Orthogonal Drawings of Graphs and Their Relatives Part 1 - Topology-shape-metrics Walter Didimo University of Perugia walter.didimo@unipg.it

- Part 1.1 The topology-shape-metrics approach
- Part 1.2 Engineering the topology-shape-metrics approach
- Part 1.3 Ortho-polygon drawings

Part 1.1 The Topology-Shape-Metrics Approach

Topology-shape-metrics

- Approach to compute an orthogonal drawing of a graph G = (V, E)
 - -*C. Batini, E. Nardelli, R. Tamassia*: A Layout Algorithm for Data Flow Diagrams. IEEE Trans. Software Eng. 12(4): 538-546 (1986)
 - -*R. Tamassia*: On Embedding a Graph in the Grid with the Minimum Number of Bends. SIAM J. Comput. 16(3): 421-444 (1987)
 - *R. Tamassia, G. Di Battista, C. Batini*: Automatic graph drawing and readability of diagrams. IEEE Trans. Systems, Man, and Cybernetics 18(1): 61-79 (1988)

Input: 4-graph G=(V,E)

Output: orthogonal drawing Γ of G

$$\begin{aligned} \mathsf{V} &= \{\mathsf{u},\,\mathsf{v},\,\mathsf{w},\,\mathsf{k},\,\mathsf{p},\,\mathsf{q}\} \\ \mathsf{E} &= \{(\mathsf{u},\,\mathsf{q}),\,(\mathsf{u},\,\mathsf{v}),\,(\mathsf{u},\,\mathsf{w}),\,(\mathsf{v},\,\mathsf{q}),\,(\mathsf{v},\,\mathsf{k}),\,(\mathsf{v},\,\mathsf{w}),\,(\mathsf{q},\,\mathsf{p}),\,(\mathsf{q},\,\mathsf{p}),\,(\mathsf{q},\,\mathsf{k}),\,(\mathsf{k},\,\mathsf{p}),\,(\mathsf{k},\,\mathsf{w}),\,(\mathsf{w},\,\mathsf{p})\} \end{aligned}$$

Topology-shape-metrics

- Topology (embedding): set of (internal and external) faces, with possible crossing vertices
- Shape (orthogonal representation): vertex angles and edge bends
- Metrics (orthogonal drawing): vertex and bend coordinates
- These abstraction levels make it possible to design a drawing strategy in three phases:
 - -planarization \Rightarrow compute a topology (embedding)
 - -orthogonalization \Rightarrow compute a shape (orthogonal representation)
 - $-compaction \Rightarrow$ compute a metrics (final drawing)

Planarization

- **Objective**: Compute an embedding of G with few crossings
 - -G planar \Rightarrow the planarization algorithm computes a planar embedding
 - J. Hopcroft and R. E. Tarjan: Efficient planarity testing, Journal of the Association for Computing Machinery, 21 (4): 549–568 (1974)
 - *K. S. Booth, G. Luecker*: Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms. J. Comput. Syst. Sci. 13(3): 335-379 (1976)
 - J. M. Boyer, W.J. Myrvold: On the cutting edge. Simplified O(n) planarity by edge addition, J. of Graph Alg. and Appl. 8 (3): 241–273 (2004)
 - -G non-planar ⇒ the planarization algorithm computes an embedding with "small" number of crossings, i.e., an embedded planar graph G' obtained by replacing crossings with dummy vertices (crossing vertices)

Planarization: Crossing minimization

- Minimizing the number of edge crossings is NP-complete
 - -*M. Garey, D. S. Johnson*. Crossing number is NP-complete. SIAM Journal on Algebraic and Discrete Methods. 4 (3): 312–316 (1983)
- Determining the maximum planar subgraph is also NP-complete
- A simple planarization heuristic can work in two steps:
 - -Step 1: compute a *maximal* planar embedded subgraph
 - Step 2: insert the remaining edges one by one trying to minimize the number of crossings

Input graph G = (V, E) $V = \{1, 2, 3, 4, 5, 6\}$ $E = \{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (4, 5), (4, 6), (5, 6)\}$

Maximal planar subgraph G' = (V', E') of G $V' = \{1, 2, 3, 4, 5, 6\}$ E' = $\{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (4, 5), (5, 6)\}$

