Optimal compression of approximate inner products and dimension reduction

Noga Alon Bo'az Klartag

1 Main result

Let X be a set of n points of norm at most 1 in the Euclidean space R^{k}, and suppose $\epsilon>0$. An ϵ-distance sketch for X is a data structure that, given any two points of X enables one to recover the square of the Euclidean distance between them, and their inner product, up to an additive error of ϵ.
Let $f(n, k, \epsilon)$ denote the minimum possible number of bits of such a sketch.
Theorem 1. For all n and $\frac{1}{n^{0.49}} \leq \epsilon \leq 0.1$ the function $f(n, k, \epsilon)$ satisfies the following

- For $\frac{\log n}{\epsilon^{2}} \leq k \leq n$,

$$
f(n, k, \epsilon)=\Theta\left(\frac{n \log n}{\epsilon^{2}}\right)
$$

- For $\log n \leq k \leq \frac{\log n}{\epsilon^{2}}$,

$$
f(n, k, \epsilon)=\Theta\left(n k \log \left(2+\frac{\log n}{\epsilon^{2} k}\right)\right)
$$

- For $1 \leq k \leq \log n$,

$$
f(n, k, \epsilon)=\Theta(n k \log (1 / \epsilon)) .
$$

2 Definitions

2.1 Gram matrices

For n vectors w_{1}, \ldots, w_{n} the Gram matrix $G\left(w_{1}, \ldots, w_{n}\right)$ is the n by n matrix G given by $G(i, j)=\left\langle w_{i}, w_{j}\right\rangle$. We say that two Gram matrices G_{1}, G_{2} are ϵ-separated if there are two indices $i \neq j$ so that $\left|G_{1}(i, j)-G_{2}(i, j)\right|>\epsilon$.

Let \mathcal{G} be a maximal (with respect to containment) set of ϵ-separated Gram matrices of ordered sequences of n vectors w_{1}, \ldots, w_{n} in R^{m}, where the norm of each vector w_{i} is at most k. Then by maximality of \mathcal{G}, for every Gram matrix M of vectors of norm at most k in R^{m} there is a member of \mathcal{G} in which all inner product of pairs of distinct points are within ϵ of the corresponding inner products in M. Therefore we can use an index of an appropriate member of \mathcal{G} as a sketch for M, requiring $\log |\mathcal{G}|$ bits.

$2.2 \quad \delta$-nets

For $0<\delta<1 / 4$ and for $k \geq 1$ a δ-net, denoted by $N(k, \delta)$, be the set of all vectors of Euclidean norm at most 1 in which every coordinate is an integral multiple of $\frac{\delta}{\sqrt{k}}$. Given a vector in the unit ball in R^{k} we can round it to a vector in the net that lies within distance $\delta / 2$ from it by simply rounding each coordinate.

Each point of $N(k, \delta)$ can be represented by at most $k \log (1 / \delta)+2 k$ bits as the size of $N(k, \delta)$ has size $(1 / \delta)^{k} 2^{O(k)}$.

3 Upper bounds

Lemma 2. For $\frac{\log n}{\epsilon^{2}} \leq k \leq n, f(n, k, 5 \epsilon)=O\left(\frac{n \log n}{\epsilon^{2}}\right)$.
Use Johnson-Lindenstrauss Lemma to reduce dimension to $C \frac{\log n}{\epsilon^{2}} \rightarrow$ encode inner products using maximal set \mathcal{G} of ϵ-separated Gram matrices \rightarrow show that \mathcal{G} is "small".

Lemma 3. For $\log n \leq k \leq \frac{\log n}{\epsilon^{2}}, f(n, k, 4 \epsilon)=O\left(n k \log \left(2+\frac{\log n}{\epsilon^{2} k}\right)\right)$
Similar to Lemma 2, except the initial usage of Johnson-Lindenstrauss Lemma.

4 Algorithmic proof

For $\frac{40 \log n}{\epsilon^{2}} \leq k \leq n$, apply Johnson-Lindenstrauss Lemma to $m=40 \log n / \epsilon^{2}$. Then for $w_{i} \in X$ round each coordinate to an integral multiple of $1 / \sqrt{m} \rightarrow$ random vector V_{i}. Suppose the j-th coordinate of w_{i} is $\frac{s+p}{\sqrt{m}}$ for $s \in \mathbb{Z}$ and $0 \leq p<1$, then

$$
V_{i}(j)= \begin{cases}\frac{s}{\sqrt{m}} & \text { with probability } 1-p \\ \frac{s+1}{\sqrt{m}} & \text { with probability } p\end{cases}
$$

For $\log n \geq k \leq \frac{40 \log n}{\epsilon^{2}}$, let δ be such that $k=\frac{40 \delta^{2} \log n}{\epsilon^{2}}$. Round similarly as before, this time to points of $N(k, \delta)$.

5 Lower bounds

Lemma 4. If $k=\delta^{2} \log n /\left(200 \epsilon^{2}\right)$ where $2 \epsilon \leq \delta \leq 1 / 2$, then $f(n, k, \epsilon / 2)=\Omega(k n \log (1 / \delta))$.
Fix maximal set of point N in the unit ball with pairwise distances at least $\delta \rightarrow$ find set R, $|R|=n / 2$ such that for any $N_{1}, N_{2} \subset N$ with $\left|N_{1}\right|=\left|N_{2}\right|=n / 2$, the matrices $G\left(R, N_{1}\right)$ and $G\left(R, N_{2}\right)$ are ϵ-separated \rightarrow use size of N to bound $f(n, k, \epsilon)$ from below.

6 Known results

Theorem 5 (Johnson-Lindenstrauss Lemma). Let $X \subset R^{k},|X|=n$ and $0<\epsilon \leq 1 / 2$. Then there exists map $f: X \rightarrow R^{m}$ for some $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ such that

$$
\forall x, y \in X,(1-\epsilon)\|x-y\|^{2} \leq\|f(x)-f(y)\|^{2} \leq(1+\epsilon)\|x-y\|^{2}
$$

Moreover, there is a probabilistic algorithm that outputs the map in time $O\left(\frac{\log ^{3} n}{\epsilon^{2}}\right)$.
Theorem 6 (Hoeffding's Inequality). If X_{1}, \ldots, X_{n} are independent and $a_{i} \leq X_{i} \leq b_{i}$ for every i, then for $t>0$

$$
\operatorname{Pr}\left[\sum_{i=1}^{n} X-\mu>t\right] \leq e^{-2 t^{2} / \sum\left(b_{i}-a_{i}\right)^{2}} .
$$

