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1. Definitions, main theorem

chromatic number χ(G),
family of lists (L(v))v∈G is k-list-assignment if

|L(v)| > k ∀v ∈ G,
G is L-list-colorable, if ∀v ∈ G, c(v) ∈ L(v).
G is k-list-colorable, if for any k-list-

assignement L, the graph G is L-list-colorable,
choice number of G, ch(G), is the minimum

integer k such that G is k-list-colorable,
average degree of G is the average of the de-

grees of the vertices of G,
maximum average degree of G, mad(G), is the

max of the avg degrees of the subgraphs of G,
χ(G) 6 ch(G) 6 bmad(G)c+ 1,
arboricity of G, a(G), is the min

nbr of edge-disjoint forests into which
the edges of G can be partitioned.

a(G) = max
{⌈

|E(H)|
|V (H)|−1

⌉
|H ⊆ G, |V (H)| > 2

}
.

A block of a graph G is a maximal 2-connected
subgraph of G.

A Gallai tree is a connected graph in which
each block is an odd cycle or a clique.

Theorem (Brooks). Any connected graph of
maximum degree ∆ which is not an odd cycle
or a clique has chromatic number at most ∆.

Theorem 1.1 ([2, 3]). If a connected graph G is
not a Gallai tree, then for any list-assignment L
such that for every vertex v ∈ G, |L(v)| > dG(v),
G is L-list-colorable.

Theorem 1.2 (Folklore). Let G be a graph and
let d = dmad(G)e. If d > 3 and G does not
contain any (d+1)-clique, then χ(G) 6 ch(G) 6
d.

Theorem 1.3 (Main result). There is a
deterministic distributed algorithm that given
an n-vertex graph G, and an integer d >
max(3,mad(G)), either finds a (d+ 1)-clique in
G, or finds a d-list-coloring of G in O(d4 log3 n)
rounds. Moreover, if every vertex has degree at
most d, then the algorithm runs in O(d2 log3 n)
rounds.

Theorem 1.4. No distributed algorithm can 4-
color every n-vertex planar graph in o(n) rounds.

2. Proof of Theorem 1.3

Lemma 2.1. |A| > n
(3d)3

. Moreover, if there are

no poor vertices in G, then |A| > n
12d+1 .

Lemma 2.2. Any L-list-coloring of G−A can be
extended to an L-list-coloring of G in O(d log2 n)
rounds.

3. Proof of Lemmas

Theorem 3.1 ([1]). If a graph G has girth at
least g (g odd), and average degree d = 2+ δ, for
some real number δ > 0, then

n > 1 + d

g−1
2∑
i=0

(d− 1)i > (1 + δ)
g−1
2 .

Corollary 3.2. If an n-vertex graph G has girth
at least g, and average degree at least 2 + δ, for
some real number δ > 0, then

g 6 4
log(1+δ) log n.

Observation 3.3. If three vertices u, v, w of a
maximal clique K are in a local block of G[S],
then K is a local block of G[S].

Proposition 3.4. There are at least 1
12 |S| ver-

tices of degree at most d− 1 in G[S].

Observation 3.5. For any vertex v ∈ H,
|LH(v)| > d − dG′(v) + dH(v). In particular,
if dG′(v) 6 d then |LH(v)| > dH(v) and if
dG′(v) 6 d− 1 then |LH(v)| > dH(v) + 1.
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4. Consequences of main result

Corollary 4.1. There is a deterministic
distributed algorithm of round complexity
O(∆2 log3 n) that given any n-vertex graph
of maximum degree ∆ > 3, and any ∆-list-
assignment L for the vertices of G, either finds
an L-list-coloring of G, or finds that no such
coloring exists.

Proposition 4.2. Every n-vertex planar graph
of girth at least g has maximum average degree
less than 2g

g−2 . In particular, planar graphs have

maximum average degree less than 6, triangle-
free planar graphs have maximum average degree
less than 4, and planar graphs of girth at least 6
have maximum average degree less than 3.

Corollary 4.3. There is a deterministic dis-
tributed algorithm of round complexity O(log3 n)
that given an n-vertex planar graph G,

(1) finds a 6-(list-)coloring of G;
(2) finds a 4-(list-)coloring of G if G is

triangle-free;
(3) finds a 3-(list-)coloring of G if G has

girth at least 6.

Observation 4.4. Let G be a graph, and H be
a graph with at most |V (G)| vertices, such that
each ball of radius at most r in H is isomorphic
to some ball of radius at most r in G. Then no
distributed algorithm can color G with less than
χ(H) colors in at most r rounds.

Theorem 4.5. No distributed algorithm can 3-
color the graph Hk in less than k/2 rounds. In
particular, no distributed algorithm can 3-color
every planar triangle-free graph on n vertices in
o(n) rounds.

Theorem 4.6. No distributed algorithm can 3-
color the rectangular k × k-grid in the plane in
less than k/2 rounds. In particular, no dis-
tributed algorithm can 3-color every planar bi-
partite graph on n vertices in o(

√
n) rounds.

Corollary 4.7. For any integer g > 1, there
is a deterministic distributed algorithm of round
complexity O(log3 n) that given an n-vertex
graph G embeddable on a surface of Euler genus
g, finds an H(g)-list-coloring of G. Moreover,

when 1
2(5 +

√
24g + 1) is an integer and G is not

the complete graph on H(g) vertices, the algo-
rithm can indeed find an (H(g)− 1)-list-coloring
of G.

5. Conclusion

Theorem 5.1. There is a deterministic dis-
tributed algorithm that given an n-vertex graph G
of maximum degree ∆, and a nice list-assignment
L for the vertices of G, finds an L-list-coloring
of G in O(∆2 log3 n) rounds.
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