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1. DEFINITIONS, MAIN THEOREM

chromatic number x(G),

family of lists (L(v))yeq is k-list-assignment if
|L(v)| >k Vv € G,

G is L-list-colorable, if Yv € G, ¢(v) € L(v).

G is k-list-colorable, if for any k-list-
assignement L, the graph G is L-list-colorable,

choice number of G, ch(G), is the minimum
integer k such that G is k-list-colorable,

average degree of G is the average of the de-
grees of the vertices of G,

mazximum average degree of G, mad(G), is the
max of the avg degrees of the subgraphs of G,

(@) < ch(G) < [mad(G)] +1,

arboricity of G, a(G), is the min
nbr of edge-disjoint forests into which
the edges of G can be partitioned.

a(G) = max{[ﬂl/@%?_‘l-‘ |HCG,|V(H)| > 2} .
A block of a graph G is a maximal 2-connected
subgraph of G.
A Gallai tree is a connected graph in which
each block is an odd cycle or a clique.

Theorem (Brooks). Any connected graph of
mazximum degree A which is not an odd cycle
or a clique has chromatic number at most A.

Theorem 1.1 ([2,3]). If a connected graph G is
not a Gallai tree, then for any list-assignment L
such that for every vertexv € G, |L(v)| = dg(v),
G is L-list-colorable.

Theorem 1.2 (Folklore). Let G be a graph and
let d = [mad(G)]. If d > 3 and G does not
contain any (d+1)-clique, then x(G) < ch(G) <
d.

Theorem 1.3 (Main result). There is a
deterministic distributed algorithm that given
an n-vertexr graph G, and an integer d >
max(3, mad(Q)), either finds a (d + 1)-clique in
G, or finds a d-list-coloring of G in O(d*log>n)
rounds. Moreover, if every vertex has degree at
most d, then the algorithm runs in O(d?log®n)
rounds.

Theorem 1.4. No distributed algorithm can 4-
color every n-vertex planar graph in o(n) rounds.

2. PROOF oF THEOREM [.3]

Lemma 2.1. |A| > (L Moreover, if there are

3d)3
no poor vertices in G, then |A| Z g -
Lemma 2.2. Any L-list-coloring of G— A can be
extended to an L-list-coloring of G in O(dlog®n)

rounds.

3. PROOF OF LEMMAS

Theorem 3.1 ([1]). If a graph G has girth at
least g (g odd), and average degree d =2+, for
some real number § > 0, then
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Corollary 3.2. If an n-vertex graph G has girth
at least g, and average degree at least 2 + 9, for
some real number § > 0, then

4
g < m logn

Observation 3.3. If three vertices u,v,w of a
mazimal cligue K are in a local block of G[S],

then K s a local block of G[S].

Proposition 3.4. There are at least 5 |S| ver-
tices of degree at most d — 1 in G[S].

Observation 3.5. For any wvertex v € H,
|Lr(v)| =2 d — dgr(v) + d(v). In particular,
if dgr(v) < d then |Ly(v)| = dg(v) and if
der(v) <d—1 then |Ly(v)| = dg(v) + 1.
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4. CONSEQUENCES OF MAIN RESULT

Corollary 4.1. There is a deterministic
distributed algorithm of round complexity
O(A%log®n) that given any n-vertexr graph
of maximum degree A > 3, and any A-list-
assignment L for the vertices of G, either finds
an L-list-coloring of G, or finds that no such
coloring exists.

Proposition 4.2. Fvery n-vertex planar graph
of girth at least g has maximum average degree
less than ;%2. In particular, planar graphs have
mazimum average degree less than 6, triangle-
free planar graphs have mazimum average degree
less than 4, and planar graphs of girth at least 6

have mazrimum average degree less than 3.

Corollary 4.3. There is a deterministic dis-
tributed algorithm of round complezity O(log® n)
that given an n-vertex planar graph G,
(1) finds a 6-(list-)coloring of G;
(2) finds a 4-(list-)coloring of G if G is
triangle-free;
(3) finds a 3-(list-)coloring of G if G has
girth at least 6.

Observation 4.4. Let G be a graph, and H be
a graph with at most |V (G)| vertices, such that
each ball of radius at most r in H is isomorphic
to some ball of radius at most r in G. Then no
distributed algorithm can color G with less than
X(H) colors in at most r rounds.

Theorem 4.5. No distributed algorithm can 3-
color the graph Hy, in less than k/2 rounds. In
particular, no distributed algorithm can 3-color
every planar triangle-free graph on n vertices in
o(n) rounds.

Theorem 4.6. No distributed algorithm can 3-
color the rectangular k X k-grid in the plane in
less than k/2 rounds. In particular, no dis-
tributed algorithm can 3-color every planar bi-
partite graph on n vertices in o(y/n) rounds.

Corollary 4.7. For any integer g > 1, there
s a deterministic distributed algorithm of round
complezity O(log3n) that given an n-vertex
graph G embeddable on a surface of Euler genus
g, finds an H(g)-list-coloring of G. Moreover,

when %(5—1— V249 + 1) is an integer and G is not
the complete graph on H(g) vertices, the algo-
rithm can indeed find an (H(g) — 1)-list-coloring
of G.

5. CONCLUSION

Theorem 5.1. There is a deterministic dis-
tributed algorithm that given an n-vertex graph G
of maximum degree A, and a nice list-assignment
L for the vertices of G, finds an L-list-coloring
of G in O(A%log®n) rounds.
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