
ar
X

iv
:1

50
7.

03
73

8v
1

 [
cs

.D
S]

 1
4

Ju
l 2

01
5

Tight Bounds for Subgraph Isomorphism and Graph

Homomorphism∗

Fedor V. Fomin1,4, Alexander Golovnev2,4, Alexander S. Kulikov4, and Ivan Mihajlin3,4

1University of Bergen, Norway
2New York University, USA

3University of California—San Diego, USA
4St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy

of Sciences, Russia

Abstract

We prove that unless Exponential Time Hypothesis (ETH) fails, deciding if there is a ho-
momorphism from graph G to graph H cannot be done in time |V (H)|o(|V (G)|). Combined
with the reduction of Cygan, Pachocki, and Soca la, our result rules out (subject to ETH) a
possibility of |V (G)|o(|V (G)|)-time algorithm deciding if graph H is a subgraph of G. For both
problems our lower bounds asymptotically match the running time of brute-force algorithms
trying all possible mappings of one graph into another. Thus, our work closes the gap in the
known complexity of these fundamental problems.

1 Introduction

A homomorphism G → H from an undirected graph G to an undirected graph H is a mapping
from the vertex set V (G) to V (H) such that the image of every edge of G is an edge of H. Then
the Graph Homomorphism problem HOM(G,H) is the problem to decide for given graphs G
and H, whether G → H. Graph Homomorphism is a generic problem and many fundamental
combinatorial problems like Graph Coloring and Clique can be seen as its special cases. We
refer to books of Hell and Nešetřil [11] and Lovász [14] for introduction to and applications of graph
homomorphisms.

Solving HOM(G,H) can be done by checking all possible mappings from an n-vertex graph G
into an h-vertex graph H.1 The running time of this brute-force algorithm is O(hn) = 2O(n logh).
It was shown by Chen et al. [3] that under the ETH assumption, for any constant ε > 0, there
is no no(k)-time algorithm checking whether a given n-vertex graph contains a k-clique for any
k = O(n1−ε). This implies, in particular, that Graph Homomorphism cannot be solved in time

∗The research leading to these results has received funding from the Government of the Russian Federation (grant
14.Z50.31.0030). The research of Alexander Kulikov is also supported by the grant of the President of Russian
Federation (MK-6550.2015.1).

1In order to obtain general results, throughout the paper we assume implicitly that h = h(n) is a function of n.
We assume that the function h(n) is non-decreasing and time-constructible.

1

http://arxiv.org/abs/1507.03738v1

2o(n log h) for h significantly larger than n (again, under the ETH assumption). At the same time
this does not exclude the existence of a faster algorithm for some h ≤ n. Moreover, one of the most
natural special cases, the h-coloring problem (an n vertex graph can be colored in h ≤ n colors if and
only if there is a homomorphism from the graph to an h-clique; for this reason, HOM(G,H) is often
called H-coloring of G), can be solved in time 2n poly(n) as shown by Björklund et al. [2]. That is
why the existence of an algorithm solving Graph Homomorphism asymptotically faster than the
brute-force was a major open problem in the area of Exact Exponential Algorithms [8, 15, 16, 17].
In [7], we have shown that unless ETH fails, there is no algorithm solving Graph Homomorphism

in time 2
o
(

n log h
log logh

)

for every function h(n). In this paper, we close the gap between the existing
lower and upper bounds by ruling out a possibility of solving Graph Homomorphism in time
2o(n log h) for every function h(n).

Our result also implies a tight bound for the related Subgraph Isomorphism problem. Here,
for two given n-vertex graphs G and H, the task is to decide if G contains a subgraph isomorphic
to H. As Graph Homomorphism, Subgraph Isomorphism encompasses many fundamental
problems including Hamiltonian Cycle, Bandwidth, Triangle Packing, Clique, and Bi-

clique. Again, a brute-force algorithm solves Subgraph Isomorphism in time 2O(n logn) and
a possibility of time 2o(n logn) solving Subgraph Isomorphism was another long-standing open
question in the area, see for example [1, 5, 6], and [9, Chapter 12]. Recently, Cygan, Pachocki,
and Soca la [5] showed that Graph Homomorphism can be solved by solving 2O(n) instances of
Subgraph Isomorphism. This reduction, together with [7], implied that Subgraph Isomor-

phism cannot be solved in time 2
o
(

n log n
log log n

)

unless ETH fails [5]. Combined with this reduction,
our lower bound for homomorphisms rules out algorithms of running time 2o(n logn) for Subgraph

