
Absorbing random-walk centrality:
Theory and algorithms

Charalampos Mavroforakis
Dept. of Computer Science

Boston University
Boston, U.S.A.

cmav@cs.bu.edu

Michael Mathioudakis and Aristides Gionis
Helsinki Institute for Information Technology HIIT

Dept. of Computer Science, Aalto University
Helsinki, Finland

firstname.lastname@aalto.fi

Abstract—We study a new notion of graph centrality based on
absorbing random walks. Given a graph G = (V,E) and a set of
query nodes Q ⊆ V , we aim to identify the k most central nodes
in G with respect to Q. Specifically, we consider central nodes to
be absorbing for random walks that start at the query nodes Q.
The goal is to find the set of k central nodes that minimizes the
expected length of a random walk until absorption. The proposed
measure, which we call k absorbing random-walk centrality, favors
diverse sets, as it is beneficial to place the k absorbing nodes in
different parts of the graph so as to “intercept” random walks
that start from different query nodes.

Although similar problem definitions have been considered in
the literature, e.g., in information-retrieval settings where the
goal is to diversify web-search results, in this paper we study
the problem formally and prove some of its properties. We show
that the problem is NP-hard, while the objective function is
monotone and supermodular, implying that a greedy algorithm
provides solutions with an approximation guarantee. On the other
hand, the greedy algorithm involves expensive matrix operations
that make it prohibitive to employ on large datasets. To confront
this challenge, we develop more efficient algorithms based on
spectral clustering and on personalized PageRank.

Keywords-graph mining; node centrality; random walks

I. INTRODUCTION

A fundamental problem in graph mining is to identify the
most central nodes in a graph. Numerous centrality measures
have been proposed, including degree centrality, closeness
centrality [14], betweenness centrality [5], random-walk cen-
trality [13], Katz centrality [9], and PageRank [4].

In the interest of robustness many centrality measures use
random walks: while the shortest-path distance between two
nodes can change dramatically by inserting or deleting a single
edge, distances based on random walks account for multiple
paths and offer a more global view of the connectivity between
two nodes. In this spirit, the random-walk centrality of one
node with respect to all nodes of the graph is defined as the
expected time needed to come across this node in a random
walk that starts in any other node of the graph [13].

In this paper, we consider a measure that generalizes
random-walk centrality for a set of nodes C with respect to
a set of query nodes Q. Our centrality measure is defined as
the expected length of a random walk that starts from any
node in Q until it reaches any node in C — at which point
the random walk is “absorbed” by C. Moreover, to allow for

adjustable importance of query nodes in the centrality measure,
we consider random walks with restarts, that occur with a fixed
probability α at each step of the random walk. The resulting
computational problem is to find a set of k nodes C that
optimizes this measure with respect to nodes Q, which are
provided as input. We call this measure k absorbing random-
walk centrality and the corresponding optimization problem
k-ARW-CENTRALITY.

To motivate the k-ARW-CENTRALITY problem, let us con-
sider the scenario of searching the Web graph and summa-
rizing the search results. In this scenario, nodes of the graph
correspond to webpages, edges between nodes correspond to
links between pages, and the set of query nodes Q consists
of all nodes that match a user query, i.e., all webpages that
satisfy a keyword search. Assuming that the size of Q is large,
the goal is to find the k most central nodes with respect to Q,
and present those to the user.

It is clear that ordering the nodes of the graph by their
individual random-walk centrality scores and taking the top-k
set does not solve the k-ARW-CENTRALITY problem, as these
nodes may all be located in the same “neighborhood” of the
graph, and thus, may not provide a good absorbing set for
the query. On the other hand, as the goal is to minimize the
expected absorption time for walks starting at Q, the optimal
solution to the k-ARW-CENTRALITY problem will be a set of
k, both centrally-placed and diverse, nodes.

This observation has motivated researchers in the informa-
tion-retrieval field to consider random walks with absorbing
states in order to diversify web-search results [18]. However,
despite the fact that similar problem definitions and algorithms
have been considered earlier, the k-ARW-CENTRALITY prob-
lem has not been formally studied and there has not been a
theoretical analysis of its properties.

Our key results in this paper are the following: we show
that the k-ARW-CENTRALITY problem is NP-hard, and we
show that the k absorbing random-walk centrality measure
is monotone and supermodular. The latter property allows us
to quantify the approximation guarantee obtained by a natural
greedy algorithm, which has also been considered by previous
work [18]. Furthermore, a naı̈ve implementation of the greedy
algorithm requires many expensive matrix inversions, which
make the algorithm particularly slow. Part of our contribu-

ar
X

iv
:1

50
9.

02
53

3v
1

 [
cs

.S
I]

 8
 S

ep
 2

01
5

tion is to show how to make use of the Sherman-Morrison
inversion formula to implement the greedy algorithm with
only one matrix inversion and more efficient matrix× vector
multiplications.

Moreover, we explore the performance of faster, heuristic
algorithms, aiming to identify methods that are faster than
the greedy approach without significant loss in the quality of
results. The heuristic algorithms we consider include the per-
sonalized PageRank algorithm [4], [10] as well as algorithms
based on spectral clustering [17]. We find that, in practice, the
personalized PageRank algorithm offers a very good trade-off
between speed and quality.

The rest of the paper is organized as follows. In Section II,
we overview previous work and discuss how it compares
to this paper. We define our problem in Section III and
provide basic background results on absorbing random walks
in Section IV. Our main technical contributions are given in
Sections IV and V, where we characterize the complexity of
the problem, and provide the details of the greedy algorithm
and the heuristics we explore. We evaluate the performance of
algorithms in Section VII, over a range of real-world graphs,
and Section VIII is a short conclusion. Proofs for some of the
theorems shown in the paper are provided in the Appendix.

