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Abstract

This is a supplementary material to my seminar talk about the
paper [HKN19].

1 Structures

A relational language L is a collection of symbols L = {R1, R2, . . .} to-
gether with associated arities a(Ri) ∈ N. An L-structure is a tuple A =
(A,R1

A, R
2
A, . . .), where A is the vertex set and Ri

A ⊆ Aa(Ri) are the inter-
pretations of the relations. Usually, we will ignore the difference between a
relation and its interpretation. We also adopt the convention that structures
are typeset in bold, while their vertex sets are typeset in standard font. Fi-
nally, the language is often understood implicitly and we simply talk about
structures.

Example.

• Graphs are structures in the language L = {E}, where E is a binary
symbol, whose interpretation is symmetric and irreflexive.

• Linear orders are structures in the language L = {≤}, where ≤ is again
a binary symbol, however, its interpretation is asymmetric, reflexive,
transitive and total (i.e. every two vertices are related).

If A and B are L-structures and f : A → B is an injective function
between their vertex sets, we say that f is an embedding if for every R ∈ L
and for every ā ∈ Aa(R), we have

ā ∈ RA ⇐⇒ f(ā) ∈ RB,

where f(ā) = (f(a1), . . . , f(aa(R))). If f is moreover surjective, we call it
an isomorphism. And isomorphism A → A is called an automorphism. If
A ⊆ B and the inclusion is an embedding A → B, we say that A is a
substructure of B.

A structure M is homogeneous if whenever A and B are finite substruc-
tures of M and f : A→ B is an isomorphism, then there is an automorphism
g : M→M such that f ⊆ g.



Example.

• The countable random graph (the Rado graph) is homogeneous. So
are disjoint unions of complete graphs of the same size, or the 5-cycle.

• (Q,≤) is homogeneous, while (Z,≤) is not.

• There is a classification of homogeneous graphs [LW80], homogeneous
directed graphs [Che98] and more.

2 EPPA

Let A be a finite structure. A partial automorphism of A is an isomorphism
f : U → V such that U and V are substructures of A. Hence, we can
understand f as a partial function A→ A.

Definition 2.1 (EPPA). Let A be a finite L-structure. We say that an
L-structure B is an EPPA-witness for A if A is a substructure of B and
every partial automorphism of A extends to an automorphism of B.

Let C be a class of finite structures. We say that C has the exten-
sion property for partial automorphisms (EPPA, also called the Hrushovski
property) if for every A ∈ C there is B ∈ C which is an EPPA-witness for A

Recall the definition of a homogeneous structure. In the definition of
EPPA, B is intuitively homogeneous for partial automorphisms living within
A.

3 Metric spaces

Let L be a set. An L-edge-labelled graph is a graph G = (V,E) together
with a function d : E → L assigning a label to every edge. A metric space is
just a complete R>0-edge-labelled graph (we do not represent d(x, x) = 0),
where some triangles are forbidden (namely those which violate the triangle
inequality).

We can also view L-edge-labelled graphs as a relational structures in a
binary symmetric language with relations from L. The corresponding maps
(and definition of EPPA) generalise naturally, we require them to preserve
the labels.

Let G = (V,E, d) be an L-edge-labelled graph. We will often treat d as
a partial function V 2 → L, which is symmetric and defined precisely on E.

Theorem 3.1. Let L be a finite set and let A be a finite L-edge-labelled
graph. Then there is a finite L-edge-labelled graph B which is an EPPA-
witness for A.



3.1 Filling-in the missing distances

A non-metric cycle is an R>0-edge-labelled cycle with labels a0, . . . , an such
that a0 >

∑n
i=1 ai.

Proposition 3.2. Let A = (A, d) be an R>0-edge-labelled graph. Then there
is d′ : A2 → R>0 such that d ⊆ d′ and (A, d′) is a metric space if and only
if A contains no non-metric cycle as a non-induced subgraph. Moreover, if
such a d′ exists, it can be chosen so that Aut((A, d)) = Aut((A, d′)).

Lemma 3.3. Let L ⊆ R>0 be finite, let A be a metric space with distances
from L and let B be an L-edge-labelled graph which is an EPPA-witness for
A. Suppose that B contains no non-metric cycles on less than i ≥ 3 vertices.
Then there is an L-edge-labelled graph B′ which is an EPPA-witness for A
such that B′ contains no non-metric cycles on less than i+ 1 vertices.

This implies the following theorem, which was first proved by Solecki [Sol05].

Theorem 3.4. The class of all finite metric spaces has EPPA.

4 Appendix: EPPA for graphs

EPPA is often called the Hrushovski property, because Hrushovski was the
first to prove this property for the class of graphs [Hru92], upon request
from Hodges, Hodkinson, Lascar and Shelah.

Hrushovski’s proof of EPPA for graph was group-theoretical and slightly
involved. In 2000, Herwig and Lascar [HL00] came up with a very simple
combinatorial proof:

Proof of EPPA for graphs. Let G = (V,E) be a finite graph. First, for
convenience, assume that G is k-regular, that is, every vertex is in k edges.

Define graph H on vertex set
(
E
k

)
= {X ⊆ E : |X| = k} such that {X,Y }

is an edge of H if and only if X 6= Y and X∩Y 6= ∅ (i.e. H is the complement
of the Kneser graph on k-subsets of E). Define function ψ : V →

(
E
k

)
sending

every vertex to the set of edges incident with it (v 7→ {e ∈ E : v ∈ e}), this
is possible since G is k-regular.

Observe that ψ is an embedding: Indeed, if uv ∈ E, then ψ(u)∩ψ(v) =
{uv} 6= ∅, hence ψ(u) and ψ(v) form an edge of H, analogously if uv /∈
E. We now show that every partial automorphism of ψ(G) extends to an
automorphism of H, hence finishing the proof. Towards this, observe that
every permutation of E induces an automorphism of H by its action of

(
E
k

)
.

Let ϕ be a partial automorphism of ψ(G). Since ψ is an isomorphism,
ψ−1ϕψ is a partial automorphism of G, so in particular it induces a partial
permutation π of E. We aim to extend π to a permutation π̂ of E so that
whenever X ∈ Dom(ϕ), then π̂(X) = ϕ(X). If we can do it, we are done.



Clearly, if we have X 6= Y ∈ Dom(ϕ), then |X ∩ Y | ≤ 1, and if e ∈
X ∩ Y , then e ∈ Dom(π), hence X \ Dom(π) and Y \ Dom(π) are disjoint.
Similarly we get for X 6= Y ∈ Range(ϕ) that X∩Y ⊆ Range(ϕ). Finally, we
shall observe that for every X ∈ Dom(ϕ) we have |X \ Dom(π)| = |ϕ(X) \
Range(π)|. This follows from the fact that ϕ is a partial automorphism:
X has the same number of neighbours in what H induces on Dom(ϕ) as
Y has on what H induces on Range(ϕ), and the only edges in Dom(π) are
connecting vertices from Dom(ϕ). Now it follows that we can indeed extend
π to π̂ as desired.

Finally, if G is not k-regular, then one can “add half-edges” to every
vertex to ensure regularity, these half edges will never be in the domain of
π.
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