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In 1998, Molloy and Reed showed that, under suitable 
conditions, if a sequence dn of degree sequences converges to 
a probability distribution D, then the proportion of vertices 
in the largest component of the random graph associated to 
dn is asymptotically ρ(D), where ρ(D) is a constant defined 
by the solution to certain equations that can be interpreted 
as the survival probability of a branching process associated 
to D. There have been a number of papers strengthening this 
result in various ways; here we prove a strong form of the 
result (with exponential bounds on the probability of large 
deviations) under minimal conditions.

© 2015 Published by Elsevier Inc.

1. Introduction and results

By a degree sequence d we mean a finite sequence (d1, . . . , dn) of non-negative integers 
with even sum. The length |d| of d = (di)ni=1 is the number n of terms, and the size
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m(d) = 1
2
∑

i di is half the sum of the terms. We write Gd for the random (simple) 
graph with degree sequence d, i.e., a graph with vertex set [n] = {1, 2, . . . , n} in which 
each vertex i has degree di, chosen uniformly at random from the set of all such graphs 
(assuming this set is non-empty). As usual, in studying Gd we also consider the corre-
sponding random configuration multigraph G∗

d, introduced in [2], obtained by associating 
a set of di stubs to each vertex i, selecting a uniformly random pairing of the (disjoint) 
union of these sets, and interpreting each paired pair of stubs as leading to an edge in 
the natural way. Note that these graphs have |d| vertices and m(d) edges.

Let D denote the set of probability distributions D on the non-negative integers 
with 0 < E(D) < ∞. We usually write D ∈ D as D = (r0, r1, . . .), where, abusing 
notation by also writing D for a random variable with distribution D, ri = P(D = i). 
One of the basic questions concerning the random graph models just described is the 
following: under what conditions does convergence of dn to D imply that the asymptotic 
behaviour of Gdn

(or G∗
dn

) is captured by D? Here the behaviour we are interested in is 
the distribution of the component sizes, and most particularly the number L1 of vertices 
in the (a if there is a tie) largest component.

Let

ni(d) =
∣∣{j : dj = i}

∣∣
denote the number of times a particular degree i occurs in d, so

m(d) = 1
2

|d|∑
j=1

dj = 1
2

∞∑
i=0

ini(d).

The basic assumptions made in all existing results of this type are that

lim
n→∞

ni(dn)
|dn|

= ri (1)

for each i, that

m(dn)
|dn|

→ E(D)
2 = 1

2

∞∑
i=0

ir i (2)

as n → ∞, and of course that |dn| → ∞. (Often, one takes |dn| = n, which loses no 
generality.) We shall say that dn converges to D, and write dn → D, if these conditions 
hold.

Condition (1) ensures that D captures the asymptotic proportion of vertices of each 
fixed degree, and condition (2) that the (rescaled) number of edges is related to D in the 
natural way. Note that if we write Dn for the distribution of a randomly chosen element 
of dn (i.e., the degree of a random vertex of Gdn

), then (1) asserts that Dn converges to 



238 B. Bollobás, O. Riordan / J. Combin. Theory Ser. B 113 (2015) 236–260
D in distribution. Condition (2) asserts that E(Dn) → E(D) < ∞, which (given (1)) is 
equivalent to uniform integrability of the Dn.

To see why (2) is necessary, consider dn consisting of one vertex of degree n − 1 and 
n − 1 of degree 1, contrasted (for n even) with d′

n in which all n degrees are equal to 1. 
In both cases (1) holds with r1 = 1 and all other ri = 0, but the component structures 
of Gdn

and Gd′
n

are very different – one is a star, and the other a matching. (There is a 
similar but less extreme difference between G∗

dn
and G∗

d′
n
.)

As usual, we write Li(G) for the number of vertices in the ith largest component of a 
graph G. We also write Nk(G) for the number of vertices in k-vertex components. The 
next result involves constants ρk(D) and ρ(D) whose definitions we postpone to Section 2
(see (12)). In fact, ρ(D) is the same as the quantity εD appearing in [12], although our 
definition of it is different. We write 

p→ to denote convergence in probability.

Theorem 1. Let D be a probability distribution on the non-negative integers with 0 <
E(D) < ∞, and let dn be a sequence of degree sequences converging to D in the sense 
that (1) and (2) hold and |dn| → ∞. Then

Nk(Gdn
)/|dn|

p→ ρk(D)

for each fixed k. If P(D � 3) > 0, then we also have

L1(Gdn
)/|dn|

p→ ρ(D)

and L2(Gdn
)/|dn| 

p→ 0.
Furthermore, the same conclusions hold with Gdn

replaced by G∗
dn

.

The first result of this type was proved by Molloy and Reed [12], building on their 
work in [11]. This result required additional conditions: taking |dn| = n, they assumed 
in particular that the maximum degree in dn is o(n1/4−ε) for some ε > 0. Note that (2)
implies only that the maximum degree is o(n): adding a single vertex with degree (ap-
proximately) n/ log logn, say, does not affect convergence in our sense.

The results of [12] have been strengthened in a number of ways. One main direction 
is to improve, or even study the distribution of, the error term in the result L1 =
ρ(D)n + op(n), sometimes imposing extra assumptions; see Kang and Seierstad [10], 
Pittel [13], Janson and Luczak [9], Riordan [15] and Hatami and Molloy [7], for example. 
In the other direction, one can ask for the same conclusion but with less restrictive 
assumptions; here Janson and Luczak [9] prove a version of Theorem 1 with the condition 
that the sum of the squares of the degrees is at most a constant times the number of 
vertices. They also prove the (easier) multigraph part of Theorem 1 under exactly our 
conditions (see their Remark 2.6), but using a very different method.

We shall in fact prove a much stronger form of Theorem 1, Theorem 2 below; the reason 
for postponing the statement is that it is a little more awkward: instead of convergence, 
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we need to work with neighbourhoods. Given D ∈ D and a degree sequence d, writing 
ri = P(D = i) as usual, set

d0
conf(d, D) =

∞∑
i=1

∣∣∣∣ini(d)
|d| − ir i

∣∣∣∣ , (3)

so d0
conf is a form of the �1 metric, and define the configuration distance between d and 

D to be

dconf(d, D) = max{d0
conf(d, D), 1/|d|}. (4)

The 1/|d| term in (4) ensures that dconf(d, D) → 0 if and only if d0
conf(d, D) → 0 and 

|d| → ∞, and avoids having to write ‘and |d| � n0’ in many results below; this is a 
convenience rather than an essential part of the definition.

It is easy to check that, for D ∈ D,

dn → D ⇐⇒ dconf(dn, D) → 0. (5)

Indeed, if dconf(dn, D) → 0, then certainly |dn| → ∞. Also, d0
conf(dn, D) → 0, which 

trivially implies (1), and implies (2) by the triangle inequality. Conversely, suppose that 
dn → D, and let ε > 0. Since 

∑
i ir i = E(D) < ∞, there is some C = C(ε) such that ∑

i<C ir i � E(D) − ε, and so

∑
i�C

ir i � ε. (6)

For n large enough, (1) gives

|ini(dn)/|dn| − ir i| < ε/C (7)

for all i < C. Hence

∑
i<C

ini(dn)/|dn| �
∑
i<C

ir i − ε � E(D) − 2ε.