II. RELATED WORK

Many works in the literature explore ways to quantify the
notion of node centrality on graphs [3]. Some of the most
commonly-used measures include the following: (i) degree
centrality, where the centrality of a node is simply quantified
by its degree; (ii) closeness centrality [11], [14], defined
as the average distance of a node from all other nodes on
the graph; (iii) betweenness centrality [5], defined as the
number of shortest paths between pairs of nodes in the graph
that pass through a given node; (iv) eigenvector centrality,
defined as the stationary probability that a Markov chain on
the graph visits a given node, with Katz centrality [9] and
PageRank [4] being two well-studied variants; and (v) random-
walk centrality [13], defined as the expected first passage time
of a random walk from a given node, when it starts from a
random node of the graph. The measure we study in this paper
generalizes the notion of random-walk centrality to a set of
absorbing nodes.

Absorbing random walks have been used in previous work
to select a diverse set of nodes from a graph. For example,
an algorithm proposed by Zhu et al. [18] selects nodes in the
following manner: (i) the first node is selected based on its
PageRank value and is set as absorbing; (ii) the next node to be
selected is the node that maximizes the expected first-passage
time from the already selected absorbing nodes. Our problem
definition differs considerably from the one considered in that
work, as in our work the expected first-passage times are
always computed from the set of query nodes that are provided
in the input, and not from the nodes that participate in the
solution so far. In this respect, the greedy method proposed
by Zhu et al. is not associated with a crisp problem definition.

Another conceptually related line of work aims to select a
diverse subset of query results, mainly within the context of
document retrieval [1], [2], [16]. The goal, there, is to select k
query results to optimize a function that quantifies the trade-off
between relevance and diversity.

Our work is also remotely related to the problem studied
by Leskovec et al. on cost-effective outbreak detection [12].
One of the problems discussed there is to select nodes in the
network so that the detection time for a set of cascades is
minimized. However, their work differs from ours on the fact
that they consider as input a set of cascades, each one of finite
size, while in our case the input consists of a set of query nodes
and we consider a probabilistic model that generates random
walk paths, of possibly infinite size.

III. PROBLEM DEFINITION

We are given a graph G = (V,E) over a set of nodes V
and set of undirected edges E. The number of nodes |V | is
denoted by n and the number of edges |E| by m. The input
also includes a subset of nodes Q ⊆ V , to which we refer as
the query nodes. As a special case, the set of query nodes Q
may be equal to the whole set of nodes, i.e., Q = V .

Our goal is to find a set C of k nodes that are central with
respect to the query nodes Q. For some applications it makes
sense to restrict the central nodes to be only among the query
nodes, while in other cases, the central nodes may include any
node in V . To model those different scenarios, we consider a
set of candidate nodes D, and require that the k central nodes
should belong in this candidate set, i.e., C ⊆ D. Some of the
cases include D = Q, D = V , or D = V \Q, but it could also
be that D is defined in some other way that does not involve
Q. In general, we assume that D is given as input.

The centrality of a set of nodes C with respect to query
nodes Q is based on the notion of absorbing random-walks
and their expected length. More specifically, let us consider
a random walk on the nodes V of the graph, that proceeds
at discrete steps: the walk starts from a node q ∈ Q and, at
each step moves to a different node, following edges in G,
until it arrives at some node in C. The starting node q of
the walk is chosen according to a probability distribution s.
When the walk arrives at a node c ∈ C for the first time,
it terminates, and we say that the random walk is absorbed
by that node c. In the interest of generality, and to allow
for adjustable importance of query nodes in the centrality
measure, we also allow the random walk to restart. Restarts
occur with a probability α at each step of the random walk,
where α is a parameter that is specified as input to the problem.
When restarting, the walk proceeds to a query node selected
randomly according to s. Intuitively, larger values of α favor
nodes that are closer to nodes Q.

We are interested in the expected length (i.e., number of
steps) of the walk that starts from a query node q ∈ Q until it
gets absorbed by some node in C, and we denote this expected
length by acq

Q
(C). We then define the absorbing random-walk

centrality of a set of nodes C with respect to query nodes Q, by

acQ(C) =
∑
q∈Q

s(q) acq
Q
(C).

The problem we consider in this paper is the following.

Problem 1 (k-ARW-CENTRALITY) We are given a graph
G = (V,E), a set of query nodes Q ⊆ V , a set of candidate
nodes D ⊆ V , a starting probability distribution s over V
such that s(v) = 0 if v ∈ V \Q, a restart probability α, and
an integer k. We ask to find a set of k nodes C ⊆ D that
minimizes acQ(C), i.e., the expected length of a random walk
that starts from Q and proceeds until it gets absorbed in some
node in C.

In cases where we have no reason to distinguish among the
query nodes, we consider the uniform starting probability
distribution s(q) = 1/|Q|. In fact, for simplicity of exposition,
hereinafter we focus on the case of uniform distribution.
However, we note that all our definitions and techniques
generalize naturally, not only to general starting probability
distributions s(q), but also to directed and weighted graphs.

IV. ABSORBING RANDOM WALKS

In this section we review some relevant background on
absorbing random walks. Specifically, we discuss how to
calculate the objective function acQ(C) for Problem 1.

