

– start from a drawing of a succinct Kandinsky shape

drawing of a 
succinct 
Kandinsky shape



Metrics constraints

– expand vertices iteratively, by inserting extra rows and columns in the drawing, 
according to the desired vertex dimensions (expressed in terms of grid units)

width = 2
height = 1



Metrics constraints

– compact the drawing again

– replace each box with a “suitable” number of vertices of zero dimension (points)

– replace each bend with a dummy vertex



Metrics constraints

– compact the drawing again

– create a dummy cage that includes the drawing and divide it into horizontal strips 
(extra dummy vertices and segments are created)

horizontal strip

cage



Metrics constraints

– compact the drawing again

– compact horizontally by computing a min-cost-flow in a suitable network

9

-9

- flow represents edge lengths;

- produced flow = width of the cage

- arcs associated with box-vertex segments 
have fixed flow value (lower cap. = upper 
capacity)

- arcs associated with dummy segments 
have cost 0 



Metrics constraints

– compact the drawing again

– do the same to compact vertically – and repeat until no improvement happens

– decompress edges to get the final drawing



Further references

• M. Eiglsperger, U. Fößmeier, M. Kaufmann: Orthogonal graph drawing with 
constraints. SODA 2000: 3-11

• M. Eiglsperger, M. Kaufmann: Fast Compaction for Orthogonal Drawings
with Vertices of Prescribed Size. Graph Drawing 2001: 124-138



Implementations

• Some graph drawing libraries that implement the topology-shape-
metrics approach or other orthogonal drawing algorithms:
– GDToolkit [G. Di Battista, W. Didimo: GDToolkit. Handbook of Graph

Drawing and Visualization 2013: 571-597]

– OGDF [M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, P. 
Mutzel: The Open Graph Drawing Framework (OGDF). Handbook of 
Graph Drawing and Visualization 2013: 543-569]

–Tom Sawyer Software (www.tomsawyer.com/)

–Yfiles [R. Wiese, M. Eiglsperger, M. Kaufmann: yFiles - Visualization and 
Automatic Layout of Graphs. Graph Drawing Software 2004: 173-191]



Applications: Hermes

A. Carmignani, G. Di Battista, W. Didimo, 
F. Matera, M. Pizzonia: Visualization of 
the High Level Structure of the Internet 
with HERMES. J. Graph Algorithms Appl. 
6(3): 281-311 (2002)



Applications: DBDraw

G. Di Battista, W. Didimo, M. Patrignani, 
M. Pizzonia: Drawing database schemas. 
Softw., Pract. Exper. 32(11): 1065-1098 
(2002)

video

Movies/dbdraw.exe


Applications: WhatsOnWeb (WOW)

url

cluster

inclusion
(parental edge)

most relevant least relevant

inter-cluster edge

E. Di Giacomo, W. Didimo, L. Grilli, G. Liotta:
Graph Visualization Techniques for Web 
Clustering Engines. IEEE Trans. Vis. Comput. 
Graph. 13(2): 294-304 (2007)

video

Movies/WOW-ortho.avi


Applications: Hybrid visualizations

V. Batagelj, F. Brandenburg, W. Didimo, 
G. Liotta, P. Palladino, M. Patrignani:
Visual Analysis of Large Graphs Using 
(X,Y)-Clustering and Hybrid Visualizations. 
IEEE Trans. Vis. Comput. Graph. 17(11): 
1587-1598 (2011)

video

Movies/vhxy.mp4


Applications: MatchOMan (MOM)

E. Di Giacomo, W. Didimo, G.Liotta, P. 
Palladino: Visual Analysis of One-To-
Many Matched Graphs. J. Graph
Algorithms Appl. 14(1): 97-119 (2010)



Part 1.3
Ortho-polygon Drawings



From edge complexity to vertex complexity

• If vertices are drawn as polygons, one may save edge bends 

6

4

7

5

9

1 2

3

8

0

rectangle visibility 
representation

A. M. Dean and J. P. Hutchinson.
Rectangle-visibility representations 
of bipartite graphs. Discrete
Appl. Math., 75(1):9–25, (1997)



From edge complexity to vertex complexity

• It can be tested in polynomial time if an embedded graph admits a rectangle 
visibility representation
– T. C. Biedl, G. Liotta, F. Montecchiani: Embedding-Preserving Rectangle Visibility 

Representations of Nonplanar Graphs. Discrete & Computational Geometry 60(2): 345-
380 (2018)

