
1 First part. Towards the proof of the Orbit conjecture.

1.1 Definitions and notation.

P is a subset of R2 of size n. No three points lie on a line and no four points lie on a circle.
T is a triangulation, i.e. a maximal subset of

(
P
2

)
with no crossing edges.

Edge flip. Let T triangulation ABCD empty convex of P , e ∈ T between AD. Then change it to
CB and you obtain a new traingulation.

The flip graph of P is a graph whose vertices are triangulations of P and there is an edge between
two triangulations if you can obtain one from the other by an edge flip.

Delanuay triangulation is the triangulation whose angle vector is maximal.
T is a labelled triangulation, i.e a pair (T, l) where T is a triangulation and l : T → {1, . . . , tp} a

bijection. The number tp is the total amount of edges in T .
Two edges e and f are in the same orbit if there exists a labelled triangulation T and a sequencce

of edge flips from T to some T ′ such that l(e) = l′(f).
An elementary swap of e and f is a sequence of edge flips σπσ−1, where σ takes l(e) and l(f) to the

diagonals of a pentagon and π is the permutation of these diagonals insine the pentagon.

1.2 Storyline

Theorem 1 (Lawson 1971) The flip graph is connected.

Theorem 2 (Orbit theorem) Let T1 and T2 be two labelled traingulations, then there exist a flip
sequence from T1 to T2 if and only if for all edges e1 ∈ T1 and e2 ∈ T2 such that l1(e1) = l(e2) are in the
same orbit. Furthermore, there is a polynomial time algorithm that tests wheter the condition is satisfied,
and if it is, computes a flip sequence of length O(n7) to transform T1 to T2.

Theorem 3 (Elementary swap theorem) Given a labelled triangulation T , any permutation of the
labels that can be realized by a sequence of edge flips can be realized by a sequence of elementary swaps.

Theorem 4 There exists a cell complex X with the following properties: (1) The 1-skeleton of X is
the flip graph of P . (2) The 2-cells of X are in bijection with 4 and 5 elementary cycles of P. (3) The
fundamental group of X is trivial.

Theorem 5 Let T be a labeled triangulation, two edges are in the same orbit if and only if there exist
an elementary swap between them.

Theorem 6 (Edge label permutation theorem) Let T be a triangulation of a point set P in the
plane, l1 and l2 two labelings of the edges of T . Then, there is a sequence of O(n) elementary swaps from
l1 to l2 if and only if all e, e′ ∈ T such that l1(e) = l2(e

′) are in the same orbit. Such a sequence can be
realized via a sequence of O(n7) edge flips, which can be found in polynomial time.

2 Second Part. Towards the proof of Theorem 4

2.1 Definitions and notations.

The complex of plane graphs on P is defined by T = T (P ) = {F : F ⊂ E,F non-crossing} .
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A pure d-dimensional simplicial complex is shellable if its facets admit an order such that at each
step the simplicial complex generated by the previous facets intersected with the current one is a (d-1)
pure simplicial complex.

Two polyhedra |K| and |L| are piecewise linear homeomorphic if exist isomorphic subdivisions
of K and L, i.e exists a face preserving bijection.

A simplicial complex K is a combinatorial n-manifold if the link of each p-simplex is piecewise
linear homeomorphic to either the boundary of an (n-p)-simplex or to an (n-p-1)-simplex.

Let K be a combinatorial n-manifold and K ′ its first barycentric subdivision. Given a p-simplex σ
in K, K ′|lk(σ,K) is isomorphic to the subcomplex K̃σ = {τ̃1 . . . τ̃m : σ < τ1 < · · · < τm ∈ K, σ 6= τ1} in
K ′. Thus |K̃σ| ' Sn−p−1 or Bn−p−1, and hence B̃σ = σ̃ ∗ |K̃σ| is a piecewise linear (n-p)-ball. B̃σ is the
dual cell of σ and the collection of dual cells is the dual cell complex.

We say that a topological space X is a n-dimensional pseudomanifold with boundary if: (a)
X = |K| is the union of all n-simplices. (b) Every (n–1)-simplex is a face of one or two n-simplices
for n > 1. (c) For every pair of n-simplices σ and σ′ in K, there is a sequence of n-simplices σ =
σ0, σ1, . . . , σk = σ′ such that the intersection σi ∩ σi+1 is an (n-1)-simplex for all i = 0, . . . , k − 1. The
boundary of X is given by faces which are contained in a unique maximal face.

2.2 Storyline

Theorem 7 ([1] Prop 4.7.22) Suppose K is a finite d-dimensional simplicial complex that is a pseu-
domanifold i.e. K is pure and every (d-1) dimensional face of K is contained in at most two d-faces.
If K is shellable then K is either a piecewise linear ball or a piecewise-linear sphere. The former case
occurs if and only if there is at least one (d-1) dimensional face that is contained in only one d-face of
K, in which case the pseudomanifold is said to have nonempty boundary.

Theorem 8 T is shellable (m− 1) dimensional pseudomanifold with nonempty boundary, and hence a
piecewise linear ball.

Theorem 9 Let T be the simplicial complex of plane graphs on the point set P . A non-crossing set of
edges F on P is an interior face of T if and only the following conditions holds: 1) F contains all convex
hull edges of P . 2) Every bounded region in the complement of the plane graph (P, F ) is convex.

Theorem 10 Let B be a d-dimensional piecewise linear ball. 1) For each interior k-dimensional face
F of B, one can define a dual cell F ∗. [2][Lemma I.19] 2) The construction reverses inclusion. 3) The
dual cells of the interior faces of B form a regular cell complex, denoted B∗ and called the dual complex.
B∗ need not be a manifold or pure d dimensional, but it is homotopy equivalent to B. [3][Lemma 70.1]
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