	(1, 2) \Rightarrow planar
	(1, 3) \Rightarrow planar
	(1, 4) \Rightarrow planar
	(1, 5) \Rightarrow planar
	(1, 6) \Rightarrow planar
	(2, 3) \Rightarrow planar
	(2, 4) \Rightarrow planar
	(2, 5) \Rightarrow planar
	(2, 6) \Rightarrow planar
	(3, 4) \Rightarrow planar
	(4, 5) \Rightarrow planar
	$(3, 5) \Rightarrow$ non-planar
	(4, 6) \Rightarrow non-planar
	(5, 6) \Rightarrow planar
- L	

maximal planar subgraph G' = (V', E') of G V' = $\{1, 2, 3, 4, 5, 6\}$ E' = $\{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 4), (4, 5), (5, 6)\}$ non-planar edges of G: (3, 5) e (4, 6)

addition of edge (4,6)

addition of edge (3,5)

Insert a crossing vertex w in V'

Planarization: Further references

- *M. Jünger, P. Mutzel*: Maximum Planar Subgraphs and Nice Embeddings: Practical Layout Tools. Algorithmica 16(1): 33-59 (1996)
- C. Gutwenger, P. Mutzel, R. Weiskircher: Inserting an Edge into a Planar Graph. Algorithmica 41(4): 289-308 (2005)
- *M. Chimani, C. Gutwenger*: Advances in the Planarization Method: Effective Multiple Edge Insertions. J. Graph Algorithms Appl. 16(3): 729-757 (2012)
- *C. Buchheim, M. Chimani, C. Gutwenger, M. Jünger, P. Mutzel*: Crossings and Planarization. In Handbook of Graph Drawing and Visualization, Roberto Tamassia (Ed.). Chapman and Hall/CRC, 43–85 (2013).

- **Problem 1** Design planarization heuristics that compute embeddings with "few" crossings per edge
- **Remark**: Deciding whether a graph is k-planar (i.e., it has a drawing with at most k crossings per edge) is NP-hard
 - A. Grigoriev and H. L. Bodlaender: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49, 1 (2007)
 - V. P. Korzhik and B. Mohar: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. J. Graph Theory 72, 1 (2013)

Orthogonalization: Shape

- **Objective**: Compute a shape of G with few bends
 - shape (orthogonal representation): described by the angles at each vertex and by the ordered sequence of bends along each edge

Orthogonalization: Bend minimization

- **Theorem [Tamassia 1987]** Given an embedded planar 4-graph G=(V,E), there exists a polynomial-time algorithm that computes an embedding preserving *orthogonal representation* of *G* with *minimum number of bends*
- Proof idea
 - orthogonal representations of G ⇔ integer feasible flows in a suitable network N(G)
 - cost of the flow = number of bends of the orthogonal representation
 - computation of a bend-minimum orthogonal representation of G ⇔ computation of a min-cost flow in N(G)

\begin{flow network}

Flow network: Basic definitions

- flow network: directed graph N = (U, A)
 - every node $v \in U$ is associated with an amount of flow b(v)
 - $b(v) > 0 \Rightarrow v$ is a producer (it produces |b(v)| units of flow)
 - b(v) < 0 ⇒ v is a consumer (it consumes |b(v)| units of flow)
 - $b(v) = 0 \implies v$ is a neutral node
 - it must be $\Sigma_{v \in U} b(v) = 0$
 - every arc $e \in A$ is associated with three non-negative integers:
 - I(e) = lower capacity of e
 - u(e) = upper capacity of e
 - c(e) = cost of e

Flow network: Basic definitions

- feasible flow in N: a function x: $A \rightarrow N$ such that:
 - $\forall e \in A \ |(e) \leq x(e) \leq u(e)$
 - $\forall v \in U \ \Sigma_{e \in out(v)} x(e) \Sigma_{e \in in(v)} x(e) = b(v)$
- cost of x: $C(x) = \sum_{e \in A} c(e) x(e)$
- min-cost flow in N: feasible flow of minimum cost

\end{flow network}

- nodes of N(G) ⇔ vertices and faces of G
- arc (v, f) in N(G) \Leftrightarrow angle at v in face f