1-plane graph that does 
not admit a rectangle 
visibility representation



Ortho-polygon drawings

• Generalization of rectangle visibility representations – a vertex can be 
an ortho-polygon with both convex and reflex corners

ortho-polygon 
drawing with 
vertex-complexity 1

vertex-complexity = maximum number of reflex corners in a vertex



Ortho-polygon drawings: Existence

• Not all embedded graphs admit an ortho-polygon drawing

• Necessity:
– the embedded graph is biplanar, i.e., the edge set can be partitioned 

into two planar subsets (e.g., vertical and horizontal in the drawing)



Ortho-polygon drawings: Existence

• Biplanarity is not sufficient 

this face is not realizable, 
because it should have more 
than 4 convex corners and no 
reflex corners 



Ortho-polygon drawings: Existence

• Not all embedded graphs admit an ortho-polygon drawing

• Necessity:
– the embedded graph is biplanar, i.e., the edge set can be partitioned 

into two planar subsets (e.g., vertical and horizontal in the drawing)

–each face with only crossing-vertices has degree four



Ortho-polygon drawings: Existence

• Questions:
– can we test whether an embedded graph admits an ortho-polygon 

drawing?
– can we compute (if any) an ortho-polygon drawing with minimum 

vertex complexity? (i.e., minimum number of reflex corners per vertex) 
– if yes, can we also minimize the total number of reflex corners within 

the minimum vertex complexity?



Ortho-polygon drawings: Existence

• Questions:
– can we test whether an embedded graph admits an ortho-polygon 

drawing?
– can we compute (if any) an ortho-polygon drawing with minimum 

vertex complexity? (i.e., minimum number of reflex corners per vertex) 
– if yes, can we also minimize the total number of reflex corners within 

the minimum vertex complexity?

• Answer: yes, by using a variant of Tamassia's flow network we can 
solve everything in polynomial time
– E. Di Giacomo, W. Didimo, W. S. Evans, G. Liotta, H. Meijer, F. Montecchiani, S. K. 

Wismath: Ortho-polygon Visibility Representations of Embedded Graphs. Algorithmica
80(8): 2345-2383 (2018)



Ortho-polygon drawings: Expansion graph

G G*



a

b

c

d

e

f

g
h

l

m

n

k

j

i

Ortho-polygon drawings: Characterization

a

b

c

d

e

f

g
h

l

m

n

k

j

i

orthogonal drawing of G*ortho-polygon drawing of G



Ortho-polygon drawings: Characterization

orthogonal drawing of G*

e

g

h

m
i

• P1. each red vertex has a 180°
angle inside its node-face

• P2. each real edge has no 
bend



Ortho-polygon drawings: Flow network

• P1. each red vertex has a 180°
angle inside its node-face

• P2. each real edge has no 
bendf

1
1

1

1

1

cost 0

cost 1

test and computation of an 
ortho-polygon drawing, with 
minimum number of reflex 
corners in total 



Ortho-polygon drawings: Flow network

• P1. each red vertex has a 180°
angle inside its node-face

• P2. each real edge has no 
bendf

1

h 1

11

cost 0

cost 1

test and computation of an 
ortho-polygon drawing, with 
minimum number of reflex 
corners in total and at most 
h reflex corners per face

f

1



Ortho-polygon drawings: Flow network

f

1

h 1

11

cost 0

cost 1

each of the four units of flow 
corresponding to a convex 
corner in f will traverse a 
node-face at most once

f
h  4n 

1

apply a binary search within 
[0,4n] for the determining 
the best value for h



Ortho-polygon drawings: Flow network

f

1

h 1

11

cost 0

cost 1

Computational complexity
• flow network size = O(n)
• flow value = O(n)
• flow cost  = O(n2)

f

1

Min-cost flow algorithm time for fixed h:
O(3/4 n log1/2 n) = O(n5/2 log1/2 n)

Min-cost flow algorithm time ×
binary-search time (O(log n)):
O(n5/2 log3/2 n)



Ortho-polygon drawings: 1-plane graphs

• Remarks:
–every 1-plane graph admits an ortho-polygon drawing: 

• 2-connected 1-plane graphs may require vertex complexity (n) 

• 3-connected 1-plane graphs may require vertex complexity 2

• 3-connected 1-plane graphs always admit an ortho-polygon drawing with 
vertex complexity at most 5 [G. Liotta, F. Montecchiani, A. Tappini: Ortho-
Polygon Visibility Representations of 3-Connected 1-Plane Graphs. Graph 
Drawing 2018: 524-537]



Ortho-polygon drawings: Example

2-connected 1-
plane graph with 
vertex complexity 3 



Ortho-polygon drawings: Open problems

• Problem 1. Reduce the time-complexity of computing ortho-
polygon drawings of minimum vertex complexity on general 
graphs

• Problem 2. Reduce the theoretical gap between upper bound 
(5) and lower bound (2) on the vertex complexity of ortho-
polygon drawings of 3-connected 1-planar graphs



Ortho-polygon drawings: Experiments