Isomorphism, and closes the gap between upper and lower bounds for this problem as well.
We build the proof of our tight lower bounds for graph homomorphisms on [7]. As in [7], we

obtain lower bounds for Graph Homomorphism by reducing the 3-coloring problem on graphs
of bounded degree to it. The crucial difference with [7], which allows us to obtain a tight bound,
is that we reduce 3-coloring of graphs of degree d on n vertices to list homomorphism of n

r
-vertex

graph to γ(d)r-vertex graph, where γ(d) is a function that depends on d only. Then an ho(n)

upper bound for n-vertex to h-vertex graph homomorphism would imply a subexponential γ(4)o(n)

algorithm for 3-coloring on graphs of degree 4, contradicting ETH.

2 Preliminaries

2.1 Main Definitions

Let G be a graph, by V (G) and E(G) we denote the sets of vertices and edges of G, respectively.
For a vertex v ∈ V (G), by the neighborhood NG(v) we mean the set of all vertices of G adjacent
to v. By the square of G we denote the graph G2, such that V (G2) = V (G), and {u, v} ∈ E(G2) if
and only if there is a path of length at most two from u to v in G.

Let G be an n-vertex graph, 1 ≤ k ≤ n be an integer, and V (G) = B1 ⊔ B2 ⊔ . . . ⊔ Bk

be a partition of the set of vertices of G. Then a grouping of G with respect to the partition
V (G) = B1 ⊔B2 ⊔ . . .⊔Bk is a graph G̃ with vertices B1, . . . , Bk such that Bi and Bj are adjacent
in G̃ if and only if there exist u ∈ Bi and v ∈ Bj such that {u, v} ∈ E(G). To distinguish vertices
of the graphs G and G̃, the vertices of G̃ will be called buckets.

2

A proper coloring of a graph G is a function assigning a color to each vertex of G such that
adjacent vertices have different colors. An equitable coloring is a proper coloring where the numbers
of vertices of any two colors differ by at most one. An injective coloring is a proper coloring that
assigns different colors to any pair of vertices that have a common neighbor (note that a proper
coloring of the square of a graph G is an injective coloring of G).

For a positive integer k, we use [k] to denote the set of integers {1, . . . , k}. All logarithms in
this paper are logarithms to the base two.

2.2 Homomorphism and Subgraph Isomorphism

Let G and H be graphs. A mapping ϕ : V (G) → V (H) is a homomorphism if for every edge
{u, v} ∈ E(G) its image {ϕ(u), ϕ(v)} ∈ E(H). If there exists a homomorphism from G to H, we
write G → H. The Graph Homomorphism problem HOM(G,H) asks whether or not G → H.
We also use the following generalization of graph homomorphism. Assume that for each vertex v of
G there is an assigned list L(v) ⊆ V (H) of vertices. A list homomorphism of G to H, also known as
a list H-colouring of G, with respect to the lists L, is a homomorphism ϕ : V (G) → V (H), such that
ϕ(v) ∈ L(v) for all v ∈ V (G). Then the List Graph Homomorphism problem LIST-HOM(G,H)
asks whether or not graph G with lists L admits a list homomorphism to H with respect to L.

In the Subgraph Isomorphism problem one is given two graphs G and H and the question is
whether G contains a subgraph isomorphic to H.

2.3 Exponential Time Hypothesis

Our lower bound is based on the well-known complexity hypothesis of Impagliazzo, Paturi, and
Zane [12], see [4, 13] for an overview of the hypothesis and its implications.

Exponential Time Hypothesis (ETH): There is a constant s > 0 such that 3-CNF-
SAT with n variables and m clauses cannot be solved in time 2sn(n + m)O(1).