- flows on these arcs represent the values of the corresponding angles
- the flow originates from vertices (producers) and move towards faces (consumers)

- flow and angles
 - k units of flow \Leftrightarrow (k+1)90° angle
 - a vertex v produces 4-deg(v) units of flow

vertex of deg. 4

produces flow 0

vertex of deg. 3 produces flow 1

vertex of deg. 2 produces flow 2

vertex of deg. 2 produces flow 2

vertex of deg. 1 produces flow 3

- flow, angles, and face capacities
 - cap(f) = capacity of a face f ⇔ how many units of flow it can consume without generating bends on its boundary

- General rule for an *internal* face f
 - $-\operatorname{cap}(f) = \operatorname{deg}(f) 4$
- Implications:
 - if f receives k > cap(f) units of flow ⇒ f generates k cap(f) bends on its boundary, each forming a 90° angle inside f
 - $\text{deg}(f) < 4 \Rightarrow \text{cap}(f)$ is negative \Rightarrow f produces (4 deg(f)) units of flow

for the external face h: cap(h) = deg(h) + 4

- flow, angles, and face capacities summarizing
 - a vertex v produces 4 deg(v) units of flow
 - an internal face f of degree > 3 consumes deg(f) 4 units of flow
 - an *internal face* f *of degree* \leq 3 produces 4 deg(f) units of flow
 - the external face h consumes deg(h) + 4 units of flow

- How to model bends in the flow network? If a face f receives more than cap(f) units of flow, it must forward the excess to an adjacent face:
 - insert face-to-face arcs in N(G) to allow flow exchange between adjacent faces
 - k units of flow on an arc (f, g) correspond to k bends along an edge shared by f and g; each bend forms an angle of 90° inside f and of 270° inside g
 - face-to-face arcs have cost 1, so that the number of bends equals the total flow cost

face-to-face arcs

Orthogonalization: Flow network

• Flow network: **putting all together**

• Final flow network N(G)

Orthogonalization: Flow and shape

- Example of flow and its corresponding shape
 - only arcs with non-zero flow are shown

Orthogonalization: Flow and shape

• Why an integer feasible flow always exists in N(G)

1) produced flow – consumed flow = 0 $\sum_{v \in V} (4 - \deg(v)) + \sum_{f \text{ int:} \deg(f) \le 3} (4 - \deg(f)) - \sum_{f \text{ int:} \deg(f) > 3} (\deg(f) - 4) - (\deg(h) + 4)) = 4|V| - 2|E| - \sum_{f \in F} (\deg(f) - 4) - 8 = 4(|V| - |E| + |F| - 2) = 0 \text{ (by Euler's formula)}$

2) face-to-face arcs allow unbounded flow exchange

Orthogonalization: Computational cost

- Computing a min-cost flow of O(n) given value in N(G)
 - O(n² log n) [Tamassia 1987]
 - O(n^{7/4} log n) [Garg and Tamassia 1996]
 - O(n^{3/2}) [Cornelsen and Karrenbauer 2011]
- **Open Problem.** Is there an o(n^{3/2})-time algorithm for the bend-minimization problem of *plane* 4-graphs?

Exercise (partial answer). Prove the following

Theorem (unpublished). Let G be an embedded planar 4-graph with n vertices and all internal faces of degree less than 5. There exists an O(n)-time algorithm that computes an embedding-preserving bend-minimum orthogonal representation of G

Orthogonalization: Solution 0 0 0 0 0 -10 0 0

run a BFS visit from the external face

- **Objective**: Assign vertex and bend coordinates such that the final drawing has either small area or small total edge length
 - for some orthogonal representations it is impossible to minimize both these parameters together

Compaction: Complexity

- Minimizing the area (or the total edge length) of an orthogonal representation is NP-hard
 - M. Patrignani: On the complexity of orthogonal compaction. Comput.
 Geom. 19(1): 47-67 (2001)
- The problem is polynomial-time solvable if all faces are rectangles
 - this result is generalized to a larger class of orthogonal representations called *turn-regular* (see later)
 - S. S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, L. Vismara: Turnregularity and optimal area drawings of orthogonal representations. Comput. Geom. 16(1): 53-93 (2000)