Using (2) it follows that 
∑

i�C ini(dn)/|dn| � 3ε if n is large. This, (6) and (7) imply 
that d0

conf(dn, D) � 5ε. Since dn → D implies |dn| → ∞ by definition, and ε was 
arbitrary, it follows that dconf(dn, D) → 0.

Let us state for future reference a consequence of the argument just given: if dn → D

then

∀ε > 0 ∃C ∀n
∑

ini(dn) � ε|dn|. (8)

i�C
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Writing dn = (d(n)
1 , . . . , d(n)

�n
), (8) can be written as

∀ε > 0 ∃C ∀n
∑

j : d(n)
j �C

d
(n)
j � ε|dn|.

Informally, this condition says that a random edge has only a small probability of being 
attached to a vertex of very high degree. A rather trivial consequence of (8) is that, 
writing Δ(d) for the maximum degree appearing in a degree sequence d, if dn → D then 
Δ(dn) = o(|dn|). In terms of the metric, the equivalent of (8) is the observation that

∀D ∈ D, ε > 0 ∃C, δ : dconf(d, D) < δ =⇒
∑
i�C

ini(d) � ε|d|. (9)

To see this, simply choose C such that 
∑

i�C iP(D = i) < ε/2, and take δ = ε/2.

Theorem 2. Let D ∈ D, and let ε > 0. For each k � 1 there exists δ > 0 (depending on 
D, ε and k) such that if dconf(d, D) < δ, then

P
(
|Nk(Gd) − ρk(D)n| � εn

)
� e−δn, (10)

where n = |d|. Moreover, if P(D � 3) > 0, then there exists δ > 0 (depending on D
and ε) such that if dconf(d, D) < δ then

P

(∣∣L1(Gd) − ρ(D)n
∣∣ � εn

)
� e−δn

and

P
(
L2(Gd) � εn

)
� e−δn.

Furthermore, the same conclusions hold if Gd is replaced by G∗
d.

Using (5), it is easy to check that Theorem 2 does indeed strengthen Theorem 1. The 
main reason for proving the stronger bounds in Theorem 2 is that we need them for 
the configuration multigraph model G∗

d in order to prove even Theorem 1 for the simple 
random graph Gd. Of course, they are also nice to have!

Remark 3. The condition P(D � 3) > 0 in Theorems 1 and 2 is necessary for the 
conclusions; see Janson and Luczak [9, Remark 2.7] for a discussion of the range of 
possible behaviours when P(D = 2) = 1 (or D is supported on {0, 2}).

The basic idea of the proof of Theorem 1 is to use a (relatively) old method. The 
first ingredient is to understand the local structure of G∗

d; this is very simple and can be 
expressed in a number of ways, most cleanly by comparison with a branching process. 
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This allows us to control the number of vertices in small components. Then we use a 
version of the original sprinkling argument of Erdős and Rényi [4] to show that almost 
all vertices in ‘large’ components are in a single giant component. Of course, sprinkling 
is more complicated in the present model than in the original context. Also, to obtain 
exponential error bounds we need a strong form of the branching process approxima-
tion, which introduces some additional complications. We shall show in Section 6 that 
this approximation carries over to the giant component: the number of vertices in the 
giant component with some ‘local’ property can be calculated in terms of the branching 
process.

Turning to the nitty-gritty, in the rest of the paper we use the following standard 
asymptotic notation: given a sequence En of events, we say that En holds with high 
probability or whp if P(En) → 1 as n → ∞. Given functions f and g of some parameter 
(usually n), f = O(g) means f is bounded by a constant times g, and f = o(g) means 
that f/g → 0 as the parameter (n) tends to infinity.

Finally, before turning to the proofs, let us fix our formal notation for the configuration 
model: given a degree sequence d of length �, we take disjoint sets F1, . . . , F� with 
|Fi| = di, where Fi represents the ‘stubs’ associated to vertex i. Then we take a pairing 
(partition into 2-elements sets) π of F =

⋃�
i=1 Fi chosen uniformly at random, and set 

G∗
d = φd(π), where φd maps a pairing π to a multi-graph on [�] = {1, 2, . . . , �} by 

replacing each pair {a, b} by an edge joining vertices i and j where a ∈ Fi and b ∈ Fj , 
noting that i = j is possible, in which case the edge is a loop.

2. Local approximation by a branching process

Let D = (r0, r1, . . .) ∈ D, so D is a probability distribution on the non-negative 
integers with 0 < E(D) < ∞, and ri = P(D = i). For i � 1 let

qi = ir i∑
i ir i

= ir i
E(D) .

The distribution D∗ with P(D∗ = i) = qi is known as the size-biased distribution as-
sociated to D. In any graph G, if we pick a random edge and then choose one of its 
endvertices v at random, the distribution of the degree of v is the size-biased version of 
the degree distribution of G. Let ZD = D∗ − 1, so

P(ZD = i) = P(D∗ = i + 1) = (i + 1)ri+1

E(D) = (i + 1)P(D = i + 1)
E(D) . (11)

Intuitively, ZD will correspond to the number of ‘new’ edges we get to when we follow a 
random edge to an endvertex.

Let T 1 = T 1
D be the Galton–Watson branching process with offspring distribution 

ZD, so T 1 is a random rooted tree in which the number of children of each vertex has 
distribution ZD, with these numbers independent. Finally, let T = TD be the random 
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rooted tree in which the degree of the root has the distribution D, and, given the degree 
of the root, the branches, i.e., the subtrees rooted at the children of the root, form 
independent copies of T 1.

It is not hard to see that if dn → D, then G∗
dn

‘locally looks like’ TD; we shall make 
this precise in a moment. Let |TD| � ∞ denote the total number of vertices of TD. Then 
the constants ρk and ρ appearing in Theorems 1 and 2 are

ρk(D) = P(|TD| = k) and ρ(D) = P(|TD| = ∞). (12)

Given a graph G, for v ∈ V (G) and t � 0, let Γ�t(v) = ΓG
�t(v) denote the subgraph 

of G induced by the vertices within (graph) distance t of v, regarded as a rooted graph 
with root v. Also, let TD|t be the subtree of TD induced by the vertices within distance 
t of the root. The following lemma is a variant of an idea that is by now very much 
standard, though perhaps not in exactly this form.

Lemma 4. Let D ∈ D and suppose that dn → D. Let v be a vertex of G = G∗
dn

chosen 
uniformly at random. Then we may couple the random graphs ΓG

�t(v) and TD|t so that 
they are isomorphic as rooted graphs with probability 1 − o(1) as n → ∞.

Proof. As the argument is straightforward and standard we give only an outline. The idea 
is to reveal Γ�t(v) step-by-step in the natural way, coupling this process with revealing 
TD|t step-by-step so that for any fixed j, the probability of the coupling failing at step j
is o(1). Since, given any ε, there is some constant J such that with probability at least 
1 − ε the finite tree TD|t has size at most J , this suffices to prove the lemma.