Let P be the transition matrix for a random walk, with
P(i, j) expressing the probability that the random walk will
move to node j given that it is currently at node i. Since
random walks can only move to absorbing nodes C, but not
away from them, we set P(c, c) = 1 and P(c, j) = 0, if j 6= c,
for all absorbing nodes c ∈ C. The set T = V \ C of non-
absorbing nodes is called transient. If N(i) are the neighbors
of a node i ∈ T and di = |N(i)| its degree, the transition
probabilities from node i to other nodes are

P(i, j) =

{
α s(j) if j ∈ Q \N(i),
(1− α)/di + α s(j) if j ∈ N(i).

(1)

Here, s represents the starting probability vector. For example,
for the uniform distribution over query nodes we have s(i) =
1/|Q| if i ∈ Q and 0 otherwise. The transition matrix of the
random walk can be written as follows

P =

(
PTT PTC

0 I

)
. (2)

In the equation above, I is an (n − |T |) × (n − |T |) identity
matrix and 0 a matrix with all its entries equal to 0; PTT

is the |T | × |T | sub-matrix of P that contains the transition
probabilities between transient nodes; and PTC is the |T |×|C|
sub-matrix of P that contains the transition probabilities from
transient to absorbing nodes.

The probability of the walk being on node j at exactly `
steps having started at node i, is given by the (i, j)-entry of
the matrix P`

TT . Therefore, the expected total number of times

that the random walk visits node j having started from node i
is given by the (i, j)-entry of the |T | × |T | matrix

F =

∞∑
`=0

P`
TT = (I−PTT)

−1
, (3)

which is known as the fundamental matrix of the absorbing
random walk. Allowing the possibility to start the random walk
at an absorbing node (and being absorbed immediately), we
see that the expected length of a random walk that starts from
node i and gets absorbed by the set C is given by the i-th
element of the following n× 1 vector

L = LC =

(
F
0

)
1, (4)

where 1 is an T × 1 vector of all 1s. We write L = LC to
emphasize the dependence on the set of absorbing nodes C.

The expected number of steps when starting from a node
in Q and until being absorbed by some node in C is then
obtained by summing over all query nodes, i.e.,

acQ(C) = sT LC . (5)

A. Efficient computation of absorbing centrality

Equation (5) pinpoints the difficulty of the problem we
consider: even computing the objective function acQ(C) for a
candidate solution C requires an expensive matrix inversion;
F = (I−PTT)

−1. Furthermore, searching for the optimal set
C involves an exponential number of candidate sets, while
evaluating each one of them requires a matrix inversion.

In practice, we find that we can compute acQ(C) much
faster approximately, as shown in Algorithm 1. The algorithm
follows from the infinite-sum expansion of Equation (5).

acQ(C) = sT LC = sT
(

F
0

)
1 = sT

(∑∞
`=0 P`

TT

0

)
1

= sT
∞∑
`=0

(
P`

TT

0

)
1 =

(∞∑
`=0

sT
(

P`
TT

0

))
1

=

(∞∑
`=0

x`

)
1 =

∞∑
`=0

x`1,

with

x0 = s
T

and x`+1 = x`

(
PTT

0

)
. (6)

Note that computing each vector x` requires time O(n2).
Algorithm 1 terminates when the increase of the sum due to
the latest term falls below a pre-defined threshold ε.

V. PROBLEM CHARACTERIZATION

We now study the k-ARW-CENTRALITY problem in more
detail. In particular, we show that the function acQ is mono-
tone and supermodular, a property that is used later to provide
an approximation guarantee for the greedy algorithm. We also
show that k-ARW-CENTRALITY is NP-hard.

Algorithm 1 ApproximateAC

Input: Transition matrix PTT , threshold ε,
starting probabilities s
Output: Absorbing centrality acQ
x0 ← s

T

δ ← x0 · 1
ac← δ
`← 0
while δ < ε do

x`+1 ← x`

(
PTT

0

)
δ ← x`+1 · 1
ac← ac + δ
`← `+ 1

return ac

Recall that a function f : 2V → R over subsets of a ground
set V is submodular if it has the diminishing returns property

f(Y ∪ {u})− f(Y) ≤ f(X ∪ {u})− f(X), (7)

for all X ⊆ Y ⊆ V and u 6∈ Y . The function f is super-
modular if −f is submodular. Submodularity (and supermod-
ularity) is a very useful property for designing algorithms. For
instance, minimizing a submodular function is a polynomial-
time solvable problem, while the maximization problem is
typically amenable to approximation algorithms, the exact
guarantee of which depends on other properties of the function
and requirements of the problem, e.g., monotonicity, matroid
constraints, etc.

Even though the objective function acQ(C) is given in
closed-form by Equation (5), to prove its properties we find
it more convenient to work with its descriptive definition,
namely, acQ(C) being the expected length for a random walk
starting at nodes of Q before being absorbed at nodes of C.

For the rest of this section we consider that the set of query
nodes Q is fixed, and for simplicity we write ac = acQ.

Proposition 1 (Monotonicity) For all X ⊆ Y ⊆ V it is
ac(Y) ≤ ac(X).

The proposition states that absorption time decreases with
more absorbing nodes. The proof is given in the Appendix.

Next we show that the absorbing random-walk centrality
measure ac(·) is supermodular.

Proposition 2 (Supermodularity) For all sets X ⊆ Y ⊆ V
and u 6∈ Y it is

ac(X)− ac(X ∪ {u}) ≥ ac(Y)− ac(Y ∪ {u}). (8)

Proof: Given an instantiation of a random walk, we define
the following propositions for any pair of nodes i, j ∈ V , non-
negative integer `, and set of nodes Z:

A`
i,j(Z): The random walk started at node i and visited node j

after exactly ` steps, without visiting any node in set Z.