Compaction: General strategy

- 1. Transform the shape into a rectangular shape
 - a) replace every bend with a dummy vertex
 - b) add dummy edges and vertices until all faces are rectangles
- 2. Compute vertex coordinates
- 3. Remove all dummy edges and vertices

a) replace every bend with a dummy vertex

b) add dummy edges and vertices until all faces are rectangles

split recursively each *internal face* every time a subsequence *RRL* is found while walking *clockwise*

b) add dummy edges and vertices until all faces are rectangles

split recursively each *internal face* every time a subsequence *RRL* is found while walking *clockwise*

b) add dummy edges and vertices until all faces are rectangles ... a more complex example

b) add dummy edges and vertices until all faces are rectangles ... a more complex example

b) add dummy edges and vertices until all faces are rectangles

split recursively the *external face* every time a subsequence *LRL or LRR* is found while walking *counterclockwise*

b) add dummy edges and vertices until all faces are rectangles

split recursively the *external face* every time a subsequence *LRL or LRR* is found while walking *counterclockwise*

• Compute vertex coordinates

- assign the x-coordinates so that the width is minimized
- assign the y-coordinates so that the height is minimized
- for a rectangular shape this leads to minimum area

• Compute vertex coordinates

- Find the x-coordinates so that the width is minimized
- create super-nodes that group the vertices in the same vertical chain
- connect two super-nodes with a left-to-right directed edge if the corresponding chains are connected in the shape
- assign to chains the x-coordinates computed by an *optimal topological numbering* of their super-nodes

• Compute vertex coordinates

- Find the y-coordinates so that the height is minimized
- uses a super-node that groups the vertices in the same horizontal chain
- connect two super-nodes with a bottom-to-top directed edge if the corresponding chains are connected in the shape
- assign to chains the y-coordinates computed by an *optimal topological numbering* of their supernodes

• Remove dummy edges and vertices

the described algorithm works in O(n) time

Compaction: Total edge length

For a rectangular shape of given width and height, it is possible to minimize the total edge length within its dimensions in polynomial time

• Compaction: Total edge length

 use two flow networks, one for the vertical compaction (N_{ver}) and the other for the horizontal compaction (N_{hor})

Compaction: Total edge length

• The flow on each arc corresponds to the length of the corresponding edge of the orthogonal shape

Compaction: Total edge length

the fact that the node of the network associated with each internal face is a neutral node guarantees the consistency of the face dimensions

Observation: The dummy vertices and edges added in the rectangularization phase represent a constraint, which may strongly affect the result of the compaction algorithm

Example 1

Observation: The dummy vertices and edges added in the rectangularization phase represent a constraint, which may strongly affect the result of the compaction algorithm

Example 2

A planar orthogonal representation is turn-regular if it has no pairs of *kitty-corners* (opposing reflex vertices) inside a face

Compaction: Turn-regularity

Two orthogonal representations of the same plane graph

Compaction: Turn-regularity

Theorem. Let H be an orthogonal representation of an embedded planar 4-graph with n vertices. It is possible to test in O(n) time whether H is turn-regular. In the positive case, an orthogonal drawing of H of minimum area can be computed in O(n) time.

S. S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, L. Vismara: Turn-regularity and optimal area drawings of orthogonal representations. Comput. Geom. 16(1): 53-93 (2000)

Part 1.2 Engineering the Topology-Shape-Metrics Approach

Practical considerations

- Real graphs typically contain high-degree vertices (with degree larger than 4)
- Many applications usually need to customize a generic drawing algorithm by imposing some drawing constraints
 - -vertices represented as boxes of prescribed sizes
 - -specific edges that cannot cross or that cannot bend
- In the following we briefly discuss the above issues

- After the planarization step, replace each high-degree vertex with a dummy face, having all vertices of degree 3
- Apply the topology-shape-metrics approach with some constraints that guarantee that each dummy face is drawn as a rectangle
- In the final drawing dummy faces will be shown as boxes

• After the planarization step, replace each high-degree vertex with a dummy face, having all vertices of degree 3

• Apply the topology-shape-metrics approach with some constraints that guarantee that each dummy face is drawn as a rectangle

• constraints on the orthogonalization algorithm

- each edge of the dummy face boundary is forced to be straight
- this is done by deleting the face-to-face arcs incident to the dummy face node in the flow network