To reveal Γ�t(v), first pick the random vertex v, noting that by condition (1) of the 
convergence dn → D, the degree of v can be coupled to agree with the degree of the root 
of TD with probability 1 − o(1). Then go through the stubs associated to v one-by-one, 
revealing their partners, and thus the neighbours of v (as well as any loops at v). Then 
reveal the partners of the unpaired stubs associated to the neighbours of v, and so on. The 
key fact is that the jth time we reveal the partner of an unpaired stub, the probability 
that this is a ‘new’ (not so far reached in the exploration) vertex of degree i is exactly

i(ni(dn) − ui,j)
2m(dn) + 1 − 2j ,

where ui,j is the number of degree-i vertices revealed so far. For any fixed j, since 
ui,j � j = O(1), this probability is qi + o(1). Since qi is the probability that a vertex 
of TD other than the root has degree i (and hence i − 1 children), it follows that the 
coupling succeeds at step j with probability 1 − o(1), as required. �
Corollary 5. Let D ∈ D, suppose that dn → D, and let t � 1 be constant. Let v be a 
vertex of G = G∗

dn
chosen uniformly at random. Then whp the neighbourhood Γ�t(v) of 

v in G is a tree. �
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Note that in many related situations, the equivalent of Corollary 5 is proved by consid-
ering the expected number of paths of length k ending in a vertex on a cycle of length �, 
showing that this expectation is o(n) for k and � fixed. However, this requires some con-
dition such as 

∑
i d

2
i = n1+o(1), which need not hold here – it may be that G∗

d contains 
many (more than n) short cycles, but these are all concentrated in the neighbourhoods 
of the few vertices with largest degrees, so most vertices are far from them.

Let P be a property of (locally finite) rooted graphs, i.e., a set of rooted graphs 
closed under isomorphism. Often we think of P as a property of vertices v of unrooted 
graphs G, by taking v as the root; in either case we write (G, v) ∈ P to mean that the 
graph G rooted at v has property P. We write NP(G) for the number of vertices of G
with property P. Given t � 1, we say that P is t-local if whether (G, v) has P depends 
only on the rooted graph ΓG

�t(v). We call P local if it is t-local for some t. Note that 
it makes sense to speak of our branching process TD having property P, since TD is a 
rooted tree. If P is t-local, then whether TD has P depends only on TD|t.

Lemma 4 immediately implies the following result, of which Corollary 5 is a special 
case.

Corollary 6. Let P be a local property of rooted graphs, let D ∈ D, suppose that dn → D, 
and let v be a vertex of G∗

dn
chosen uniformly at random. Then

P
(
(G∗

dn
, v) ∈ P

)
→ P(TD ∈ P)

as n → ∞. Equivalently, E(NP(G∗
dn

)) = P(TD ∈ P)|dn| + o(|dn|). �
When we come to concentration, it will be convenient to work with a restatement of 

this last corollary.

Corollary 7. Let P be a local property of rooted graphs, and let D ∈ D and ε > 0 be 
given. Then there exists δ > 0 such that if dconf(d, D) < δ then

∣∣E(NP(G∗
d)) − P(TD ∈ P)n

∣∣ � εn, (13)

where n = |d|.

Proof. Suppose not. Then for each n there is a degree sequence dn with dconf(dn, D) �
1/n for which (13) fails. Recalling (5), applying Corollary 6 to (dn)∞n=1 gives a contra-
diction. �

The key property to which we shall apply this result is the property Pk that the 
component of the root contains exactly k vertices. Note that in this case

NPk
(G) = Nk(G) and P(TD ∈ Pk) = ρk(D). (14)
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We can easily use the second moment method (exploring from two random vertices v
and w) to prove that NP(G∗

d) is concentrated in the sense that NP(G∗
dn

)/n converges in 
probability when dn → D with |dn| = n. Instead we use the Hoeffding–Azuma inequality 
to prove a stronger result.

Two configurations (pairings) π1 and π2 are related by a switching if π2 can be obtained 
from π1 by deleting two pairs {a, b} and {c, d} and inserting the pairs {a, c} and {b, d}. 
A function f defined on pairings of some fixed set is C-Lipschitz if |f(π1) − f(π2)| � C

whenever π1 and π2 are related by a switching. We shall use the following standard 
simple lemma.

Lemma 8. Let S be a set with size 2m, and let f be a C-Lipschitz function of pairings 
of S. If π is chosen uniformly at random from all pairings of S, then for any t � 0 we 
have

P

(∣∣f(π) − E(f(π))
∣∣ � t

)
� 2 exp(−t2/(4C2m)).

Proof. Let S = {s1, . . . , s2m}. Let us condition on the partners of s1, . . . , si, writing Ω′

for the set of all pairings consistent with the information revealed so far. Now consider 
si+1. It may be that its partner is determined, since it is paired to one of s1, . . . , si. If 
not, for any possible partner b let Ω′

b be the subset of Ω′ containing all pairings in which 
si+1 is paired with b. For distinct possible partners b and c, there is a bijection between 
Ω′

b and Ω′
c in which each π1 ∈ Ω′

b is related to its image π2 by a switching: we simply 
switch the pairs {si+1, b} and {c, d} for {si+1, c} and {b, d}, where d is the partner of c
in π1 (and hence of b in π2).

Write Fi for the (finite) sigma-field generated by the random variables listing the 
partners of s1, . . . , si. The bijection just given and the Lipschitz property of f easily imply 
that E(f(π) | Fi+1) is always within C of E(f(π) | Fi). Thus the sequence (Xi)2mi=0 with 
Xi = E(f(π) | Fi) is a martingale with differences bounded by C. The result now follows 
from the Hoeffding–Azuma inequality, noting that X0 = E(f(π)) and X2m = f(π). �

Since Nk(G) changes by at most 2k when an edge is added to or deleted from a 
multigraph G, and a switching corresponds to deleting two edges and adding two edges, 
Nk(G∗

d) is 8k-Lipschitz as a function of the pairing used to generate G∗
d. (In fact, it is 

4k-Lipschitz.) Thus Lemma 8 implies concentration of Nk(G∗
d) = NPk

(G∗
d). Later we 

shall consider more general properties than Pk, and then we must work harder to obtain 
concentration results – in general for a local property P, there is no constant C = C(P)
such that NP(G) is C-Lipschitz. So we need to modify our properties slightly, to ‘avoid 
high-degree vertices’.

For Δ � 2 and t � 0, let MΔ,t be the property that every vertex within graph distance 
t of the root has degree at most Δ. Note that MΔ,t is (t + 1)-local.



B. Bollobás, O. Riordan / J. Combin. Theory Ser. B 113 (2015) 236–260 245
Lemma 9. Let P be a t-local property, and let Q = P ∩MΔ,t. Then the number NQ(G)
of vertices of a multigraph G with property Q changes by at most 4Δt if a single edge is 
added to or deleted from G. Furthermore, NQ(G) is 16Δt-Lipschitz.

Proof. The effect of a switching on the corresponding configuration multigraph is to 
delete two edges and then add two edges (perhaps between the same vertices). Thus it 
suffices to prove the first statement.