B`
i,j(Z, u): The random walk started at node i and visited

node j after exactly ` steps, having previously visited
node u but without visiting any node in the set Z.

It is easy to see that the set of random walks for which A`
i,j(Z)

is true can be partitioned into those that visited u within the
first ` steps and those that did not. Therefore, the probability
that proposition A`

i,j(Z) is true for any instantiation of a
random walk generated by our model is equal to

Pr
[
A`

i,j(Z)
]
= Pr

[
A`

i,j(Z ∪ {u})
]
+ Pr

[
B`

i,j(Z, u)
]
. (9)

Now, let Λ(Z) be the number of steps for a random walk
to reach the nodes in Z. Λ(Z) is a random variable and its
expected value over all random walks generated by our model
is equal to ac(Z). Note that the proposition Λ(Z) ≥ ` + 1
is true for a given instantiation of a random walk only if
there is a pair of nodes q ∈ Q and j ∈ V \ Z, for which the
proposition A`

q,j(Z) is true. Therefore,

Pr [Λ(Z) ≥ `+ 1] =
∑
q∈Q

∑
j∈V \Z

Pr
[
A`

q,j(Z)
]
. (10)

From the above, it is easy to calculate ac(Z) as

ac(Z) = E[Λ(Z)]

=

∞∑
`=0

` Pr [Λ(Z) = `]

=

∞∑
`=1

Pr [Λ(Z) ≥ `]

=

∞∑
`=0

Pr [Λ(Z) ≥ `+ 1]

=

∞∑
`=0

∑
q∈Q

∑
j∈V \Z

Pr
[
A`

q,j(Z)
]
. (11)

The final property we will need is the observation that, for
X ⊆ Y , B`

i,j(Y, u) implies B`
i,j(X,u) and thus

Pr
[
B`

i,j(X,u)
]
≥ Pr

[
B`

i,j(Y, u)
]
. (12)

By using Equation (11), the Inequality (8) can be rewritten as

∞∑
`=0

∑
q∈Q

∑
j∈V \X

Pr
[
A`

q,j(X)
]
−

∞∑
`=0

∑
q∈Q

∑
j∈V \{X∪{u}}

Pr
[
A`

q,j(X ∪ {u})
]

≥
∞∑
`=0

∑
q∈Q

∑
j∈V \Y

Pr
[
A`

q,j(Y)
]
−

∞∑
`=0

∑
q∈Q

∑
j∈V \{Y ∪{u}}

Pr
[
A`

q,j(Y ∪ {u})
]
. (13)

We only need to show that the inequality holds for an arbitrary
value of ` and q ∈ Q, that is∑
j∈V \X

Pr
[
A`

q,j(X)
]
−

∑
j∈V \{X∪{u}}

Pr
[
A`

q,j(X ∪ {u})
]
≥

∑
j∈V \Y

Pr
[
A`

q,j(Y)
]
−

∑
j∈V \{Y ∪{u}}

Pr
[
A`

q,j(Y ∪ {u})
]
.

(14)

Notice that Pr
[
A`

i,u(Y ∪ {u})
]
= 0, so we can rewrite the

above inequality as∑
j∈V \X

Pr
[
A`

q,j(X)
]
−

∑
j∈V \X

Pr
[
A`

q,j(X ∪ {u})
]
≥

∑
j∈V \Y

Pr
[
A`

q,j(Y)
]
−
∑

j∈V \Y

Pr
[
A`

q,j(Y ∪ {u})
]
. (15)

To show the latter inequality we start from the left hand side
and use Inequality (12). We have∑
j∈V \X

Pr
[
A`

i,j(X)
]
−

∑
j∈V \X

Pr
[
A`

i,j(X ∪ {u})
]

=
∑

j∈V \X

Pr
[
B`

i,j(X,u)
]

≥
∑

j∈V \Y

Pr
[
B`

i,j(Y, u)
]

=
∑

j∈V \Y

Pr
[
A`

i,j(Y)
]
−
∑

j∈V \Y

Pr
[
A`

i,j(Y ∪ {u})
]
,

which completes the proof.

Finally, we establish the hardness of k absorbing centrality,
defined in Problem 1.

Theorem 1 The k-ARW-CENTRALITY problem is NP-hard.

Proof: We obtain a reduction from the VERTEXCOVER
problem [6]. An instance of the VERTEXCOVER problem is
specified by a graph G = (V,E) and an integer k, and asks
whether there exists a set of nodes C ⊆ V such that |C| ≤
k and C is a vertex cover, (i.e., for every (i, j) ∈ E it is
{i, j} ∩ C 6= ∅). Let |V | = n.

Given an instance of the VERTEXCOVER problem, we
construct an instance of the decision version of k-ARW-
CENTRALITY by taking the same graph G = (V,E) with
query nodes Q = V and asking whether there is a set of
absorbing nodes C such that |C| ≤ k and ac

Q
(C) ≤ 1− k

n .
We will show that C is a solution for VERTEXCOVER if

and only if ac
Q
(C) ≤ 1− k

n .
Assuming first that C is a vertex cover. Consider a random

walk starting uniformly at random from a node v ∈ Q = V .
If v ∈ C then the length of the walk will be 0, as the walk
will be absorbed immediately. This happens with probability
|C|/|V | = k/n. Otherwise, if v 6∈ C the length of the walk
will be 1, as the walk will be absorbed in the next step (since
C is a vertex cover all the neighbors of v need to belong in
C). This happens with the rest of the probability 1 − k/n.