• In the final drawing dummy faces will be shown as boxes

Drawbacks of this strategy

- No control on the dimensions of high-degree vertices
 - the corresponding dummy faces may be stretched a lot in the compaction phase
- Real-world applications may require all vertices of the same dimensions

High-degree vertices: Second strategy

- Use a different model with all vertices of the same size (Kandinsky)
 - Fößmeier and Kaufmann: Drawing high degree graphs with low bend numbers, Graph Drawing (1995)

- 1. introduction of angles of 0°
- 2. each face has an area strictly greater than 0

High-degree vertices: Kandinsky

- Unfortunately, minimizing the number of bends in the Kandinsky model is NP-complete:
 - T. Bläsius, G. Brückner, I. Rutter: Complexity of Higher-Degree
 Orthogonal Graph Embedding in the Kandinsky Model. ESA (2014)
- But the problem is polynomial-time solvable with few additional restrictions (simple Kandinsky)
 - *P. Bertolazzi, G. Di Battista, W. Didimo*: Computing Orthogonal Drawings with the Minimum Number of Bends. IEEE Trans. Computers 49(8): 826-840 (2000)

High-degree vertices: simple Kandinsky

- 1. there cannot be two edges incident to the same side of a vertex if there is at least one unused side of the vertex
- 2. If there are multiple edges incident to the same side of a vertex, all of them except the first (in clockwise order) must bend in the same direction (e.g. to the right)

High-degree vertices: simple Kandinsky

- To compute a bend-minimum orthogonal representation in the simple Kandinsky model extend Tamassia's flow network
 - each high-degree vertex v becomes a consumer instead of a producer; it consumes flow deg(v) 4, received by its incident faces

High-degree vertices: simple Kandinsky

- Interpretation of the flow on the new kind of arcs
 - one unit of flow on an arc (f,v) represents an angle of 0° and causes 1 bend

- Compaction of simple Kandinsky
 - reduced to the compaction algorithm for classical orthogonal shapes

- The topology-shape-metrics approach makes it possible to deal with several types of constraints in each phase:
 - topology constraints
 - shape constraints
 - metrics constraints

- Some topology constraints
 - edges that cannot cross (uncrossable edges)
 - subsets of vertices that must lie on the same face boundary
 - groups of edges that must be consecutive around a common end-vertex
- Handled in the planarization phase

- Some topology constraints
 - edges that cannot cross (uncrossable edges)

to make an edge *uncrossable*, the planarization algorithm is modified by removing the corresponding edge in the dual graph; *a shortest path in the dual cannot cross the primal edge*

• Some topology constraints

- subsets of vertices that must lie on the same face boundary

the planarization algorithm is applied after the insertion of a *"star-gadget" of uncrossable edges*

- Some topology constraints
 - groups of edges that must be consecutive around a common end-vertex

the planarization algorithm is applied after the insertion of a suitable *"star-gadget" for each group*

- Other topology constraints
 - *C. Gutwenger, K. Klein, P. Mutzel*: Planarity Testing and Optimal Edge Insertion with Embedding Constraints. J. Graph Algorithms Appl. 12(1): 73-95 (2008)
 - G. Liotta, I. Rutter, A. Tappini: Graph Planarity Testing with Hierarchical Embedding Constraints. CoRR abs/1904.12596 (2019)

- Some shape constraints
 - deciding the number of bends on an edge (e.g., no bend or any number or a specific number)
 - deciding the turn direction of an edge (left or right)
 - bounding or fixing the values of vertex angles
- Handled in the orthogonalization phase by suitably modifying capacities and/or costs of the arcs of the flow network
 - R. Tamassia: On Embedding a Graph in the Grid with the Minimum Number of Bends. SIAM J. Comput. 16(3): 421-444 (1987)

- Some shape constraints
 - 1. deciding the number of bends on an edge (e.g., no bend or any number or a specific number)
 - 2. deciding the turn direction of an edge (left or right)
 - 3. bounding or fixing the values of vertex angles

- Some metrics constraints
 - deciding vertex dimensions (width and the height of each single vertex)
 - deciding the attaching point of each edge