Let v be a vertex of G such that one of (G, v) and (G + e, v) has property Q but the 
other does not. Note that since MΔ,t is monotone decreasing, (G, v) ∈ MΔ,t. If e = xy, 
then the graph distance from v to {x, y} is the same in G and in G + e. Clearly, this 
distance is at most t; otherwise the presence of e would not affect the property Q. Hence, 
in G, at least one endpoint of e is within distance t of v, so v is joined to an endpoint 
of e by a path in G of length at most t in which (since (G, v) ∈ MΔ,t) each vertex has 
degree at most Δ. Each endpoint of e is the end of at most (1 + Δ + · · · + Δt) � 2Δt

such paths, so there can be at most 4Δt vertices v with the claimed property. �
The next lemma shows that provided we choose Δ large enough, there is no harm in 

considering only vertices whose local neighbourhoods contain only vertices with degree 
at most Δ.

Lemma 10. Let D ∈ D, t � 0 and ε > 0 be given. Then there exist δ > 0 and an integer 
Δ such that

P(TD has MΔ,t) � 1 − ε/10

and

P
(
NMΔ,t

(G∗
d) � n− εn/2

)
� e−δn (15)

whenever dconf(d, D) < δ, where n = |d|.

Thus for any given t and ε there is a Δ such that with very high probability, for 
dconf(d, D) small enough, at most εn/2 vertices of G∗

d are within distance t of a vertex 
with degree larger than Δ.

Proof of Lemma 10. The first statement is immediate from the fact that the random 
variable M giving the maximum degree of any vertex of TD within distance t of the root 
is always finite, so there is some Δ such that P(M > Δ) < ε/10. Corollary 7 implies that, 
if δ is small enough, then dconf(d, D) < δ implies that N = NMΔ,t

(G∗
d) has expectation 

within εn/10 of nP(TD ∈ MΔ,t), so E(N) � n − εn/5. By Lemma 9, applied with P the 
‘trivial’ t-local property that always holds, as a function of the pairing used to generate 
G∗

d, the quantity N is C-Lipschitz for some C. Now (15) follows by Lemma 8. �
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We are now in a position to establish concentration of the number of vertices whose 
neighbourhoods have some local property.

Theorem 11. Let P be a local property of rooted graphs, let D ∈ D and let ε > 0. There 
is some δ > 0 such that if dconf(d, D) < δ then

P

(∣∣NP(G∗
d) − nP(TD ∈ P)

∣∣ � εn
)

� e−δn, (16)

where n = |d|.

Proof. Let D ∈ D, ε > 0 and a t-local property P be given, and let Δ be as in Lemma 10. 
Let us say that an event holds with very high probability or wvhp if for some constant 
δ > 0 it has probability at least 1 − e−δn whenever dconf(d, D) < δ. So in particular, 
Lemma 10 tells us that wvhp all but at most εn/2 vertices of G = G∗

d have property 
M = MΔ,t.

Let N = NP(G) be the number of vertices with property P, let B = n −NM(G) be 
the number of ‘bad’ vertices, i.e., ones not having property M, and let N ′ = NP∩M be 
the number of ‘good’ vertices with property P. Then, wvhp,

|N −N ′| � B � εn/2.

By the first part of Lemma 10, we have

|P(TD ∈ P) − P(TD ∈ P ∩M)| � P(TD /∈ M) � ε/10.

By Lemma 9, N ′ is C-switching Lipschitz for some constant C, so by Corollary 7 and 
Lemma 8, we have that wvhp

|N ′ − nP(TD ∈ P ∩M)| � εn/10,

say. The last three displayed equations and the triangle inequality establish (16). �
Corollary 12. Let D ∈ D, and let k � 1 and ε > 0 be given. Then there exists δ > 0 such 
that if dconf(d, D) < δ then

P

(∣∣Nk − ρkn
∣∣ � εn

)
� e−δn (17)

where n = |d|, Nk = Nk(G∗
d) and ρk = P(|TD| = k).

Proof. Recall (14) and apply Theorem 11 to the property Pk. �
This corollary proves the first statement (10) of Theorem 2, and hence the correspond-

ing statement in Theorem 1. One can obtain an explicit constant in the exponential error 
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probability in (17) by using that Nk is 4k-Lipschitz, but there does not seem to be much 
point.

To conclude this section, we note that, as usual, summing over k′ < k and subtracting 
from n, bounds on Nk with k fixed give bounds on N�k as well, where N�k(G) denotes 
the number of vertices of a graph G in components of order at least k.

Lemma 13. Let D ∈ D, ε > 0 and K be given. There exist k � K and δ > 0 such that if 
dconf(d, D) < δ then

P

(∣∣N�k − ρ(D)n
∣∣ � εn

)
� e−δn, (18)

where n = |d|, N�k = N�k(G∗
d) and ρ(D) = P(TD is infinite).

Proof. Since 
∑

k ρk(D) = P(|TD| < ∞) = 1 − ρ(D), there is some k � K such that ∑k−1
k′=1 ρk′ is within ε/2 of 1 − ρ(D). The result follows by applying Lemma 12 for each 

k′ � k − 1, with ε/(2k) in place of ε. �
As usual, the result for k fixed extends to the case when k → ∞ slowly, showing, 

roughly speaking, that the probability that the branching process TD is infinite gives the 
asymptotic proportion of vertices in ‘large’ components.

3. The survival probability ρ(D)

In this brief section we discuss the behaviour of the survival probability ρ(D) of the 
branching process TD. The result below is needed in the next section, but also helps to 
interpret Theorems 1 and 2.

Recall that from generation 1 onwards, TD behaves like the Galton–Watson branching 
process T 1

D with offspring distribution ZD defined by (11), and that TD simply consists 
of a random number N of copies of T 1

D, with N having the distribution D.

Theorem 14. Let D be any distribution on the non-negative integers with P(D � 3) > 0
and E(D) < ∞. Then ρ(D) > 0 if and only if E(D(D − 2)) > 0. Furthermore, writing 
x+ for the largest solution in [0, 1] to

x = 1 −
∞∑
i=1

ir i
E(D) (1 − x)i−1, (19)

where ri = P(D = i), we have

ρ(D) = 1 −
∞∑
i=0

ri(1 − x+)i. (20)

Finally, suppose that D1, D2, . . . are distributions on the non-negative integers such 
that Dn → D in distribution and E(Dn) → E(D). Then ρ(Dn) → ρ(D) as n → ∞.
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Proof. Standard results on Galton–Watson processes tell us that the survival probability 
of T 1

D is equal to x+, the largest solution in [0, 1] to (19). Furthermore, since P(D � 3) > 0
rules out the trivial case P(ZD = 1) = 1, we have x+ > 0 if and only if E(ZD) > 1. 
Conditioning on the number N of children of the root of TD gives (20) as an immediate 
consequence, and shows that ρ(D) > 0 if and only if x+ > 0, i.e., if and only if E(ZD) > 1. 
Since E(ZD) =

∑
i(i −1)P(ZD = i −1) =

∑
i i(i −1)ri/ 

∑
i iri, this condition is equivalent 

to 
∑

i i(i − 2)ri > 0.
For the last part, define ZDn

from Dn as in (11), i.e., by size-biasing and then sub-
tracting 1. Since P(Dn = i) → ri and E(Dn) → E(D), we have P(ZDn

= i) → P(ZD = i). 
Standard branching process results then imply that the survival probability of T 1

Dn
con-

verges to that of T 1
D. Using (20), it follows easily that ρ(Dn) → ρ(D). �

Remark 15. The formulae above coincide (as they must) with those given by Molloy and 
Reed [12] – one can check that x+ is equal to 1 −

√
1 − 2αD/K in their notation. They 

did not use the branching process interpretation, however. In the notation of Janson and 
Luczak [9], x+ is 1 − ξ, and ρ(D) is 1 − g(ξ).