Thus, the expected length of the random walk is

ac
Q
(C) = 0 · k

n
+ 1 ·

(
1− k

n

)
= 1− k

n
(16)

Conversely, assume that C is not a vertex cover for G. Then,
there should be an uncovered edge (u, v). A random walk that
starts in u and then goes to v (or starts in v and then goes to u)
will have length at least 2, and this happens with probability
at least 2

n
1

dmax
≥ 2

n2 . Then, following a similar reasoning as
in the previous case, we have

ac
Q
(C) =

∞∑
k=0

k Pr (absorbed in exactly k steps)

=

∞∑
k=1

Pr (absorbed after at least k steps)

≥
(
1− k

n

)
+

2

n2
> 1− k

n
. (17)

VI. ALGORITHMS

This section presents algorithms to solve the k-ARW-
CENTRALITY problem. In all cases, the set of query nodes
Q ⊆ V is given as input, along with a set of candidate nodes
D ⊆ V and the restart probability α.

A. Greedy approach

The first algorithm is a standard greedy algorithm, denoted
Greedy, which exploits the supermodularity of the absorbing
random-walk centrality measure. It starts with the result set C
equal to the empty set, and iteratively adds a node from the
set of candidate nodes D, until k nodes are added. In each
iteration the node added in the set C is the one that brings the
largest improvement to acQ.

As shown before, the objective function to be minimized,
i.e., acQ, is supermodular and monotonically decreasing. The
Greedy algorithm is not an approximation algorithm for this
minimization problem. However, it can be shown to provide
an approximation guarantee for maximizing the absorbing
centrality gain measure, defined below.

Definition 1 (Absorbing centrality gain) Given a graph G,
a set of query nodes Q, and a set of candidate nodes D, the
absorbing centrality gain of a set of nodes C ⊆ D is defined
as

acgQ(C) = mQ − acQ(C),

where mQ = minv∈D{acQ({v})}.

Justification of the gain function. The reason to define
the absorbing centrality gain is to turn our problem into a
submodular-maximization problem so that we can apply stan-
dard approximation-theory results and show that the greedy
algorithm provides a constant-factor approximation guarantee.
The shift mQ quantifies the absorbing centrality of the best
single node in the candidate set. Thus, the value of acgQ(C)
expresses how much we gain in expected random-walk length

when we use the set C as absorbing nodes compared to when
we use the best single node. Our goal is to maximize this gain.

Observe that the gain function acgQ is not non-negative ev-
erywhere. Take for example any node u such that acQ({u}) >
mQ. Then, acgQ({u}) < 0. Note also that we could have
obtained a non-negative gain function by defining gain with
respect to the worst single node, instead of the best. In other
words, the gain function acg′Q(C) = MQ − acQ(C), with
MQ = maxv∈D{acQ({v})}, is non-negative everywhere.

Nevertheless, the reason we use the gain function acgQ
instead of acg′Q is that acg′Q takes much larger values than
acgQ, and thus, a multiplicative approximation guarantee on
acg′Q is a weaker result than a multiplicative approximation
guarantee on acgQ. On the other hand, our definition of
acgQ creates a technical difficulty with the approximation
guarantee, that is defined for non-negative functions. Luckily,
this difficulty can be overcome easily by noting that, due to the
monotonicity of acgQ, for any k > 1, the optimal solution of
the function acgQ, as well as the solution returned by Greedy,
are both non-negative.
Approximation guarantee. The fact that the Greedy algo-
rithm gives an approximation guarantee to the problem of
maximizing absorbing centrality gain is a standard result from
the theory of submodular functions.

Proposition 3 The function acgQ is monotonically increasing,
and submodular.

Proposition 4 Let k > 1. For the problem of finding a set
C ⊆ D with |C| ≤ k, such that acgQ(C) is maximized, the
Greedy algorithm gives a

(
1− 1

e

)
-approximation guarantee.

We now discuss the complexity of the Greedy algorithm.
A naı̈ve implementation requires computing the absorbing
centrality acQ(C) using Equation (5) for each set C that
needs to be evaluated during the execution of the algorithm.
However, applying Equation (5) involves a matrix inversion,
which is a very expensive operation. Furthermore, the number
of times that we need to evaluate acQ(C) is O(k|D|), as
for each iteration of the greedy we need to evaluate the
improvement over the current set of each of the O(|D|)
candidates. The number of candidates can be very large, e.g.,
|D| = n, yielding an O(kn4) algorithm, which is prohibitively
expensive.

We can show, however, that we can execute Greedy sig-
nificantly more efficiently. Specifically, we can prove the
following two propositions.

Proposition 5 Let Ci−1 be a set of i − 1 absorbing nodes,
Pi−1 the corresponding transition matrix, and let Fi−1 =
(I − Pi−1)

−1. Let Ci = Ci−1 ∪ {u}. Given Fi−1 the value
acQ(Ci) can be computed in O(n2).

Proposition 6 Let C be a set of absorbing nodes, P the
corresponding transition matrix, and F = (I − P)−1. Let
C ′ = C − {v} ∪ {u}, u, v ∈ C. Given F the value acQ(C

′)
can be computed in time O(n2).