• Handled in the compaction phase

- Some metrics constraints
 - deciding vertex dimensions (width and height of each single vertex)
 - G. Di Battista, W. Didimo, M. Patrignani, M. Pizzonia: Orthogonal and quasiupward drawings with vertices of arbitrary size. Graph Drawing (1999)
- Idea
 - start from a drawing of a succinct Kandinsky shape
 - expand vertices iteratively, by inserting extra rows and columns in the drawing, according to the desired vertex dimensions (expressed in terms of grid units)
 - compact the drawing again
 - uncompress edges to get the final drawing

- start from a drawing of a succinct Kandinsky shape

 expand vertices iteratively, by inserting extra rows and columns in the drawing, according to the desired vertex dimensions (expressed in terms of grid units)

- compact the drawing again
 - replace each box with a "suitable" number of vertices of zero dimension (points)
 - replace each bend with a dummy vertex

- compact the drawing again
 - create a dummy cage that includes the drawing and divide it into horizontal strips (extra dummy vertices and segments are created)

- compact the drawing again
 - compact horizontally by computing a min-cost-flow in a suitable network

- flow represents edge lengths;

- produced flow = width of the cage

 arcs associated with box-vertex segments have fixed flow value (lower cap. = upper capacity)

arcs associated with dummy segments
 have cost 0

- compact the drawing again
 - do the same to compact vertically and repeat until no improvement happens
- decompress edges to get the final drawing

- *M. Eiglsperger, U. Fößmeier, M. Kaufmann*: Orthogonal graph drawing with constraints. SODA 2000: 3-11
- *M. Eiglsperger, M. Kaufmann*: Fast Compaction for Orthogonal Drawings with Vertices of Prescribed Size. Graph Drawing 2001: 124-138

- Some graph drawing libraries that implement the topology-shapemetrics approach or other orthogonal drawing algorithms:
 - GDToolkit [G. Di Battista, W. Didimo: GDToolkit. Handbook of Graph Drawing and Visualization 2013: 571-597]
 - OGDF [M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, P. Mutzel: The Open Graph Drawing Framework (OGDF). Handbook of Graph Drawing and Visualization 2013: 543-569]
 - -Tom Sawyer Software (www.tomsawyer.com/)
 - Yfiles [*R. Wiese, M. Eiglsperger, M. Kaufmann*: yFiles Visualization and Automatic Layout of Graphs. Graph Drawing Software 2004: 173-191]

Applications: Hermes

A. Carmignani, G. Di Battista, W. Didimo,
F. Matera, M. Pizzonia: Visualization of
the High Level Structure of the Internet
with HERMES. J. Graph Algorithms Appl.
6(3): 281-311 (2002)

Applications: DBDraw

G. Di Battista, W. Didimo, M. Patrignani, M. Pizzonia: Drawing database schemas. Softw., Pract. Exper. 32(11): 1065-1098 (2002)

Applications: WhatsOnWeb (WOW)

Applications: Hybrid visualizations

V. Batagelj, F. Brandenburg, W. Didimo, G. Liotta, P. Palladino, M. Patrignani: Visual Analysis of Large Graphs Using (X,Y)-Clustering and Hybrid Visualizations. IEEE Trans. Vis. Comput. Graph. 17(11): 1587-1598 (2011)

Applications: MatchOMan (MOM)

E. Di Giacomo, W. Didimo, G.Liotta, P. Palladino: Visual Analysis of One-To-Many Matched Graphs. J. Graph Algorithms Appl. 14(1): 97-119 (2010)

Part 1.3 Ortho-polygon Drawings

From edge complexity to vertex complexity

• If vertices are drawn as polygons, one may save edge bends

rectangle visibility representation

A. M. Dean and J. P. Hutchinson. Rectangle-visibility representations of bipartite graphs. Discrete Appl. Math., 75(1):9–25, (1997)

From edge complexity to vertex complexity

1-plane graph that does not admit a rectangle visibility representation

- It can be tested in polynomial time if an embedded graph admits a rectangle visibility representation
 - T. C. Biedl, G. Liotta, F. Montecchiani: Embedding-Preserving Rectangle Visibility Representations of Nonplanar Graphs. Discrete & Computational Geometry 60(2): 345-380 (2018)

