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Homogeneous structures



Let A be a structure (a graph) and let B,C be substructures of A
(induced subgraphs). If f is an isomorphism B→ C, we call it a
partial automorphism of A.

If α is an automorphism of A such that f ⊆ α, we say that f
extends to α.

Example

I A graph G is vertex-transitive if every partial automorphism f
with |Dom(f )| ≤ 1 extends to an automorphism of G.

I A graph G is edge-transitive (arc-transitive) if every partial
automorphism f with Dom(f ) = {u, v}, where uv ∈ E (G),
extends to an automorphism of G.

I A structure A is homogeneous if every partial automorphism
of A with finite domain extends to an automorphism of A.



Let A be a structure (a graph) and let B,C be substructures of A
(induced subgraphs). If f is an isomorphism B→ C, we call it a
partial automorphism of A.
If α is an automorphism of A such that f ⊆ α, we say that f
extends to α.

Example

I A graph G is vertex-transitive if every partial automorphism f
with |Dom(f )| ≤ 1 extends to an automorphism of G.

I A graph G is edge-transitive (arc-transitive) if every partial
automorphism f with Dom(f ) = {u, v}, where uv ∈ E (G),
extends to an automorphism of G.

I A structure A is homogeneous if every partial automorphism
of A with finite domain extends to an automorphism of A.



Let A be a structure (a graph) and let B,C be substructures of A
(induced subgraphs). If f is an isomorphism B→ C, we call it a
partial automorphism of A.
If α is an automorphism of A such that f ⊆ α, we say that f
extends to α.

Example

I A graph G is vertex-transitive if every partial automorphism f
with |Dom(f )| ≤ 1 extends to an automorphism of G.

I A graph G is edge-transitive (arc-transitive) if every partial
automorphism f with Dom(f ) = {u, v}, where uv ∈ E (G),
extends to an automorphism of G.

I A structure A is homogeneous if every partial automorphism
of A with finite domain extends to an automorphism of A.



Let A be a structure (a graph) and let B,C be substructures of A
(induced subgraphs). If f is an isomorphism B→ C, we call it a
partial automorphism of A.
If α is an automorphism of A such that f ⊆ α, we say that f
extends to α.

Example

I A graph G is vertex-transitive if every partial automorphism f
with |Dom(f )| ≤ 1 extends to an automorphism of G.

I A graph G is edge-transitive (arc-transitive) if every partial
automorphism f with Dom(f ) = {u, v}, where uv ∈ E (G),
extends to an automorphism of G.

I A structure A is homogeneous if every partial automorphism
of A with finite domain extends to an automorphism of A.



Let A be a structure (a graph) and let B,C be substructures of A
(induced subgraphs). If f is an isomorphism B→ C, we call it a
partial automorphism of A.
If α is an automorphism of A such that f ⊆ α, we say that f
extends to α.

Example

I A graph G is vertex-transitive if every partial automorphism f
with |Dom(f )| ≤ 1 extends to an automorphism of G.

I A graph G is edge-transitive (arc-transitive) if every partial
automorphism f with Dom(f ) = {u, v}, where uv ∈ E (G),
extends to an automorphism of G.

I A structure A is homogeneous if every partial automorphism
of A with finite domain extends to an automorphism of A.



Homogeneous structures

Example (Countably infinite homogeneous graphs,
Lachlan–Woodrow 1980)

If G is a countably infinite homogenous graph, then G or its
complement G is one of the following:

1. the countable random (Rado) graph,

2. the generic Kn-free graph for 3 ≤ n <∞,

3. an equivalence relation with a given number of equivalence
classes of given size.

Example

1. (Q,≤),

2. the countable random k-uniform hypergraph,

3. the countable random tournament,

4. the Urysohn metric space, i.e. the homogeneous complete
separable metric space universal for all separable metric
spaces.
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Definition (EPPA, extension property for partial
automorphisms)

Let B be a structure (a graph) and let A be its substructure
(induced subgraph). B is an EPPA-witness for A if every partial
automorphism (isomorphism of induced subgraphs) of A extends
to an automorphism of B.

A class C of finite structures has EPPA if for every A ∈ C there is
B ∈ C, which is an EPPA-witness for A.
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Definition (EPPA, extension property for partial
automorphisms)

Let B be a structure (a graph) and let A be its substructure
(induced subgraph). B is an EPPA-witness for A if every partial
automorphism (isomorphism of induced subgraphs) of A extends
to an automorphism of B.
A class C of finite structures has EPPA if for every A ∈ C there is
B ∈ C, which is an EPPA-witness for A.

Theorem (Hrushovski, 1992)

The class of all finite graphs has EPPA.



A connection to model theory

A

Fact
If C has EPPA, then it is the class of all finite substructures of a
homogeneous structure.

Remark
EPPA ⇐⇒ the (topological) automorphism group of the
corresponding homogeneous structure can be written as the closure
of a chain of proper compact subgroups.
Moreover, EPPA implies amenability and it is key in proving ample
genericity, the small index property etc.
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Examples of classes with EPPA

I All finite graphs and Kn-free graphs (Hrushovski 1992,
Hodkinson–Otto 2003).

I Finite structures in a relational language (e.g. hypergraphs).
(Herwig 1998).

I Metric spaces with distances from R, Q or N (Solecki 2005,
Vershik 2005, Hubička–K–Nešeťril 2018).

I Metric spaces with distances from S ⊆ R whenever it is
possible (Conant 2015, K 2019).

I Metrically homogeneous graphs (Cherlin 2011;
AB-WHHKKKP 2017, K 2018).

I Certain classes omitting homomorphisms. (Herwig–Lascar
2000, Hubička–K–Nešeťril 2018).

I Two-graphs (Evans–Hubička–K–Nešeťril 2018).

I n-partite tournaments and semi-generic tournaments
(Hubička–Jahel–K–Sabok 2019+).