Let us remind that in the 3-Coloring problem the task is to decide whether a given graph
admits a proper coloring in three colors. We will need the following folklore lemma. It follows from
the fact that (unless ETH fails) 3-Coloring on graphs of average degree four cannot be solved
in subexponential time, see e.g. Theorem 3.2 in [13], and the classical reduction, see e.g. [10], for
3-Coloring on degree-four graphs.

Lemma 1. Unless ETH fails, there exists a constant q > 0 such that there is no algorithm solving
3-Coloring on n-vertex graphs of maximum degree four in time O (2qn).

3 Auxiliary Lemmata

In this section we provide auxiliary lemmata about colorings which will be used to prove lower
bounds for Graph Homomorphism and Subgraph Isomorphism.

3.1 Balanced Colorings

In the following we show how to construct a specific “balanced” coloring of a graph in polynomial
time. Let G be a graph of constant maximum degree. The coloring of G we want to construct

3

should satisfy three properties. First, it should be a proper coloring of G2. Then the size of each
color class should be bounded as well as the number of edges between vertices from different color
classes. More precisiely.

Lemma 2. For any constant d, there exist constants α, β, τ > 1 and a polynomial time algorithm

that for a given graph G on n vertices of maximum degree d and an integer τ ≤ L ≤ n(d2−1)
2d2(d2+1)

,

finds a coloring c : V (G) → [L] satisfying the following properties:

1. The coloring c is a proper coloring of G2.

2. There are only a few vertices of each color: for all i ∈ [L],

|c−1(i)| ≤
⌈

α · n
L

⌉

. (1)

3. There are only a few edges of G between each pair of colors: For all i 6= j ∈ [L], we have

ki,j := |{{u, v} ∈ E(G) : c(u) = i, c(v) = j}| ≤ Ki,j :=

⌈

β · min{|c−1(i)|, |c−1(j)|}
L

⌉

.

Proof. The algorithm starts by constructing greedily an independent set I of G2 of size
⌈

n
d2+1

⌉

.

Since the maximum vertex degree of G2 does not exceed d2, this is always possible. We construct
a partial coloring of G2 by coloring the vertices of I in L colors such that the obtained coloring is
an equitable coloring of G2[I]. Since I is an independent set in G2, such a coloring can be easily
constructed in polynomial time. In the obtained partial equitable coloring, we have that for every
i ∈ [L]

|c−1(i)| ≥
⌊

n

L(d2 + 1)

⌋

≥ n

2Ld2
(2)

(recall that L ≤ n(d2−1)
2d2(d2+1)). Let us note that the obtained precoloring of G2 clearly satisfies the

first and the third conditions of the lemma. Since the size of every c−1(i), i ∈ [L], does not exceed
|c−1(i)| ≤

⌈

n
L

⌉

, the second condition of the lemma also holds for every α > 1.
We extend the precoloring of G2 to the required coloring by the following greedy procedure: We

select an uncolored vertex v and color it by a color from [L] such that the new partial coloring also
satisfies the three conditions of the lemma. In what follows, we prove that such a greedy choice of
a color is always possible.

Coloring of a vertex v with a color i can be forbidden only because it breaks one of the three
conditions. Let us count, how many colors can be forbidden for v by each of the three constraints.

1. Vertex v has at most d2 neighbors in G2, so the first constraint forbids at most d2 colors.

2. The second constraint forbids all the colors that are “fully packed” already. The number of
such colors is at most n

(αn
L)

= L
α

.

3. To estimate the number of colors forbidden by the third condition, we go through all the
neighbors of v. A neighbor u ∈ NG(v) forbids a color i if coloring v by i exceeds the allowed
bound on ki,c(u). Hence to estimate the number of such forbidden colors i (for every fixed

4

vertex u) we need to estimate how many values of ki,c(u) can reach the allowed upper bound
Ki,c(u). We have that

|{i : ki,c(u) = Ki,c(u)}|
by (2)

≤
∣

∣

∣

∣

{

i : ki,c(u) ≥
βn

2L2d2

}
∣

∣

∣

∣

=

∣

∣

∣

∣

{

i : ki,c(u) ·
2L2d2

βn
≥ 1

}
∣

∣

∣

∣

≤
∑

i∈[L]

ki,c(u) ·
2L2d2

βn
.