The proofs of these two propositions can be found in the Ap-

Algorithm 2 Greedy

Input: graph G, query nodes Q, candidates D, k ≥ 1
Output: a set of k nodes C
Compute acQ({v}) for arbitrary v ∈ D
For each u ∈ (D − {v}), use Prop.6 to compute acQ(u)
Select u1 ∈ D s.t. u1 ← argmaxu∈D acQ(u)
Initialize solution C ← {u1}
for i = 2..k do

For each u ∈ D, use Prop.5 to compute acQ(C ∪ {u})
Select ui ∈ D s.t. ui ← argmaxui∈(D−C) acQ(C ∪{u})

Update solution C ← C ∪ {ui}
return C

pendix. Proposition 5 implies that in order to compute acQ(Ci)
for absorbing nodes Ci in O(n2), it is enough to maintain the
matrix Fi−1, computed in the previous step of the greedy al-
gorithm for absorbing nodes Ci−1. Proposition 6, on the other
hand, implies that we can compute the absorbing centrality
of each set of absorbing nodes of a fixed size i in O(n2),
given the matrix F, which is computed for one arbitrary set of
absorbing nodes C of size i. Combined, the two propositions
above yield a greedy algorithm that runs in O(kn3) and offers
the approximation guarantee discussed above. We outline it as
Algorithm 2.
Practical speed-up. We found that the following heuristic lets
us speed-up Greedy even further, with no significant loss in
the quality of results. To select the first node for the solution
set C (see Algorithm 2), we calculate the PageRank values of
all nodes in D and evaluate acQ only for the t << k nodes
with highest PageRank score, where t is a fixed parameter.
In what follows, we will be using this heuristic version of
Greedy, unless explicitly stated otherwise.

B. Efficient heuristics

Even though Greedy runs in polynomial time, it can be
quite inefficient when employed on moderately sized datasets
(more than some tens of thousands of nodes). We thus describe
algorithms that we study as efficient heuristics for the problem.
These algorithms do not offer guarantee for their performance.
Spectral methods have been used extensively for the problem
of graph partitioning. Motivated by the wide applicability
of this family of algorithms, here we explore three spectral
algorithms: SpectralQ, SpectralC, and SpectralD. We start by
a brief overview of the spectral method; a comprehensive
presentation can be found in the tutorial by von Luxburg [17].

The main idea of spectral approaches is to project the
original graph into a low-dimensional Euclidean space so
that distances between nodes in the graph correspond to Eu-
clidean distances between the corresponding projected points.
A standard spectral embedding method, proposed by Shi
and Malik [15], uses the “random-walk” Laplacian matrix
LG = I − D−1A of a graph G, where A is the adjacency
matrix of the graph, and forms the matrix U = [u2, . . . , ud+1]
whose columns are the eigenvectors of LG that correspond to

the smallest eigenvalues λ2 ≤ . . . ≤ λd+1, with d being the
target dimension of the projection. The spectral embedding is
then defined by mapping the i-th node of the graph to a point
in Rd, which is the i-row of the matrix U.

The algorithms we explore are adaptations of the spectral
method. They all start by computing the spectral embedding
φ : V → Rd, as described above, and then, proceed as follows:
SpectralQ performs k-means clustering on the embeddings of
the query nodes, where k is the desired size of the result set.
Subsequently, it selects candidate nodes that are close to the
computed centroids. Specifically, if si is the size of the i-th
cluster, then ki candidate nodes are selected whose embedding
is the nearest to the i-th centroid. The number ki is selected
so that ki ∝ si and

∑
ki = k.

SpectralC is similar to SpectralQ, but it performs the k-means
clustering on the embeddings of the candidate nodes, instead
of the query nodes.
SpectralD performs k-means clustering on the embeddings of
the query nodes, where k is the desired result-set size. Then,
it selects the k candidate nodes whose embeddings minimize
the sum of squared `2-distances from the centroids, with no
consideration of the relative sizes of the clusters.
Personalized Pagerank (PPR). This is the standard Pager-
ank [4] algorithm with a damping factor equal to the restart
probability α of the random walk and personalization prob-
abilities equal to the start probabilities s(q). Algorithm PPR
returns the k nodes with highest PageRank values.
Degree and distance centrality. Finally, we consider the
standard degree and distance centrality measures.
Degree returns the k highest-degree nodes. Note that this
baseline is oblivious to the query nodes.
Distance returns the k nodes with highest distance centrality
with respect to Q. The distance centrality of a node u is

defined as dc(u) =
(∑

v∈Q d(u, v)
)−1

.

VII. EXPERIMENTAL EVALUATION

A. Datasets
We evaluate the algorithms described in Section VI on two

sets of real graphs: one set of small graphs that allows us
to compare the performance of the fast heuristics against the
greedy approach; and one set of larger graphs, to compare the
performance of the heuristics against each other on datasets
of larger scale. Note that the bottleneck of the computation
lies in the evaluation of centrality. Even though the technique
we describe in Section IV-A allows it to scale to datasets
of tens of thousands of nodes on a single processor, it is
still prohibitively expensive for massive graphs. Still, our
experimentation allows us to discover the traits of the different
algorithms and understand what performance to anticipate
when they are employed on graphs of massive size.

The datasets are listed in Table I. Small graphs are obtained
from Mark Newman’s repository1, larger graphs from SNAP.2

1http://www-personal.umich.edu/%7Emejn/netdata/
2http://snap.stanford.edu/data/index.html

TABLE I: Dataset statistics

Dataset |V | |E|

karate 34 78
dolphins 62 159
lesmis 77 254
adjnoun 112 425
football 115 613
kddCoauthors 2 891 2 891
livejournal 3 645 4 141
ca-GrQc 5 242 14 496
ca-HepTh 9 877 25 998
roadnet 10 199 13 932
oregon-1 11 174 23 409

For kddCoauthors, livejournal, and roadnet we use
samples of the original datasets. In the interest of repeatability,
our code and datasets are made publicly available.3

B. Evaluation Methodology

Each experiment in our evaluation framework is defined
by a graph G, a set of query nodes Q, a set of candidate
nodes D, and an algorithm to solve the problem. We evaluate
all algorithms presented in Section VI. For the set of candidate
nodes D, we consider two cases: it is equal to either the set of
query nodes, i.e., D = Q, or the set of all nodes, i.e., D = V .