4. Colouring and sprinkling

Our next task is to use ‘sprinkling’ to show that whp almost all vertices in ‘large’ 
components are in a single ‘giant’ component. In the original context of the random 
graphs G(n, p) and G(n, m), sprinkling is very simple to implement – first include each 
edge independently with probability p1, then ‘sprinkle’ in extra edges by including each 
edge not already present independently with probability p2, where p1 +p2−p1p2 = p. In 
the context of the configuration model, there is no very simple analogue of this. Instead, 
we will ‘thin’ the random graph G∗

d, and then put back the deleted edges.
Given 0 < p < 1, let G′ = G∗

d[p] denote the random subgraph of G = G∗
d obtained 

by retaining each edge independently with probability p, and let G′′ be the multigraph 
formed by the deleted edges, so V (G′′) = V (G′) = V (G) and E(G) is the disjoint union 
of E(G′) and E(G′′). Let d′ be the (random, of course) degree sequence of G′, and d′′

that of G′′, so d′i + d′′i = di for each vertex i ∈ V (G). The following simple observation 
is a key ingredient of the sprinkling argument.

Lemma 16. For any d and any 0 < p < 1, the random graphs G′ and G′′ are conditionally 
independent given d′, having the distributions of G∗

d′ and G∗
d′′ respectively.

Proof. This is essentially immediate from the definition of the configuration model: recall 
that G is defined from a pairing π of a set of 2m(d) stubs. Given this pairing, colour 
each pair red with probability p and blue otherwise, independently of the others. Then 
we may take G′ to be given by the red pairs and G′′ by the blue pairs. Clearly, given 
the set of stubs in red pairs (which determines d′ and thus d′′), the pairing of these red 
stubs is uniformly random, and similarly for the blue stubs. �
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Our next aim is to extend the coupling result Theorem 11 to the pair (G′, G′′). First we 
need some definitions. We shall work with 2-coloured multigraphs (rather than coloured 
pairings as above). Given a degree sequence d and 0 < p < 1, let G∗

d{p} denote the 
random coloured graph obtained by constructing G∗

d and then colouring the edges in-
dependently, each red with probability p and blue otherwise. Thus G′ = G∗

d[p] may be 
viewed as the red subgraph of G∗

d{p}. Similarly, let TD{p} be the random coloured rooted 
tree obtained from TD by colouring each edge red with probability p and blue otherwise, 
independently of the others.

Given a probability distribution D on the non-negative integers, and 0 < p < 1, let 
Dp be the p-thinned version of D, which may be defined by taking a random set X of 
size D and selecting elements of X independently with probability p. Then Dp is the 
(overall) distribution of the number of selected elements. To spell this out, and for later 
reference, writing ri = P(D = i) as usual, for 0 � i � j let

rij = rj

(
j

i

)
pi(1 − p)j−i, (21)

and let

r′i =
∑
j�i

rij . (22)

Then

P(Dp = i) = r′i. (23)

It is a simple exercise in basic probability to check that the operations of (i) p-thinning 
and (ii) size-biasing and then subtracting 1 commute. A simple consequence of this is 
that the component of the red subgraph of TD{p} containing the root has the same 
distribution as TDp

.
The next result concerns ‘local properties of coloured rooted graphs’, which are defined 

in the obvious way.

Theorem 17. Let P be a local property of coloured rooted graphs, let D ∈ D, let ε > 0
and let 0 < p < 1. There is some δ > 0 such that if dconf(d, D) < δ then

P

(∣∣NP(G∗
d{p}) − nP(TD{p} ∈ P)

∣∣ � εn
)

� e−δn, (24)

where n = |d|. Furthermore, if Q is a local property of rooted graphs, then there is some 
δ > 0 such that if dconf(d, D) < δ then

P

(∣∣NQ(G∗
d[p]) − nP(TDp

∈ Q)
∣∣ � εn

)
� e−δn. (25)
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Proof. From the remarks above, it suffices to prove the first statement, (24). Then (25)
may be deduced by applying (24) to the local property P that the component of the red 
graph containing the root has property Q. We give only an outline proof of (24), since 
the argument is a simple modification of that of Theorem 11.

Firstly, the coloured analogue of Lemma 4 follows from Lemma 4: when the coupling 
as uncoloured graphs succeeds, we may apply the same (random) colouring to Γ�t(v)
as to TD|t. Arguing as before, we deduce the coloured analogue of Corollary 7. Now 
NP(G∗

d{p}) depends not only on the configuration, but also on the colouring. However, 
passing to a property Q = P ∩ MΔ,t as in the proof of Theorem 17, by a variant of 
Lemma 9 we see that NQ changes by at most a constant (a) under a switching and (b) 
under changing the colour of a single edge. Now we can apply the Hoeffding–Azuma 
inequality to a martingale with 2m steps for the switchings and m for the colour choices, 
where m = m(d) is the number of edges of G∗

d, to deduce concentration of NP(G∗
d{p})

and complete the proof. �
Recall that ni = ni(d) is the number of vertices with degree i in G = G∗

d. Let n′
i be 

the number of vertices with degree i in the random subgraph G′ = G[p] defined earlier. 
Also, for 0 � i � j, let nij be the number of vertices with degree i in G′ and degree 
j in G. Thus n′

i =
∑

j�i nij . Recall the definitions (21) and (22); at an intuitive level 
these formulae give the expected proportions of vertices of G′ having degree i (for r′i) 
and having degree i in G′ and degree j in G, ignoring the effect of loops. Hence the next 
lemma comes as no surprise.

Lemma 18. Let D ∈ D and 0 < p < 1 be fixed. Given 0 � i � j and ε > 0 there exists 
δ > 0 such that if dconf(d, D) < δ then

P
(
|nij − rijn| � εn

)
� e−δn

and

P
(
|n′

i − r′in| � εn
)

� e−δn,

where n = |d|.

Proof. Apply Theorem 17 to the 1-local coloured rooted graph properties ‘the root is 
incident with j edges in total of which i are red’ for the first statement, and ‘the root is 
incident with i′ red edges’ for the second. �

Recall that Dp, the p-thinned version of the probability distribution D, may be defined 
by (23).

Corollary 19. Given D ∈ D, 0 < p < 1 and ε > 0 there exists δ > 0 such that, if 
dconf(d, D) < δ, then
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P

(
dconf(d′, Dp) � ε

)
� e−δn,

where d′ is the degree sequence of the random subgraph G[p] of G = G∗
d and n = |d| = |d′|

is the number of vertices.

Proof. Since E(D) < ∞ there is a constant C such that 
∑

i�C iri < ε/8. If δ is small 
enough, then dconf(d, D) < δ implies 

∑
i�C ini(d) < εn/4. Since D stochastically dom-

inates Dp, and the degree of a vertex in our random subgraph G′ is at most its degree 
in G, the corresponding bounds for Dp and n′

i = ni(d′
n) follow. From the definition (3), 

(4) of dconf it thus suffices to prove that for each fixed i < C we have |n′
i−r′in| � ε/(2C2)

with sufficiently high probability; this follows from Lemma 18. �
The next trivial lemma will be applied to the sprinkled edges.

