DISTRIBUTED COLORING IN SPARSE GRAPHS WITH FEWER COLORS

PIERRE ABOULKER, MARTHE BONAMY, NICOLAS BOUSQUET, AND LOUIS ESPERET

Presented by Jana Syrovátková

1. Definitions, main theorem

chromatic number $\chi(G)$,

family of lists $(L(v))_{v \in G}$ is k-list-assignment if $|L(v)| \ge k \ \forall v \in G$,

G is L-list-colorable, if $\forall v \in G, c(v) \in L(v)$.

G is *k*-list-colorable, if for any *k*-list-assignment L, the graph G is *L*-list-colorable,

choice number of G, ch(G), is the minimum integer k such that G is k-list-colorable,

average degree of G is the average of the degrees of the vertices of G,

maximum average degree of G, mad(G), is the max of the avg degrees of the subgraphs of G,

 $\chi(G) \leqslant \operatorname{ch}(G) \leqslant \lfloor \operatorname{mad}(G) \rfloor + 1,$

 $\begin{array}{ll} arboricity & {\rm of} \quad G, \quad a(G), \quad {\rm is} \quad {\rm the} \quad {\rm min} \\ {\rm nbr} \quad {\rm of} \quad {\rm edge-disjoint} \quad {\rm forests} \quad {\rm into} \quad {\rm which} \\ {\rm the} \quad {\rm edges} \quad {\rm of} \quad G \quad {\rm can} \quad {\rm be} \quad {\rm partitioned}. \\ a(G) = \max \left\{ \left\lceil \frac{|E(H)|}{|V(H)|-1} \right\rceil \mid H \subseteq G, |V(H)| \geqslant 2 \right\}. \\ {\rm A} \ block \ {\rm of} \ {\rm a} \ {\rm graph} \ G \ {\rm is} \ {\rm a} \ {\rm maximal} \ 2\text{-connected} \\ {\rm subgraph} \ {\rm of} \ G. \end{array} \right.$

A *Gallai tree* is a connected graph in which each block is an odd cycle or a clique.

Theorem (Brooks). Any connected graph of maximum degree Δ which is not an odd cycle or a clique has chromatic number at most Δ .

Theorem 1.1 ([2, 3]). If a connected graph G is not a Gallai tree, then for any list-assignment L such that for every vertex $v \in G$, $|L(v)| \ge d_G(v)$, G is L-list-colorable.

Theorem 1.2 (Folklore). Let G be a graph and let $d = \lceil \operatorname{mad}(G) \rceil$. If $d \ge 3$ and G does not contain any (d+1)-clique, then $\chi(G) \le ch(G) \le d$.

Theorem 1.3 (Main result). There is a deterministic distributed algorithm that given an n-vertex graph G, and an integer $d \ge \max(3, \max(G))$, either finds a (d+1)-clique in G, or finds a d-list-coloring of G in $O(d^4 \log^3 n)$ rounds. Moreover, if every vertex has degree at most d, then the algorithm runs in $O(d^2 \log^3 n)$ rounds.

Theorem 1.4. No distributed algorithm can 4color every n-vertex planar graph in o(n) rounds.

2. Proof of Theorem 1.3

Lemma 2.1. $|A| \ge \frac{n}{(3d)^3}$. Moreover, if there are no poor vertices in G, then $|A| \ge \frac{n}{12d+1}$.

Lemma 2.2. Any *L*-list-coloring of G-A can be extended to an *L*-list-coloring of G in $O(d \log^2 n)$ rounds.

3. Proof of Lemmas

Theorem 3.1 ([1]). If a graph G has girth at least g (g odd), and average degree $d = 2 + \delta$, for some real number $\delta > 0$, then

$$n \ge 1 + d \sum_{i=0}^{\frac{g-1}{2}} (d-1)^i \ge (1+\delta)^{\frac{g-1}{2}}.$$

Corollary 3.2. If an n-vertex graph G has girth at least g, and average degree at least $2 + \delta$, for some real number $\delta > 0$, then

$$g \leqslant \frac{4}{\log(1+\delta)} \log n$$

Observation 3.3. If three vertices u, v, w of a maximal clique K are in a local block of G[S], then K is a local block of G[S].

Proposition 3.4. There are at least $\frac{1}{12}|S|$ vertices of degree at most d-1 in G[S].

Observation 3.5. For any vertex $v \in H$, $|L_H(v)| \ge d - d_{G'}(v) + d_H(v)$. In particular, if $d_{G'}(v) \le d$ then $|L_H(v)| \ge d_H(v)$ and if $d_{G'}(v) \le d - 1$ then $|L_H(v)| \ge d_H(v) + 1$.

4. Consequences of main result

Corollary 4.1. There is a deterministic distributed algorithm of round complexity $O(\Delta^2 \log^3 n)$ that given any n-vertex graph of maximum degree $\Delta \ge 3$, and any Δ -listassignment L for the vertices of G, either finds an L-list-coloring of G, or finds that no such coloring exists.

Proposition 4.2. Every n-vertex planar graph of girth at least g has maximum average degree less than $\frac{2g}{g-2}$. In particular, planar graphs have maximum average degree less than 6, trianglefree planar graphs have maximum average degree less than 4, and planar graphs of girth at least 6 have maximum average degree less than 3.

Corollary 4.3. There is a deterministic distributed algorithm of round complexity $O(\log^3 n)$ that given an n-vertex planar graph G,

- (1) finds a 6-(list-)coloring of G;
- (2) finds a 4-(list-)coloring of G if G is triangle-free;
- (3) finds a 3-(list-)coloring of G if G has girth at least 6.

Observation 4.4. Let G be a graph, and H be a graph with at most |V(G)| vertices, such that each ball of radius at most r in H is isomorphic to some ball of radius at most r in G. Then no distributed algorithm can color G with less than $\chi(H)$ colors in at most r rounds.

Theorem 4.5. No distributed algorithm can 3color the graph H_k in less than k/2 rounds. In particular, no distributed algorithm can 3-color every planar triangle-free graph on n vertices in o(n) rounds.

Theorem 4.6. No distributed algorithm can 3color the rectangular $k \times k$ -grid in the plane in less than k/2 rounds. In particular, no distributed algorithm can 3-color every planar bipartite graph on n vertices in $o(\sqrt{n})$ rounds.

Corollary 4.7. For any integer $g \ge 1$, there is a deterministic distributed algorithm of round complexity $O(\log^3 n)$ that given an n-vertex graph G embeddable on a surface of Euler genus g, finds an H(g)-list-coloring of G. Moreover, when $\frac{1}{2}(5+\sqrt{24g+1})$ is an integer and G is not the complete graph on H(g) vertices, the algorithm can indeed find an (H(g)-1)-list-coloring of G.

5. Conclusion

Theorem 5.1. There is a deterministic distributed algorithm that given an n-vertex graph G of maximum degree Δ , and a nice list-assignment L for the vertices of G, finds an L-list-coloring of G in $O(\Delta^2 \log^3 n)$ rounds.

References

- N. Alon, S. Hoory and N. Linial, *The Moore bound for irregular graphs*, Graphs Combin. **18** (2002), 53–57.
- [2] O. Borodin, Criterion of chromaticity of a degree prescription, In Abstracts of IV All-Union Conf. on Th. Cybernetics (1977), 127–128.
- [3] P. Erdős, A. Rubin, and H. Taylor, *Choosability in graphs*, In Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium **26** (1979), 125–157.