The number of edges between vertices of the same color c(u) and all other vertices of the
graph does not exceed the cardinality of the color class c(u) times d. Thus we have

∑

i∈[L]

ki,c(u) ·
2L2d2

βn
≤ d|c−1(c(u))| · 2L2d2

βn

by (1)

≤ d
⌈αn

L

⌉

· 2L2d2

βn

≤ d
2αn

L
· 2L2d2

βn
=

4αLd3

β
.

Therefore,

|{i : ki,c(u) = Ki,c(u)}| ≤
4αLd3

β
.

Since the degree of v in G does not exceed d, we have that the number of colors forbidden by
the third constraint is at most 4αLd4

β
.

Thus, the total number of colors forbidden by all the three constraints for the vertex v is at most

d2 +
L

α
+

4αLd4

β
.

By taking sufficiently large constants α, β, and τ , say α = 4, β = 16α2d4, and τ = 2d2 + 1, we
guarantee that this expression is less than L− 1 for every L ≥ τ . Therefore, there always exists a
vacant color for the vertex v which concludes the proof.

Now with a help of Lemma 2, we describe a way to construct a specific grouping of a graph.
The properties of such groupings are crucial for the final reduction.

Lemma 3. For any constant d, there exists a constant λ = λ(d) and a polynomial time algorithm
that for a given graph G on n vertices of maximum degree d and an integer r ≤

√

n
2λ , finds a

grouping G̃ of G and a coloring c̃ : V (G̃) → [λr] such that

1. The number of buckets of G̃ is

|V (G̃)| ≤ |V (G)|
r

;

2. The coloring c̃ is a proper coloring of G̃2;

3. Each bucket B ∈ V (G̃) is an independent set in G, i.e. for every u, v ∈ B, {u, v} 6∈ E(G);

5

4. For every pair of buckets B1, B2 ∈ V (G̃) there is at most one edge between them in G, i.e.

|{{u, v} ∈ E(G) : u ∈ B1, v ∈ B2}| ≤ 1 .

Proof. Let β = β(d) be a constant provided by Lemma 2 and let L = λr for λ = λ(d) = 2dβ. Let
also c be a coloring of G in L colors provided by Lemma 2. We want to construct a grouping G̃ of
G such that for all buckets B ∈ V (G̃) and all u 6= v ∈ B,

c(u) = c(v) and c(u′) 6= c(v′) for all u′ ∈ NG(u), v′ ∈ NG(v) (3)

In other words, all vertices of the same bucket are of the same color while any two neighbors of
such two vertices are of different colors.

For each color i ∈ [L], we introduce an auxiliary constraint graph Fi. The vertex set of Fi is
V (Fi) = c−1(i) and its edge set is

E(Fi) = {{u, v} : ∃u′ ∈ NG(u), v′ ∈ NG(v), c(u′) = c(v′)}. (4)

In our construction, each bucket of G̃ will be an independent set in some Fi. Note that this will
immediately imply (3). The degree of any vertex v ∈ V (Fi) is at most

degFi
(v) ≤

∑

v′∈NG(v)

(Kc(v),c(v′) − 1) ≤ d

(⌈

β|c−1(v)|
L

⌉

− 1

)

≤ dβ|V (Fi)|
L

=
|V (Fi)|

2r
.

This means that the greedy algorithm finds a proper coloring of each Fi in at most |V (Fi)|
2r +1 colors,

which splits each Fi in at most |V (Fi)|
2r + 1 independent sets. We create a separate bucket of G̃ from

each independent set of each Fi. Now we show that the four conditions from the lemma statement
hold.

1. For the first property, the number of independent sets in each Fi is at most |V (Fi)|
2r + 1. Thus

the number of buckets in G̃ is

|V (G̃)| ≤
∑

i∈[L]

(|V (Fi)|
2r

+ 1

)

=
∑

i∈[L]

(|c−1(i)|
2r

+ 1

)

=
n

2r
+ L ≤ n

r
,

since L = λr and 2λr2 ≤ n.