Lemma 20. Let A and B be disjoint sets of stubs in the configuration model associated 
to G∗

d. Then the probability that no stubs in A are paired to stubs in B is at most 
exp(−|A||B|/(8m)), where m = m(d).

Proof. Assume without loss of generality that |A| � |B|. Perform a sequence of 
|A|/2�
experiments, each consisting of choosing an as-yet-unpaired stub in A and revealing its 
partner. In the ith experiment, there are at least |B| − (
|A|/2� − 1) � |B| − |A|/2 �
|B|/2 unpaired stubs in B, so the probability of finding the partner in B is at least 
(|B|/2)/(2m + 1 − 2i) � |B|/(4m). Hence the probability that no partner in B is found 
is at most (1 − |B|/(4m))|A|/2 � exp(−|A||B|/(8m)). �

We are finally ready to prove the multigraph case of Theorem 2, where Gd is replaced 
by G∗

d.

Proof of Theorem 2 for G∗
d. Let Li = Li(G∗

d) be the number of vertices in the ith largest 
component of G∗

d.
Fix D ∈ D and ε > 0. By Lemma 13 there are constants k and δ > 0 such that if 

dconf(d, D) < δ, then

P
(
N�k(G) � (ρ(D) + ε/8)n

)
� e−δn.

Since L1 + L2 � N�k + 2k, if n is large enough (which we can ensure by taking δ small 
enough) it follows that

P

(
L1 + L2 � (ρ(D) + ε/4)n

)
� 1 − e−δn. (26)

To complete the proof, it suffices to show that if dconf(d, D) < δ then

P

(
L1 � (ρ(D) − 3ε/4)n

)
� 1 − e−δn. (27)
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Of course, this may require reducing δ. Indeed, (26) and (27) together give high proba-
bility upper and lower bounds on L1, and a high probability upper bound on L2. Since 
we have already proved (10) in Corollary 12, Theorem 2 then follows.

As p → 1, the probability distribution Dp defined above converges to D, both in 
distribution and (since E(Dp) � E(D) < ∞) in expectation. Hence, Theorem 14 tells us 
that ρ(Dp) → ρ(D) as p → 1. (This is the only place in the argument where P(D � 3) > 0
is used.) In particular, there is some p < 1 such that

ρ(Dp) � ρ(D) − ε/8.

Let us fix such a p for the rest of the proof. Also, fix an integer t � 1 such that

pt � ε/20,

set

K = 1 + Δ + · · · + Δt−1 + 1,

and let

α = ε

40Δt
and γ = α2

8E(D) . (28)

We shall study the coloured random graph G∗
d{p} defined earlier, obtained from G∗

d
by colouring each edge red with probability p and blue otherwise, independently of the 
others. As before, we write G′ = G∗

d[p] for the red subgraph and G′′ for the blue subgraph, 
and d′ and d′′ for the degree sequences of G′ and G′′. Recall that, by Lemma 16, given d′, 
we can view G′ and G′′ as independent configuration multigraphs.

Applying Lemma 13 to G′, we find that there exist k � max{K, 2/γ} and δ1 > 0 such 
that, writing S for the set of vertices in components of G′ with at least k vertices, we 
have

P

(
|S| � (ρ(D) − ε/4)n

∣∣ d′
)

� P

(
|S| � (ρ(Dp) − ε/8)n

∣∣ d′
)

� 1 − e−δ1n

whenever dconf(d′, Dp) < δ1. By Corollary 19 there is a δ2 > 0 such that if 
dconf(d, D) < δ2, then

P

(
dconf(d′, Dp) � δ1

)
� e−δ2n.

Hence, reducing δ if necessary, it follows that if dconf(d, D) < δ then

P

(
|S| � (ρ(D) − ε/4)n

)
� 1 − e−δ1n − e−δ2n � 1 − e−δn. (29)
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Note that in the argument above we could have sidestepped Corollary 19, using a coloured 
version of Theorem 13 and considering the coloured property ‘the red component of the 
root has size at least k’. However, the approach above seems more intuitive and we shall 
use Corollary 19 in Section 6.

Let us call a vertex v ∈ V (G) = V (G′) usable if it is incident with a blue edge, i.e., an 
edge of G′′. (These edges will be our ‘sprinkled’ edges.) Note that knowing d′ determines 
whether v is usable: we don’t know which edges are present in G′′, but we do know its 
degree sequence. Our next aim is to find ‘enough’ usable vertices in S, for which we need 
some further definitions.

By the radius r(G) of a (locally finite) rooted graph G we mean the maximum distance 
of any vertex from the root, considering only vertices in the component C containing the 
root. Thus r(G) is infinite if and only if C is infinite.

Given a coloured rooted graph G, we write R(G) and B(G) for the red and blue 
subgraphs of G, respectively. Let Gt be the property of coloured rooted graphs G that 
either

(i) r(R(G)) < t or
(ii) some vertex of G within distance t of the root is incident with an edge of B(G).

Note that, considering the shortest path to a blue edge, (ii) is equivalent to (ii′) some 
vertex of R(G) within distance t (in R(G)) of the root is incident with an edge of B(G). 
The property Gt is clearly (t + 1)-local.

Consider the case where G = TD{p} is a coloured rooted tree. Conditioning first on 
the graph structure, if r(G) < t then (i) will certainly hold. Otherwise, there are at least 
t edges of G within distance t of the root, and if any one is blue (ii) holds. Thus

P(TD{p} ∈ Gt) � 1 − pt � 1 − ε/20.

By Lemma 10 (with ε/2 in place of ε), there is some Δ such that

P(TDp
∈ MΔ,t) � 1 − ε/20.

Let H be the property

H = {R(G) ∈ MΔ,t and G ∈ Gt},

noting that

P(TD{p} ∈ H) � 1 − ε/10. (30)

We call a vertex v of our coloured configuration model G = G∗
d{p} helpful if (G, v) ∈ H, 

i.e., if G rooted at v has property H. Let H denote the set of helpful vertices. From (30)
and Theorem 17, if δ is chosen small enough, then if dconf(d, D) < δ we have
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P
(
|H| � n− εn/5

)
� e−δn. (31)

Since, as noted above, knowing d′ determines which vertices are usable (incident with 
edges of G′′), it is easy to check from the definition of H that knowing d (which is given), 
d′ and G′ determines which vertices of G are helpful.

From now on we condition on d′ and G′, assuming that

|S| � (ρ(D) − ε/4)n and |H| � n− εn/5. (32)

This makes sense since S (the set of vertices in components of G′ with order at least k) 
and H are determined by d′ and G′, and (29) and (31) imply that the event (32) has 
probability at least 1 − e−δn.

Suppose that v ∈ S ∩H. Then, since v is helpful, every vertex in the t-neighbourhood 
ΓG′

�t(v) of v in G′ has degree at most Δ. Furthermore, from the definition of Gt (recalling 

(ii′) above), either (a) the radius of G′ rooted at v is at most t − 1, or (b) ΓG′

�t(v) meets 
an edge of G′′, i.e., contains a usable vertex. In case (a), it follows that the component of 
v in G′ has at most 1 + Δ + · · ·+ Δt−1 < K vertices, contradicting v ∈ S. Thus case (b) 
holds and there is a path Pv = v0v1 · · · vr in G′ of length at most t where v0 = v, each 
vi has degree at most Δ in G′, and vr is usable.