Ortho-polygon drawings

 Generalization of rectangle visibility representations – a vertex can be an ortho-polygon with both convex and reflex corners

ortho-polygon drawing with vertex-complexity 1

vertex-complexity = maximum number of reflex corners in a vertex

Ortho-polygon drawings: Existence

- Not all embedded graphs admit an ortho-polygon drawing
- Necessity:
 - -the embedded graph is biplanar, i.e., the edge set can be partitioned into two planar subsets (e.g., vertical and horizontal in the drawing)

Ortho-polygon drawings: Existence

• Biplanarity is not sufficient

this face is not realizable, because it should have more than 4 convex corners and no reflex corners
Ortho-polygon drawings: Existence

- Not all embedded graphs admit an ortho-polygon drawing
- Necessity:
 - -the embedded graph is biplanar, i.e., the edge set can be partitioned into two planar subsets (e.g., vertical and horizontal in the drawing)
 - -each face with only crossing-vertices has degree four

Ortho-polygon drawings: Existence

- Questions:
 - -can we test whether an embedded graph admits an ortho-polygon drawing?
 - -can we compute (if any) an ortho-polygon drawing with minimum vertex complexity? (i.e., minimum number of reflex corners per vertex)
 - if yes, can we also minimize the total number of reflex corners within the minimum vertex complexity?

Ortho-polygon drawings: Existence

- Questions:
 - -can we test whether an embedded graph admits an ortho-polygon drawing?
 - -can we compute (if any) an ortho-polygon drawing with minimum vertex complexity? (i.e., minimum number of reflex corners per vertex)
 - if yes, can we also minimize the total number of reflex corners within the minimum vertex complexity?
- Answer: yes, by using a variant of Tamassia's flow network we can solve everything in polynomial time
 - E. Di Giacomo, W. Didimo, W. S. Evans, G. Liotta, H. Meijer, F. Montecchiani, S. K. Wismath: Ortho-polygon Visibility Representations of Embedded Graphs. Algorithmica 80(8): 2345-2383 (2018)

ortho-polygon drawing of G

orthogonal drawing of G*

- P1. each red vertex has a 180° angle inside its node-face
- P2. each real edge has no bend

orthogonal drawing of G*

- P1. each red vertex has a 180° angle inside its node-face
- P2. each real edge has no bend

test and computation of an ortho-polygon drawing, with minimum number of reflex corners in total

- P1. each red vertex has a 180° angle inside its node-face
- P2. each real edge has no bend

test and computation of an ortho-polygon drawing, with minimum number of reflex corners in total and at most h reflex corners per face

cost 1

cost 0

each of the four units of flow corresponding to a convex corner in f will traverse a node-face at most once

> ↓ h ≤ 4n ↓

apply a binary search within [0,4n] for the determining the best value for h

cost 1

cost 0

Computational complexity

- flow network size = O(n)
- flow value = O(n)
- flow cost $\chi = O(n^2)$

Min-cost flow algorithm time for fixed h: $O(\chi^{3/4} n \log^{1/2} n) = O(n^{5/2} \log^{1/2} n)$

Min-cost flow algorithm time × binary-search time (O(log n)): $O(n^{5/2} \log^{3/2} n)$

Ortho-polygon drawings: 1-plane graphs

• Remarks:

-every 1-plane graph admits an ortho-polygon drawing:

- 2-connected 1-plane graphs may require vertex complexity $\Omega(n)$
- 3-connected 1-plane graphs may require vertex complexity 2
- 3-connected 1-plane graphs always admit an ortho-polygon drawing with vertex complexity at most 5 [*G. Liotta, F. Montecchiani, A. Tappini*: Ortho-Polygon Visibility Representations of 3-Connected 1-Plane Graphs. Graph Drawing 2018: 524-537]

2-connected 1plane graph with vertex complexity 3

Ortho-polygon drawings: Open problems

- **Problem 1.** Reduce the time-complexity of computing orthopolygon drawings of minimum vertex complexity on general graphs
- **Problem 2.** Reduce the theoretical gap between upper bound (5) and lower bound (2) on the vertex complexity of orthopolygon drawings of 3-connected 1-planar graphs

Ortho-polygon drawings: Experiments

(c) Running time.

(d) % of vertices with complexity i (VC-i-V%).