2. For the second property, by Lemma 2, the coloring c is proper in G2. We can convert c to a
coloring c̃ : V (G̃) → [λr] by assigning each bucket the color of its vertices (all of them have
the same color). The resulting coloring c̃ is a proper coloring of G̃2 by (3).

3. All buckets of G̃ are monochromatic with respect to c, thus, each bucket B ∈ V (G̃) is an
independent set in G and the third property holds.

4. Finally, by (3), there is at most one edge in G between vertices corresponding to any pair of
buckets in G̃.

Thus, the constructed grouping and its coloring satisfy all conditions of the lemma.

6

Lemma 4. There exists a polynomial time algorithm that takes an input a graph G on n vertices of
maximum degree d that needs to be 3-colored and an integer r = o(

√
n) and finds an equisatisfiable

instance (G′,H ′) of List Graph Homomorphism, where |V (G′)| ≤ n
r
, |V (H ′)| ≤ γ(d)r.

Proof. Constructing the graph G′. Let G′ be the grouping of G and c : V (G′) → [L] be the coloring
provided by Lemma 3 where L = λ(d)r. To distinguish colorings of G and G′, we call c(B), for a
bucket B ∈ V (G′), a label of B. Consider a bucket B ∈ V (G′), i.e., a subset of vertices of G, and
a label i ∈ [L]. From item 2 of Lemma 3 we know that c is a proper coloring of (G′)2. This, in
particular, means that there is at most one B′ ∈ NG′(B) such that c(B′) = i. Moreover, if such
B′ exists then, by item 4 of Lemma 3, there exists a unique u ∈ B and unique u′ ∈ B′ such that
{u, u′} ∈ E(G). This allows us to define the following mapping φB : [L] → B ∪ {0}: φB(i) = u if
such B′ exists and φB(i) = 0 if B has no neighbor B′ of label i.

Constructing the graph H ′. We now define a redundant encoding of a 3-coloring of a bucket
B ∈ V (G′). Namely, let µB : (f : B → {1, 2, 3}) → {0, 1, 2, 3}L . That is, for a 3-coloring f : B →
{1, 2, 3} of B, µB is a vector v of length L. For i ∈ [L], by v[i] we denote the i-th component of v.
The value of v[i] is defined as follows: if φB(i) = 0 then v[i] = 0, otherwise v[i] = f(φB(i)). In other
words, for a given bucket B and a 3-coloring f of its vertices, for each possible label i ∈ [L], µB is
the color of a vertex u ∈ B that has a neighbor in a bucket with label i, and 0 if there is no such
vertex u.

We are now ready to construct the graph H ′. The set of vertices of H ′ is defined as follows:

V (H ′) = {(R, l) : R ∈ {0, 1, 2, 3}L and l ∈ [L]} ,

i.e., a vertex of H ′ is an encoding of a 3-coloring of a bucket and a label of a bucket. A bucket
B ∈ V (G′) is allowed to be mapped to (R, l) ∈ V (H ′) if and only if l = c(B) and there is a 3-coloring
f of B such that µB(f) = R. Informally, two vertices in V (H ′) are joined by an edge if they define
two consistent 3-colorings. Formally, {(R1, l1), (R2, l2)} ∈ E(H ′) if and only if R1[l2] 6= R2[l1]. Note
that |V (G′)| ≤ n/r by Lemma 3 and |V (H ′)| ≤ 4L · L ≤ 5L = 5λ(d)r = γ(d)r for γ(d) = 5λ(d).

Running time of the reduction. The reduction clearly takes polynomial time.
Correctness of the reduction. It remains to show that G is 3-colorable if and only if (G′,H ′) is

a yes-instance of List Graph Homomorphism.
Assume that G is 3-colorable and take a proper 3-coloring g of G. It defines a homomorphism

from G′ to H ′ in a natural way: B ∈ V (G′) is mapped to (µB(g), l(B)). Each list constraint is
satisfied by definition. To show that each edge is mapped to an edge, consider an edge {B,B′} ∈
E(G′). Then, by item 4 of Lemma 3 there is a unique edge {u, u′} ∈ E(G) such that u ∈ B,u′ ∈ B′.
Note that B and B′ are mapped to vertices (R, l) and (R′, l′) such that R[l′] = g(u) and R′[l] = g(u′).
Since g is a proper 3-coloring of G, g(u) 6= g(u′). This, in turn, means that {(R, l), (R′, l′)} ∈ E(H ′)
and hence the edge {B,B′} is mapped to this edge in H ′.