Query nodes Q are selected randomly, using the following
process: First, we select a set S of s seed nodes, uniformly
at random among all nodes. Then, we select a ball B(v, r)
of predetermined radius r = 2, around each seed v ∈ S.4

Finally, from all balls, we select a set of query nodes Q of
predetermined size q, with q = 10 and q = 20, respectively,
for the small and larger datasets. Selection is done uniformly
at random.

Finally, the restart probability α is set to α = 0.15 and the
starting probabilities s are uniform over Q.

C. Implementation

All algorithms are implemented in Python using the Net-
workX package [8], and were run on an Intel Xeon 2.83GHz
with 32GB RAM.

D. Results

Figure 1 shows the centrality scores achieved by different
algorithms on the small graphs for varying k (note: lower is
better). We present two settings: on the left, the candidates are
all nodes (D = V), and on the right, the candidates are only
the query nodes (D = Q). We observe that PPR tracks well
the quality of solutions returned by Greedy, while Degree and
Distance often come close to that. Spectral algorithms do not
perform that well.

Figure 2 is similar to Figure 1, but results on the larger
datasets are shown, not including Greedy. When all nodes are
candidates, PPR typically has the best performance, followed
by Distance, while Degree is unreliable. The spectral algo-
rithms typically perform worse than PPR.

3https://github.com/harrymvr/absorbing-centrality
4For the planar roadnet dataset we use r = 3.

http://snap.stanford.edu/data/index.html

When only query nodes are candidates, all algorithms
demonstrate similar performance, which is most typically
worse than the performance of PPR (the best performing
algorithm) in the previous setting. Both observations can be
explained by the fact that the selection is very restricted by
the requirement D = Q, and there is not much flexibility for
the best performing algorithms to produce a better solution.

In terms of running time on the larger graphs, Distance
returns within a few minutes (with observed times between 15
seconds to 5 minutes) while Degree returns within seconds (all
observed times were less than 1 minute). Finally, even though
Greedy returns within 1-2 seconds for the small datasets, it
does not scale well for the larger datasets (running time is
orders of magnitude worse than the heuristics and not included
in the experiments).

Based on the above, we conclude that PPR offers the best
trade-off of quality versus running time for datasets of at least
moderate size (more than 10 k nodes).

VIII. CONCLUSIONS

In this paper, we have addressed the problem of finding
central nodes in a graph with respect to a set of query nodes Q.
Our measure is based on absorbing random walks: we seek
to compute k nodes that minimize the expected number of
steps that a random walk will need to reach at (and be
“absorbed” by) when it starts from the query nodes. We have
shown that the problem is NP-hard and described an O(kn3)
greedy algorithm to solve it approximately. Moreover, we
experimented with heuristic algorithms to solve the problem on
large graphs. Our results show that, in practice, personalized
PageRank offers a good combination of quality and speed.

REFERENCES

[1] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying
search results. In Proceedings of the Second ACM International
Conference on Web Search and Data Mining, pages 5–14. ACM, 2009.

[2] A. Angel and N. Koudas. Efficient diversity-aware search. ACM, June
2011.

[3] P. Boldi and S. Vigna. Axioms for centrality. Internet Mathematics,
2014.

[4] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. Computer Networks and ISDN Systems, 30, 1998.

[5] L. Freeman. A set of measures of centrality based upon betweenness.
Sociometry, 40, 1977.

[6] M. Garey and D. Johnson. Computers and intractability; A guide to the
theory of NP-completeness. W. H. Freeman & Co., 1990.

[7] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU
Press, 2012.

[8] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network
structure, dynamics, and function using NetworkX. In SciPy, 2008.

[9] L. Katz. A New Status Index Derived from Sociometric Index.
Psychometrika, 1953.

[10] A. N. Langville and C. D. Meyer. A survey of eigenvector methods for
web information retrieval. SIAM review, 47(1):135–161, 2005.

[11] H. J. Leavitt. Some effects of certain communication patterns on group
performance. The Journal of Abnormal and Social Psychology, 1951.

[12] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance. Cost-effective outbreak detection in networks. In SIGKDD.
ACM, 2007.

[13] J. D. Noh and H. Rieger. Random walks on complex networks. Phys.
Rev. Lett., 92, 2004.

[14] G. Sabidussi. The centrality index of a graph. Psychometrika, 31, 1966.

[15] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE
transactions on Pattern Analysis and Machine Intelligence, 22(8):888–
905, 2000.

[16] M. R. Vieira, H. L. Razente, M. C. N. Barioni, M. Hadjieleftheriou,
D. Srivastava, A. J. M. Traina, and V. J. Tsotras. On query result diver-
sification. 2011 IEEE International Conference on Data Engineering,
pages 1163–1174, 2011.

[17] U. Von Luxburg. A tutorial on spectral clustering. Statistics and
computing, 17(4):395–416, 2007.

[18] X. Zhu, A. Goldberg, J. Van Gael, and D. Andrzejewski. Improving
diversity in web search results re-ranking using absorbing random walks.
In NAACL-HLT, 2007.

APPENDIX

A. Proposition 1

Proposition (Monotonicity) For all X ⊆ Y ⊆ V it is
ac(Y) ≤ ac(X).