At this point we are finally ready to apply the sprinkling strategy of Erdős and 
Rényi [4]. Let us call a partition (X, Y ) of S a potentially bad cut if |X|, |Y | � εn/4 and 
there are no edges of G′ joining X to Y . We call (X, Y ) a bad cut if, in addition, no edge 
of G′′ joins X to Y . Since each component of G′ in S must lie either entirely in X or 
entirely in Y , there are at most

2|S|/k � 2n/k � en/k � eγn/2 (33)

potentially bad cuts, recalling that we chose k � 2/γ.
Let (X, Y ) be a potentially bad cut, and recall that |H| � n − εn/5. Thus X contains 

at least εn/20 helpful vertices v. From each there is a path Pv as described above ending 
at some usable vertex u. Because of the degree conditions, at most 1 +Δ + · · ·+Δt � 2Δt

such paths can end at a given usable vertex. Since Pv is a path in G′, and X is a union 
of components of G′, we conclude that X contains at least αn usable vertices, where 
α = ε/(40Δt) as in (28). Of course, the same applies to Y .

Recall that we have conditioned on d′ and G′, but not on G′′. In the configuration 
model corresponding to G′′, each usable vertex has at least one stub, so X and Y each 
correspond to sets of at least αn stubs. Since (if δ is chosen small enough) G′′ has at 
most E(D)n edges, by Lemma 20

P
(
G′′ contains no (X,Y ) edge | d′, G′) � e−

α2n2
8E(D)n = e−γn.

From (33) it follows that the expected number of bad cuts (given d′ and G′) is at most 
e−γn/2, so the probability that there are any bad cuts is at most e−γn/2. When there are 
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no bad cuts, it is easy to check that L1(G) � |S| − 2εn/4 � (ρ(D) − 3ε/4)n, completing 
the proof of (27) and hence of the multigraph case of Theorem 2. �
5. Simple graphs

As noted in the introduction, Janson and Luczak [9] proved a result that is similar to 
the multigraph case of Theorem 2: the assumptions are identical, but the error bounds 
in the conclusions in [9] are much weaker. An advantage of our stronger error bounds 
is that they allow us to translate the result to random simple graphs without further 
restrictions on the degree sequences. For this we need a simple lemma.

Lemma 21. Let D ∈ D. Then for any ε > 0 there exists a δ > 0 such that if 
dconf(d, D) < δ then

P
(
G∗

d is simple
)

� e−εn,

where n = |d|. Equivalently, if D ∈ D and dn → D in the sense that (1) and (2) hold 
and |dn| → ∞, then

P
(
G∗

dn
is simple

)
= e−o(|dn|).

In particular, the degree sequences we consider here are (for large n) realisable by 
simple graphs.

Proof of Lemma 21. The equivalence of the two statements follows easily from (5); we 
prove the first form.

Observe that there are constants K, M and α > 0 such that, if δ is chosen small 
enough, then dconf(d, D) < δ ensures that at least αn vertices of d have degree between 
1 and K (inclusive), and m = m(d) � Mn, where n = |d| as usual. Indeed, choose any 
K � 1 such that P(D = K) > 0, let δ � α = P(D = K)/2, and take M = E(D)/2 + α, 
say. These properties and (8)/(9) are all that we need to know about d.

Let S denote the event that G∗
d is simple, and fix ε > 0. Pick η > 0 such that 

η log(4M/α) � ε/2 and η � α/2. By (9) there is a constant C, which we may take to 
be larger than K, such that if δ is small enough, then at most ηn stubs are attached 
to vertices of degree at least C. Let us call a vertex low degree if its degree is between 
1 and K, and high degree if its degree is at least C. Let E be the event that the stubs 
attached to high degree vertices are paired with stubs attached to distinct low degree 
vertices.

To determine whether E holds, we test the at most ηn stubs attached to high degree 
vertices one-by-one. At each stage, there are at least αn −ηn � αn/2 low-degree vertices 
none of whose stubs has yet been paired. Since each such vertex has degree at least one, 
and there are at most 2Mn unpaired stubs in total, it follows that
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P(E) �
( αn

4Mn

)ηn

� e−εn/2.

When E holds, the graph G∗
d is simple if and only if the graph G0 formed by the edges 

not incident with high-degree vertices is simple. But, after revealing the partners of the 
stubs attached to the high-degree vertices, the conditional distribution of G0 is given by 
the configuration model for some degree sequence in which all degrees are at most C, 
and at least αn/2 = Θ(n) degrees are positive. The original result of Bollobás [2] (see 
also Bender and Canfield [1]) thus gives P(S | E) = Θ(1), and the result follows. �
Proof of Theorem 2 for Gd. Let P be any property of graphs. Since the distribution of 
G∗

d conditioned on the event S that G∗
d is simple is exactly that of Gd, we have

P(Gd ∈ P) = P(G∗
d ∈ P | G∗

d ∈ S) � P(G∗
d ∈ P)

P(G∗
d ∈ S) .

Fix D ∈ D. All statements about G∗
d in Theorem 2 are of the form that for some 

property P, there exist γ, δ1 > 0 such that if dconf(d, D) < δ1, then P(G∗
d ∈ P) �

e−γn. (The theorem asserts this with δ1 = γ.) Lemma 21 gives us δ2 > 0 such that 
dconf(d, D) < δ2 implies P(G∗

d ∈ S) � e−γn/2. Hence, setting δ = min{δ1, δ2, γ/2}, if 
dconf(d, D) < δ then

P(Gd ∈ P) � e−γn/e−γn/2 = e−γn/2 � e−δn,

completing the proof of Theorem 2. �
As noted in the introduction, Theorem 2 implies Theorem 1.

6. Extensions

One of the motivations for studying the size of the largest component in the configu-
ration model Gd is to consider percolation in this random environment: given 0 < p < 1, 
when does the random subgraph Gd[p] of Gd obtained by selecting edges independently 
with probability p contain a giant component? For example, Goerdt [6] showed that when 
Gd is simply a random d-regular graph, then there is a ‘threshold’ at p = 1/(d −1), above 
which a giant component appears. As is by now well known, for results of the present 
type this question turns out to be no more general than studying Gd directly (i.e., the 
case p = 1), since one can view a random subgraph of the configuration model as another 
instance of the configuration model. This is discussed in detail by Fountoulakis [5]; for 
a slightly different approach see Janson [8]. We give the short argument since it is very 
easy with the ingredients we have to hand. In the next result we state only the most 
interesting part formally; Dp is the ‘p-thinned’ version of the probability distribution D, 
defined in (23) and appearing in Corollary 19.



B. Bollobás, O. Riordan / J. Combin. Theory Ser. B 113 (2015) 236–260 257
Theorem 22. Let 0 < p < 1 be fixed. The conclusions of Theorems 1 and 2 hold if G∗
d or 

Gd is replaced by its random subgraph G∗
d[p] or Gd[p], and ρ(D) and ρk(D) are replaced 

by ρ(Dp) and ρk(Dp).
In particular, given D ∈ D with P(D � 3) > 0, 0 < p < 1 and ε > 0, there exists 

δ > 0 such that, if dconf(d, D) < δ, then

P

(∣∣L1(Gd[p]) − ρ(Dp)n
∣∣ � εn

)
� e−δn

and

P

(∣∣L1(G∗
d[p]) − ρ(Dp)n

∣∣ � εn
)

� e−δn,

where n = |d|.