For the reverse direction, consider a homomorphism h : G′ → H ′. For each bucket B ∈ V (G′),
h(B) defines a proper 3-coloring of B. Together, they define a 3-coloring g of G and we need
to show that g is proper. Assume, to the contrary, that there is an edge {u, u′} ∈ E(G) such
that g(u) = g(u′). By item 3 of Lemma 3, u and u′ belong to different buckets B,B′ ∈ V (G′).
By the definition of grouping, {B,B′} ∈ E(G′). Since h is a homomorphism, {(R, l), (R′, l′)} :=
{h(B), h(B′)} ∈ E(H ′). At the same time, R[l′] = g(u) = g(u′) = R′[l] which contradicts to the
fact that {(R, l), (R′, l′)} is an edge in H ′.

7

4 Main Theorems

4.1 Graph Homomorphism

For the proof of the first main theorem of this paper, we need the following lemma which is proved
in [7, Lemma 5].

Lemma 5. There is a polynomial-time algorithm that from an instance (G,H) of List Graph

Homomorphism where |V (G)| = n, |V (H)| = h ≥ 3, constructs an instance (G′,H ′) of Graph

Homomorphism, where |V (G′)| ≤ n + s and |V (H ′)| ≤ s for s < 25h2, such that there is a list
homomorphism from G to H if and only if there is a homomorphism from G′ to H ′.

We are ready to prove our main theorem about graph homomorphisms.

Theorem 1. Let G be an n-vertex graph G and H be an h(n)-vertex graph. Unless ETH fails, for
any constant D ≥ 1 there exists a constant c = c(D) > 0 such that for any function 3 ≤ h(n) ≤ nD,
there is no time O (hcn) algorithm deciding whether there is a homomorphism from G to H.

Proof. The outline of the proof of the theorem is as follows. Assuming that there is a “fast”
algorithm for Graph Homomorphism, we show that there is also a “fast” algorithm solving List

Graph Homomorphism, which, in turn, implies “fast” algorithm for 3-Coloring on degree 4
graphs, contradicting ETH. In what follows, we specify what we mean by “fast”.

Let h0 = 252. If h(n) < h0 for all values of n, then an algorithm with running time O (hcn) would
solve 3-Coloring in time O (hcn0) = O

(

2cn log h0
)

(recall that h(n) ≥ 3). Therefore, by choosing a
small enough constant c such that c log h0 < q, we arrive to a contradiction with Lemma 1.

From now on we assume that h(n) ≥ h0 for large enough values of n. Let c = q
8D log γ , where

q is the constant from Lemma 1, and γ := γ(4) is the constant from Lemma 4. For the sake of
contradiction, let us assume that there exists an algorithm A deciding whether G → H in time
O(hcn) = O(2cn logh), where |V (G)| = n, |V (H)| = h := h(n). Now we show how to solve 3-coloring
on n′-vertex graphs of degree 4 in time 2qn

′

, which would contradict Lemma 1.
Let r = log h

4D log γ and n′ = nr
2 . Let G′ be an n′-vertex graph of maximum degree four that needs to

be 3-colored. Using Lemma 4 we construct an instance (G1,H1) of List Graph Homomorphism

that is satisfiable if and only if the initial graph G′ is 3-colorable, and |V (G1)| ≤ n′

r
, |V (H1)| ≤ γr.

