1 First part. Towards the proof of the Orbit conjecture.

1.1 Definitions and notation.

P is a subset of \mathbb{R}^2 of size n. No three points lie on a line and no four points lie on a circle.

T is a triangulation, i.e. a maximal subset of $\binom{P}{2}$ with no crossing edges.

Edge flip. Let T triangulation ABCD empty convex of P, $e \in T$ between AD. Then change it to CB and you obtain a new traingulation.

The **flip graph** of P is a graph whose vertices are triangulations of P and there is an edge between two triangulations if you can obtain one from the other by an edge flip.

Delanuay triangulation is the triangulation whose angle vector is maximal.

 \mathcal{T} is a **labelled triangulation**, i.e a pair (T, l) where T is a triangulation and $l : T \to \{1, \ldots, t_p\}$ a bijection. The number t_p is the total amount of edges in T.

Two edges e and f are in the same orbit if there exists a labelled triangulation \mathcal{T} and a sequence of edge flips from \mathcal{T} to some \mathcal{T}' such that l(e) = l'(f).

An elementary swap of e and f is a sequence of edge flips $\sigma \pi \sigma^{-1}$, where σ takes l(e) and l(f) to the diagonals of a pentagon and π is the permutation of these diagonals insine the pentagon.

1.2 Storyline

Theorem 1 (Lawson 1971) The flip graph is connected.

Theorem 2 (Orbit theorem) Let \mathcal{T}_1 and \mathcal{T}_2 be two labelled traingulations, then there exist a flip sequence from \mathcal{T}_1 to \mathcal{T}_2 if and only if for all edges $e_1 \in \mathcal{T}_1$ and $e_2 \in \mathcal{T}_2$ such that $l_1(e_1) = l(e_2)$ are in the same orbit. Furthermore, there is a polynomial time algorithm that tests wheter the condition is satisfied, and if it is, computes a flip sequence of length $O(n^7)$ to transform \mathcal{T}_1 to \mathcal{T}_2 .

Theorem 3 (Elementary swap theorem) Given a labelled triangulation \mathcal{T} , any permutation of the labels that can be realized by a sequence of edge flips can be realized by a sequence of elementary swaps.

Theorem 4 There exists a cell complex X with the following properties: (1) The 1-skeleton of X is the flip graph of P. (2) The 2-cells of X are in bijection with 4 and 5 elementary cycles of P. (3) The fundamental group of X is trivial.

Theorem 5 Let \mathcal{T} be a labeled triangulation, two edges are in the same orbit if and only if there exist an elementary swap between them.

Theorem 6 (Edge label permutation theorem) Let T be a triangulation of a point set P in the plane, l_1 and l_2 two labelings of the edges of T. Then, there is a sequence of O(n) elementary swaps from l_1 to l_2 if and only if all $e, e' \in T$ such that $l_1(e) = l_2(e')$ are in the same orbit. Such a sequence can be realized via a sequence of $O(n^7)$ edge flips, which can be found in polynomial time.

2 Second Part. Towards the proof of Theorem 4

2.1 Definitions and notations.

The complex of plane graphs on **P** is defined by $T = T(P) = \{F : F \subset E, F \text{ non-crossing}\}$.

A pure d-dimensional simplicial complex is **shellable** if its facets admit an order such that at each step the simplicial complex generated by the previous facets intersected with the current one is a (d-1) pure simplicial complex.

Two polyhedra |K| and |L| are **piecewise linear homeomorphic** if exist isomorphic subdivisions of K and L, i.e exists a face preserving bijection.

A simplicial complex K is a **combinatorial n-manifold** if the link of each p-simplex is piecewise linear homeomorphic to either the boundary of an (n-p)-simplex or to an (n-p-1)-simplex.

Let K be a combinatorial n-manifold and K' its first barycentric subdivision. Given a p-simplex σ in K, K'| $lk(\sigma, K)$ is isomorphic to the subcomplex $\tilde{K}_{\sigma} = \{\tilde{\tau}_1 \dots \tilde{\tau}_m : \sigma < \tau_1 < \dots < \tau_m \in K, \sigma \neq \tau_1\}$ in K'. Thus $|\tilde{K}_{\sigma}| \simeq S^{n-p-1}$ or B^{n-p-1} , and hence $\tilde{B}_{\sigma} = \tilde{\sigma} * |\tilde{K}_{\sigma}|$ is a piecewise linear (n-p)-ball. \tilde{B}_{σ} is the **dual cell** of σ and the collection of dual cells is the **dual cell complex**.

We say that a topological space X is a **n-dimensional pseudomanifold with boundary** if: (a) X = |K| is the union of all n-simplices. (b) Every (n-1)-simplex is a face of one or two n-simplices for n > 1. (c) For every pair of n-simplices σ and σ' in K, there is a sequence of n-simplices $\sigma = \sigma_0, \sigma_1, \ldots, \sigma_k = \sigma'$ such that the intersection $\sigma_i \cap \sigma_{i+1}$ is an (n-1)-simplex for all $i = 0, \ldots, k - 1$. The boundary of X is given by faces which are contained in a unique maximal face.

2.2 Storyline

Theorem 7 ([1] Prop 4.7.22) Suppose K is a finite d-dimensional simplicial complex that is a pseudomanifold i.e. K is pure and every (d-1) dimensional face of K is contained in at most two d-faces. If K is shellable then K is either a piecewise linear ball or a piecewise-linear sphere. The former case occurs if and only if there is at least one (d-1) dimensional face that is contained in only one d-face of K, in which case the pseudomanifold is said to have nonempty boundary.

Theorem 8 T is shellable (m-1) dimensional pseudomanifold with nonempty boundary, and hence a piecewise linear ball.

Theorem 9 Let T be the simplicial complex of plane graphs on the point set P. A non-crossing set of edges F on P is an interior face of T if and only the following conditions holds: 1) F contains all convex hull edges of P. 2) Every bounded region in the complement of the plane graph (P, F) is convex.

Theorem 10 Let B be a d-dimensional piecewise linear ball. 1) For each interior k-dimensional face F of B, one can define a dual cell F^* . [2][Lemma I.19] 2) The construction reverses inclusion. 3) The dual cells of the interior faces of B form a regular cell complex, denoted B^* and called the dual complex. B^* need not be a manifold or pure d dimensional, but it is homotopy equivalent to B. [3][Lemma 70.1]

Reference

- A. Bjorner, A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler, Oriented matroids. No. 46, Cambridge University Press, 1999.
- [2] J. Johnson, "Notes on piecewise-linear topology," 2018.
- [3] J. R. Munkres, *Elements of algebraic topology*. CRC Press, 2018.