Optimal compression of approximate inner products and dimension reduction

Noga Alon Bo'az Klartag

1 Main result

Let X be a set of n points of norm at most 1 in the Euclidean space \mathbb{R}^k , and suppose $\epsilon > 0$. An ϵ -distance sketch for X is a data structure that, given any two points of X enables one to recover the square of the Euclidean distance between them, and their inner product, up to an additive error of ϵ .

Let $f(n, k, \epsilon)$ denote the minimum possible number of bits of such a sketch.

Theorem 1. For all n and $\frac{1}{n^{0.49}} \leq \epsilon \leq 0.1$ the function $f(n, k, \epsilon)$ satisfies the following

• For $\frac{\log n}{\epsilon^2} \le k \le n$,

$$f(n,k,\epsilon) = \Theta\left(\frac{n\log n}{\epsilon^2}\right)$$

• For $\log n \le k \le \frac{\log n}{\epsilon^2}$,

$$f(n,k,\epsilon) = \Theta\left(nk\log\left(2 + \frac{\log n}{\epsilon^2 k}\right)\right)$$

• For $1 \le k \le \log n$,

$$f(n, k, \epsilon) = \Theta(nk \log(1/\epsilon))$$

2 Definitions

2.1 Gram matrices

For *n* vectors w_1, \ldots, w_n the Gram matrix $G(w_1, \ldots, w_n)$ is the *n* by *n* matrix G given by $G(i, j) = \langle w_i, w_j \rangle$. We say that two Gram matrices G_1 , G_2 are ϵ -separated if there are two indices $i \neq j$ so that $|G_1(i, j) - G_2(i, j)| > \epsilon$.

Let \mathcal{G} be a maximal (with respect to containment) set of ϵ -separated Gram matrices of ordered sequences of n vectors w_1, \ldots, w_n in \mathbb{R}^m , where the norm of each vector w_i is at most k. Then by maximality of \mathcal{G} , for every Gram matrix M of vectors of norm at most k in \mathbb{R}^m there is a member of \mathcal{G} in which all inner product of pairs of distinct points are within ϵ of the corresponding inner products in M. Therefore we can use an index of an appropriate member of \mathcal{G} as a sketch for M, requiring $\log |\mathcal{G}|$ bits.

2.2 δ -nets

For $0 < \delta < 1/4$ and for $k \ge 1$ a δ -net, denoted by $N(k, \delta)$, be the set of all vectors of Euclidean norm at most 1 in which every coordinate is an integral multiple of $\frac{\delta}{\sqrt{k}}$. Given a vector in the unit ball in \mathbb{R}^k we can round it to a vector in the net that lies within distance $\delta/2$ from it by simply rounding each coordinate.

Each point of $N(k, \delta)$ can be represented by at most $k \log(1/\delta) + 2k$ bits as the size of $N(k, \delta)$ has size $(1/\delta)^k 2^{O(k)}$.

3 Upper bounds

Lemma 2. For $\frac{\log n}{\epsilon^2} \le k \le n$, $f(n,k,5\epsilon) = O\left(\frac{n \log n}{\epsilon^2}\right)$.

Use Johnson-Lindenstrauss Lemma to reduce dimension to $C\frac{\log n}{\epsilon^2} \to$ encode inner products using maximal set \mathcal{G} of ϵ -separated Gram matrices \to show that \mathcal{G} is "small".

Lemma 3. For $\log n \le k \le \frac{\log n}{\epsilon^2}$, $f(n,k,4\epsilon) = O\left(nk \log\left(2 + \frac{\log n}{\epsilon^2 k}\right)\right)$

Similar to Lemma 2, except the initial usage of Johnson-Lindenstrauss Lemma.

4 Algorithmic proof

For $\frac{40 \log n}{\epsilon^2} \leq k \leq n$, apply Johnson-Lindenstrauss Lemma to $m = 40 \log n/\epsilon^2$. Then for $w_i \in X$ round each coordinate to an integral multiple of $1/\sqrt{m} \to$ random vector V_i . Suppose the *j*-th coordinate of w_i is $\frac{s+p}{\sqrt{m}}$ for $s \in \mathbb{Z}$ and $0 \leq p < 1$, then

$$V_i(j) = \begin{cases} \frac{s}{\sqrt{m}} & \text{with probability } 1 - p, \\ \frac{s+1}{\sqrt{m}} & \text{with probability } p. \end{cases}$$

For $\log n \ge k \le \frac{40 \log n}{\epsilon^2}$, let δ be such that $k = \frac{40\delta^2 \log n}{\epsilon^2}$. Round similarly as before, this time to points of $N(k, \delta)$.

5 Lower bounds

Lemma 4. If $k = \delta^2 \log n/(200\epsilon^2)$ where $2\epsilon \le \delta \le 1/2$, then $f(n, k, \epsilon/2) = \Omega(kn \log(1/\delta))$.

Fix maximal set of point N in the unit ball with pairwise distances at least $\delta \to \text{find set } R$, |R| = n/2 such that for any $N_1, N_2 \subset N$ with $|N_1| = |N_2| = n/2$, the matrices $G(R, N_1)$ and $G(R, N_2)$ are ϵ -separated \to use size of N to bound $f(n, k, \epsilon)$ from below.

6 Known results

Theorem 5 (Johnson-Lindenstrauss Lemma). Let $X \subset R^k, |X| = n$ and $0 < \epsilon \le 1/2$. Then there exists map $f: X \to R^m$ for some $m = O(\frac{\log n}{\epsilon^2})$ such that

$$\forall x, y \in X, (1-\epsilon) \|x - y\|^2 \le \|f(x) - f(y)\|^2 \le (1+\epsilon) \|x - y\|^2$$

Moreover, there is a probabilistic algorithm that outputs the map in time $O(\frac{\log^3 n}{\epsilon^2})$.

Theorem 6 (Hoeffding's Inequality). If X_1, \ldots, X_n are independent and $a_i \leq X_i \leq b_i$ for every i, then for t > 0

$$\Pr\left[\sum_{i=1}^{n} X - \mu > t\right] \le e^{-2t^2 / \sum (b_i - a_i)^2}$$