By Lemma 5, this instance is equisatisfiable to an instance (G,H) of Graph Homomorphism

where |V (H)| < 25γ2r ≤ 25h
1

2D ≤ h (since D ≥ 1 and h(n) ≥ h0), and

|V (G)| < n′

r
+ 25γ2r ≤ n

2
+ 25h

1
2D ≤ n

2
+ 25

√
n ≤ n

(for sufficiently large values of n).
Now, in order to solve 3-coloring for G′, we construct an instance (G,H) with |V (G)| ≤ n and

|V (H)| ≤ h of Graph Homomorphism and invoke the algorithm A on this instance. The running
time of A is

O(2cn log h) = O(2
2cn′

r
log h) = O(22cn

′ log h· 4D log γ
logh) = O(28cDn′ log γ) = O(2qn

′

)

and hence we can find a 3-coloring of G′ in time O(2qn
′

), which contradicts ETH.

8

4.2 Subgraph Isomorphism

To prove the theorem about subgraph isomorphisms, we need the following theorem of Cygan,
Pachocki, and Soca la (Theorem 1.3 in [5]).

Theorem 2. Given an instance (G,H) of Graph Homomorphism one can in poly(n)2n time
create 2n instances of Subgraph Isomorphism with n vertices, where n = |V (G)|+ |V (H)|, such
that (G,H) is a yes-instance if and only if at least one of the created instances of Subgraph

Isomorphism is a yes-instance.

Combining Theorem 1 with Theorem 2, we immediately obtain the following theorem.

Theorem 3. Unless ETH fails, there exists a constant c > 0 such that there is no algorithm deciding
whether a given n-vertex graph G contains a subgraph isomorphic to a given n-vertex graph H in
time O (ncn).

References

[1] Omid Amini, Fedor V. Fomin, and Saket Saurabh. Counting subgraphs via homomorphisms.
SIAM J. Discrete Math., 26(2):695–717, 2012.

[2] Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion–
exclusion. SIAM J. Computing, 39(2):546–563, 2009.

[3] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds
via parameterized complexity. J. Computer and System Sciences, 72(8):1346–1367, 2006.

[4] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Dániel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Micha l Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[5] Marek Cygan, Jakub Pachocki, and Arkadiusz Soca la. The hardness of subgraph isomorphism.
arXiv:1504.02876, 2015.

[6] Fedor V. Fomin. Problem 6.6. Algorithm for Subgraph Isomorphism. In Thore Husfeldt,
Ramamohan Paturi, Gregory Sorkin, and Ryan Williams, editors, Exponential Algorithms:
Algorithms and Complexity Beyond Polynomial Time. Dagstuhl Seminar 13331 Final Report.
Dagstuhl, 2013.

[7] Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, and Ivan Mihajlin. Lower bounds
for the graph homomorphism problem. In Proceedings of the 42th International Colloquium of
Automata, Languages and Programming (ICALP), volume 9134 of Lecture Notes in Comput.
Sci., pages 481–493. Springer, 2015.

[8] Fedor V. Fomin, Pinar Heggernes, and Dieter Kratsch. Exact algorithms for graph homomor-
phisms. Theory of Computing Systems, 41(2):381–393, 2007.

[9] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.

[10] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

9

[11] Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms, volume 28 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2004.

[12] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity. J. Computer and System Sciences, 63(4):512–530, 2001.

[13] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential
time hypothesis. Bulletin of EATCS, 3(105), 2013.

[14] László Lovász. Large networks and graph limits, volume 60. American Mathematical Soc.,
2012.

[15] Pawe l Rzażewski. Exact algorithm for graph homomorphism and locally injective graph ho-
momorphism. Inf. Process. Lett., 114(7):387–391, 2014.

[16] Magnus Wahlström. Problem 5.21. Time complexity of graph homomorphism. In Ramamo-
han Paturi Thore Husfeldt, Dieter Kratsch and Gregory Sorkin, editors, Exact Complexity of
NP-Hard Problems. Dagstuhl Seminar 10441 Final Report. Dagstuhl, 2010.

[17] Magnus Wahlström. New plain-exponential time classes for graph homomorphism. Theory of
Computing Systems, 49(2):273–282, 2011.

10

	1 Introduction
	2 Preliminaries
	2.1 Main Definitions
	2.2 Homomorphism and Subgraph Isomorphism
	2.3 Exponential Time Hypothesis

	3 Auxiliary Lemmata
	3.1 Balanced Colorings

	4 Main Theorems
	4.1 Graph Homomorphism
	4.2 Subgraph Isomorphism

