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1 Main result
Let X be a set of n points of norm at most 1 in the Euclidean space Rk, and suppose ε > 0. An
ε-distance sketch for X is a data structure that, given any two points of X enables one to recover
the square of the Euclidean distance between them, and their inner product, up to an additive
error of ε.
Let f(n, k, ε) denote the minimum possible number of bits of such a sketch.

Theorem 1. For all n and 1
n0.49 ≤ ε ≤ 0.1 the function f(n, k, ε) satisfies the following

• For logn
ε2 ≤ k ≤ n,

f(n, k, ε) = Θ

(
n log n

ε2

)
• For log n ≤ k ≤ logn

ε2 ,

f(n, k, ε) = Θ

(
nk log

(
2 +

log n

ε2k

))
• For 1 ≤ k ≤ log n,

f(n, k, ε) = Θ (nk log (1/ε)) .

2 Definitions

2.1 Gram matrices
For n vectors w1, . . . , wn the Gram matrix G(w1, . . . , wn) is the n by n matrix G given by
G(i, j) = 〈wi, wj〉. We say that two Gram matrices G1, G2 are ε-separated if there are two
indices i 6= j so that |G1(i, j)−G2(i, j)| > ε.

Let G be a maximal (with respect to containment) set of ε-separated Gram matrices of ordered
sequences of n vectors w1, . . . , wn in Rm, where the norm of each vector wi is at most k. Then by
maximality of G, for every Gram matrixM of vectors of norm at most k in Rm there is a member
of G in which all inner product of pairs of distinct points are within ε of the corresponding inner
products in M . Therefore we can use an index of an appropriate member of G as a sketch for
M , requiring log |G| bits.

2.2 δ-nets
For 0 < δ < 1/4 and for k ≥ 1 a δ-net, denoted by N(k, δ), be the set of all vectors of Euclidean
norm at most 1 in which every coordinate is an integral multiple of δ√

k
. Given a vector in the

unit ball in Rk we can round it to a vector in the net that lies within distance δ/2 from it by
simply rounding each coordinate.

Each point of N(k, δ) can be represented by at most k log(1/δ)+2k bits as the size of N(k, δ)
has size (1/δ)k2O(k).
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3 Upper bounds

Lemma 2. For logn
ε2 ≤ k ≤ n, f(n, k, 5ε) = O

(
n logn
ε2

)
.

Use Johnson-Lindenstrauss Lemma to reduce dimension to C logn
ε2 → encode inner products

using maximal set G of ε-separated Gram matrices → show that G is ”small”.

Lemma 3. For log n ≤ k ≤ logn
ε2 , f(n, k, 4ε) = O

(
nk log

(
2 + logn

ε2k

))
Similar to Lemma 2, except the initial usage of Johnson-Lindenstrauss Lemma.

4 Algorithmic proof

For 40 logn
ε2 ≤ k ≤ n, apply Johnson-Lindenstrauss Lemma to m = 40 log n/ε2. Then for wi ∈ X

round each coordinate to an integral multiple of 1/
√
m → random vector Vi. Suppose the j-th

coordinate of wi is s+p√
m

for s ∈ Z and 0 ≤ p < 1, then

Vi(j) =

{
s√
m

with probability 1− p,
s+1√
m

with probability p.

For log n ≥ k ≤ 40 logn
ε2 , let δ be such that k = 40δ2 logn

ε2 . Round similarly as before, this time
to points of N(k, δ).

5 Lower bounds
Lemma 4. If k = δ2 log n/(200ε2) where 2ε ≤ δ ≤ 1/2, then f(n, k, ε/2) = Ω(kn log(1/δ)).

Fix maximal set of point N in the unit ball with pairwise distances at least δ → find set R,
|R| = n/2 such that for any N1, N2 ⊂ N with |N1| = |N2| = n/2, the matrices G(R,N1) and
G(R,N2) are ε-separated → use size of N to bound f(n, k, ε) from below.

6 Known results
Theorem 5 (Johnson-Lindenstrauss Lemma). Let X ⊂ Rk, |X| = n and 0 < ε ≤ 1/2. Then
there exists map f : X → Rm for some m = O( logn

ε2 ) such that

∀x, y ∈ X, (1− ε)‖x− y‖2 ≤ ‖f(x)− f(y)‖2 ≤ (1 + ε)‖x− y‖2

.
Moreover, there is a probabilistic algorithm that outputs the map in time O( log3 n

ε2 ).

Theorem 6 (Hoeffding’s Inequality). If X1, . . . , Xn are independent and ai ≤ Xi ≤ bi for every
i, then for t > 0

Pr [
∑n
i=1X − µ > t] ≤ e−2t

2/
∑

(bi−ai)2 .

2


