Basic definitions

Definition 1. A partition of a graph G is a set \mathscr{P} of non-empty induced supgraphs of G, called *parts*, such that each vertex of G is exactly in one element of \mathscr{P} . A partition is *connected* if each part of \mathscr{P} is connected.

Definition 2. The quotient of \mathscr{P} is the graph, denoted by G/\mathscr{P} , with vertex set \mathscr{P} where $P, Q \in \mathscr{P}$ are adjacent if some vertex in P is adjacent in G to some vertex in Q.

Definition 3. A partition of graph G is *chordal* if it is connected and the quotient G/\mathscr{P} is chordal.

Definition 4. Let $\mathscr{P} = \{P_1, \ldots, P_m\}$ be a partition of a graph G, and let X be an induced subgraph of G. Then the *restriction* of \mathscr{P} to X is the partition of X defined by

 $\mathscr{P}\langle X\rangle := \{G[V(P_i) \cap V(X)]; i \in \{1, \dots, m\}, V(P_i) \cap V(X) \neq \emptyset\}.$

Main result

Hadwiger's Conjecture. Every graph with no K_{t+1} -minor is t-colourable.

The best known upper bound on the chromatic number for such graph is $\mathcal{O}(t\sqrt{\log t})$.

Question 1 (Reed and Seymour). *Does every graph have a chordal partition such that each part is bipartite?*

This would imply that every graph with no K_{t+1} -minor is 2t-colourable. However, the following theorem implies the answer is **NO**.

Theorem 2. For every integer k there is a graph G, such that for every chordal partition \mathscr{P} of G, some part of \mathscr{P} contains K_k .

Tools

Lemma 3. Let X be an induced subgraph of a graph G, such that the neighbourhood of each component of G - V(X) is a clique in X. Let \mathscr{P} be connected partition of G with quotient G/\mathscr{P} . Then $\mathscr{P}\langle X \rangle$ is a connected partition of X, and the quotient of $\mathscr{P}\langle X \rangle$ is the subgraph of G/\mathscr{P} induced by those parts that intersect X.

Theorem 2 is a corollary of the following lemma for r = 1.

Lemma 4. For all integers $k \ge 1$ and $r \ge 1$ there is a graph G(k, r) such that for every chordal partition \mathscr{P} of G(k, r) either:

- 1. G contains a K_{kr} subgraph intersecting each of r distinct parts of \mathscr{P} in k vertices, or
- 2. some part of \mathscr{P} contains K_{k+1} .

Other partitions

Theorem 5. For every integer k there is a graph G, such that for every perfect partition \mathscr{P} of G, some part of \mathscr{P} contains K_k .

Theorem 6. For every integer k and graph H, there is a graph G, such that for every connected partition \mathscr{P} of G, some part of \mathscr{P} contains K_k or the quotient contains H.

The proofs of these theorems are very similar to the proof of Theorem 2.