Proof. For G∗
d[p], this is essentially trivial from Theorem 2 and Corollary 19. Indeed, by 

Theorem 2 there exists δ1 > 0 such that if dconf(d1, Dp) < δ1 then G∗
d1

has the desired 
property (L1 close to ρ(Dp)n) with probability at least 1 − e−δ1n. By Corollary 19 there 
is a δ such if dconf(d, D) < δ then P(dconf(d′, Dp) < δ1) � 1 − e−δn, where d′ is the 
degree sequence of G∗

d[p]. The result for G∗
d[p] follows by noting that, conditional on d′, 

G∗
d[p] has the distribution of G∗

d′ .
For Gd[p] we argue as in the last part of the previous section: note that conditional 

on G∗
d being simple, G∗

d[p] has the same distribution as Gd[p]. Then use Lemma 21 as 
before. The key point is that we do not try to condition on G∗

d[p] being simple. �
Remark 23. Theorem 22 implies that there is a ‘critical’ pc such that G∗

d[p] has a giant 
component if and only if p > pc. Indeed, pc = inf{p : ρ(Dp) = 0}. From basic branching 
process results, it is easy to see that pc = 1/E(ZD), where ZD is the distribution defined 
in (11). Either from this, or from the fact that ρ(Dp) > 0 if and only if E(Dp(Dp−2)) > 0, 
it is easy to see that

pc = E(D)
E(D(D − 1)) .

This is the same formula as given by Fountoulakis [5], for example, who proved a form 
of Theorem 22, with stronger assumptions on the degree sequences and weaker error 
bounds.

Remark 24. Taking |dn| = n for notational simplicity, in the context of Theorems 1 and 2, 
the assumption that E(D) < ∞, corresponding to m(dn) = O(n), is very natural. Indeed, 
it is not hard to see that if m(dn)/n → ∞, then G∗

dn
will with high probability contain a 

component with n − o(n) vertices. As soon as we consider percolation on G∗
dn

, however, 
it makes very good sense to allow m(dn)/n → ∞ and then study G∗

dn
[pn] with pn → 0 as 

n → ∞. All we shall say here is that in many situations, for appropriate pn, the (random) 
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degree sequence of G∗
dn

[pn] will with high probability be such that Theorem 1 applies 
to it. For example, if all degrees are equal to kn with kn → ∞ and knpn → λ ∈ R, then 
the degree distribution of G∗

dn
[pn] will be asymptotically Poisson with mean λ. Hence 

Theorem 1 can be used to show that the threshold for percolation on G∗
dn

is at λ = 1, 
i.e., at pn = 1/kn.

Throughout the paper we have focused on the number of vertices in the giant com-
ponent. What can we say about other properties of the giant component, such as the 
number of vertices of given degree, or the total number of edges? Results for these are 
given (under different conditions) by Janson and Luczak [9], for example. An often ne-
glected benefit of the branching-process viewpoint is that it typically gives results of this 
type essentially automatically, not just for these properties, but for any local property. 
(A version of this observation was made in a different context by Bollobás, Janson and 
Riordan [3, Lemma 11.11]; see also [14, Theorem 2.8].)

We state the following result in a form analogous to Theorem 2; this of course implies 
a version analogous to Theorem 1.

Theorem 25. Let P be a local property of rooted graphs, let D ∈ D and let ε > 0. There 
is some δ > 0 such that if dconf(d, D) < δ then the following hold, with n = |d| and 
G = G∗

d or G = Gd:

P

(∣∣NP(G) − nP(TD has P)
∣∣ � εn

)
� e−δn, (34)

and

P

(∣∣NP(C1) − nP(TD is infinite and has P)
∣∣ � εn

)
� e−δn, (35)

where C1 is a component of G of maximal order.

Proof. As usual, in the light of Lemma 21 we need only consider the case G = G∗
d. In 

this case, we have proved (34) already in Theorem 11.
Turning to (35), let D ∈ D, ε > 0 and a local property P be given. Let Sk be the 

rooted-graph property ‘the component of the root contains at least k vertices’, and S∞
‘the component of the root is infinite’. (We only consider the latter in the context of TD; 
all our graphs here are finite.) Then, as k → ∞, the events {TD ∈ Sk} = {|TD| � k}
decrease to the event {TD ∈ S∞} = {TD is infinite}. Hence P(TD ∈ Sk) → P(TD ∈ S∞), 
and there is a constant K such that for any k � K we have

P(TD ∈ Sk \ S∞) < ε/10. (36)

As before, let us say that an event holds ‘wvhp’ if for some δ > 0 it holds with probability 
at least 1 −e−δn whenever dconf(d, D) < δ. By Lemma 13 there is some k � K such that 
wvhp
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∣∣N�k(G∗
d) − ρ(D)n

∣∣ � εn/10. (37)

Let N = NP(C1) be the number of vertices we wish to count, i.e., those in the largest 
component C1 of G∗

d having property P. Let N ′ = NP∩Sk
(G∗

d) count vertices with 
property P in components of size at least k. Then N and N ′ differ by at most N�k−L1, 
which, by (37) and Theorem 2, is wvhp at most εn/5, say. Applying (34) to the local 
property P∩Sk, we deduce that wvhp N is within εn/4 of nP(TD ∈ P∩Sk). But by (36)
this is within εn/10 of nP(TD ∈ P ∩ S∞), establishing (35). �

For simple properties P, it is easy to give explicit formulae for the probability that 
TD is infinite and has property P. For example, if P = Pd is the property that the root 
has degree d, then defining x+ as in Section 3, the proof of Theorem 14 shows easily that

P(TD is infinite and has Pd) = rd(1 − (1 − x+)d).

This gives an asymptotic formula for the number of degree-d vertices in the giant com-
ponent C1 that coincides with that of Janson and Luczak [9].

Rather than counting vertices with some local property, what happens if we want to 
sum some ‘local function’ f(G, v) over vertices v ∈ C1? Can we show that

n−1
∑
v∈C1

f(C1, v)
p→ E(f(TD))? (38)

If f is bounded then the answer is yes: simply express f in terms of indicator functions 
of local properties and apply Theorem 25. In general, (38) need not hold: for example, if 
f(G, v) is the square of the degree of v then, since our assumptions give no control over ∑

i d
2
i , (38) can fail.

Suppose that f(G, v) is the degree of v, so 
∑

v∈C1
f(C1, v) is twice the number of 

edges in the giant component. Then, by (9), for any ε > 0 there is a C such that if 
dconf(d, D) is small enough, then

∑
v∈C1:dC1 (v)�C

f(C1, v) �
∑

v∈G:dG(v)�C

f(G, v) � εn,

and considering the bounded function obtained by truncating f at C, we see that (38)
holds in this case, even though f is unbounded. A similar argument can be applied to 
other unbounded f , leading to results concerning, for example, the number edges in the 
giant component between vertices of degree 2 and degree 3. We omit the details.
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