Proof: Write GX for the input graph G where the set X
are absorbing nodes. Define GY similarly. Let Z = Y \ X .
Consider a path p in GX drawn from the distribution induced
by the random walks on GX . Let Pr [p] be the probability of
the path and `(p) its length. Let P(X) and P(Y) be the set
of paths on GX and GY . Finally, let P(Z,X) be the set of
paths on GX that pass from Z, and P(Z,X) the set of paths
on GX that do not pass from Z. We have

ac(X) =
∑

p∈P(X)

Pr [p] `(p)

=
∑

p∈P(Z,X)

Pr [p] `(p) +
∑

p∈P(Z,X)

Pr [p] `(p)

≥
∑

p∈P(Y)

Pr [p] `(p)

= ac(Y),

where the inequality comes from the fact that a path in GX

passing from Z and being absorbed by X corresponds to a
shorter path in GY being absorbed by Y .

B. Proposition 5

Proposition Let Ci−1 be a set of i − 1 absorbing nodes,
Pi−1 the corresponding transition matrix, and Fi−1 = (I −
Pi−1)

−1. Let Ci = Ci−1 ∪ {u}. Given Fi−1, the centrality
score acQ(Ci) can be computed in time O(n2).

The proof makes use of the following lemma.

Lemma 1 (Sherman-Morrison Formula [7]) Let M be a
square n×n invertible matrix and M−1 its inverse. Moreover,
let a and b be any two column vectors of size n. Then, the
following equation holds

(M + abT)−1 = M−1 −M−1abTM−1/(1 + bTM−1a).

Proof: Without loss of generality, let the set of absorbing
nodes be Ci−1 = {1, 2, . . . , i − 1}. As in Section VI, the
expected number of steps before absorption is given by the
formulas

ac
Q
(Ci−1) = sT

Q
Fi−11,

with Fi−1 = A−1i−1 and Ai−1 = I−Pi−1.

We proceed to show how to increase the set of absorbing nodes
by one and calculate the new absorption time by updating Fi−1
in O(n2). Without loss of generality, suppose we add node i
to the absorbing nodes Ci−1, so that

Ci = Ci−1 ∪ {i} = {1, 2, . . . , i− 1, i}.

Let Pi be the transition matrix over G with absorbing nodes
Ci. Like before, the expected absorption time by nodes Ci is
given by the formulas

ac
Q
(Ci) = sT

Q
Fi1,

with Fi = A−1i and Ai = I−Pi.

Notice that

Ai −Ai−1 = (I−Pi)− (I−Pi−1) = Pi−1 −Pi

=

 0(i−1)×n
pi,1 . . . pi,n
0(n−i)×n

 = abT

where pi,j denotes the transition probability from node i to
node j in transition matrix Pi−1, and the column-vectors a
and b are defined as

a = [

i−1︷ ︸︸ ︷
0 . . . 0 1

n−i︷ ︸︸ ︷
0 . . . 0], and

b = [pi,1 . . . pi,n].

By a direct application of Lemma 1, it is easy to see that we
can compute Fi from Fi−1 with the following formula, at a
cost of O(n2) operations.

Fi = Fi−1 − (Fi−1a)(b
TFi−1)/(1 + bT (Fi−1a))

We have thus shown that, given Fi−1, we can compute Fi,
and therefore ac

Q
(Ci) as well, in O(n2).

C. Proposition 6

Proposition Let C be a set of absorbing nodes, P the
corresponding transition matrix, and F = (I − P)−1. Let
C ′ = C − {v} ∪ {u}, for u, v ∈ C. Given F, the centrality
score acQ(C

′) can be computed in time O(n2).

Proof: The proof is similar to the proof of Proposition 5.
Without loss of generality, let the two sets of absorbing nodes
be

C = {1, 2, . . . , i− 1, i}, and
C ′ = {1, 2, . . . , i− 1, i+ 1}.

Let P′ be the transition matrix with absorbing nodes C ′. The
absorbing centrality for the two sets of absorbing nodes C and
C ′ is expressed as a function of the following two matrices

F = A−1, with A = I−P, and

F′ = A′
−1
, with A′ = (I−P′).

Notice that

A′ −A = (I−P′)− (I−P) = P−P′

=

0(i−1)×n

−pi,1 . . . − pi,n
pi+1,0 . . . pi+1,n

0(n−i−1)×n

 = a2b
T
2 − a1b

T
1

where pi,j denotes the transition probability from node i to
node j in a transition matrix P0 where neither node i or i+1
is absorbing, and the column-vectors a1, b1, a2, b2 are defined
as

a1 = [

i−1︷ ︸︸ ︷
0 . . . 0 1 0

n−i−1︷ ︸︸ ︷
0 . . . 0]

b1 = [pi,1 . . . pi,n]

a2 = [

i−1︷ ︸︸ ︷
0 . . . 0 0 1

n−i−1︷ ︸︸ ︷
0 . . . 0]

b2 = [pi+1,1 . . . pi+1,n].

By an argument similar with the one we made in the proof
of Proposition 5, we can compute F′ in the following two
steps from F, each costing O(n2) operations for the provided
parenthesization

Z = F− (Za2)(b
T
2 Z)/(1 + bT

2 (Za2)),

F′ = Z + (Fa1)(b
T
1 F)/(1 + bT

1 (Fa1)).

We have thus shown that, given F, we can compute F′, and
therefore ac

Q
(C ′) as well, in time O(n2).

(a) karate (b) dolphins

(c) lesmis (d) adjnoun

(e) football

Fig. 1: Results on small datasets for varying k and s = 2.

(a) ca-GrQc (b) ca-HepTh

(c) livejournal (d) oregon-1

(e) roadnet (f) kddCoauthors

Fig. 2: Results on large datasets for varying k and s = 5.

