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The problem:

• We call a sequence σ of n numbers an n-sequence. We assume that σ is a permutation of [n], i.e., σ ∈ Sn.

Problem. Determine the minimum number of monotone (that is, monotonically increasing or mono-
tonically decreasing) subsequences of length k + 1 in an n-sequence.

Theorem 1 (The Erdős–Szekeres Theorem, 1935). For every k, n ∈ N, every n-sequence contains at
least n− k2 monotone subsequences of length k + 1.

• Let τk,n be a sequence of k increasing sequences of length bn/kc or dn/ke that are concatenated in
decreasing order.

• For σ ∈ Sn, let mk(n) be the number of monotone subsequences of length k + 1 in σ and let mk(n) :=
min{mk(σ) : σ ∈ Sn}. Let rk,n be the unique number r ∈ {0, . . . , k − 1} satisfying r ≡ n(modk).

Conjecture 2 (Myers, 2002–2003). For all k and n,

mk(n) = mk(τk,n) = rk,n

(
dn/ke
k + 1

)
+ (k − rk,n)

(
bn/kc
k + 1

)
.

Main result:

• The conjecture of Myers is true for all sufficiently large k, as long as n is not much larger than k2.

Theorem 3. There exist an integer k0 and a number c ∈ R+ such that mk(n) = mk(τk,n) for all k
and n satisfying k ≥ k0 and n ≤ k2 + ck3/2/ log k. Moreover, if n 6= k2 + k + 1 and mk(σ) = mk(n) for
some σ ∈ Sn, then σ contains monotone subsequences of length k + 1 of only one type (increasing or
decreasing).

• Surprisingly, if n = k2 + k + 1, then there are σ ∈ Sn with mk(σ) = mk(n) = 2k + 1 which contain
both increasing and decreasing subsequences of length k + 1.

Reformulation of the main result:

• Every σ ∈ Sn admits a natural representation as a poset Pσ = ([n],≤σ) in which its increasing and
decreasing subsequences are mapped to chains and antichains, respectively, of the same length.

• A set A of elements of a poset is homogenous if A is a chain or an antichain.

• Given a poset P , let hk(P ) be the number of homogenous (k + 1)-element sets in P and let hk(n) :=
min{hk(P ) : P is a poset with n elements}.

Problem. For every k and n, determine the minimum number of homogenous (k + 1)-element sets in
a poset with n elements. In particular, is it true that hk(n) = mk(n) for all k and n?

• For a poset P of order dimension at most two (that is, P is the intersection of two linear orders), a
dual poset P ∗ is a poset on [n] such that every pair of elements is comparable in either P or P ∗ but not
both of them.

Theorem 4. There exist an integer k0 and c ∈ R+ such that the following is true. Let k and n be
integers satisfying k ≥ k0 and n ≤ k2 + ck3/2/ log k. If P is an n-element poset of order dimension at
most two, then

hk(P ) ≥ mk(τk,n).

Moreover, if hk(P ) = mk(τk,n) and n 6= k2 + k + 1, then P can be decomposed into k chains or k
antichains of length bn/kc or dn/ke each.

If hk(P ) = mk(τk,n) and n = k2 + k + 1, then P (or P ∗) can additionally belong to one of two families
of n-element posets with exactly 2k+ 1 homogenous (k+ 1)-sets that contain both chains and antichains
with k + 1 elements.



Some notation:

• Let (P,≤) be a poset. The height h(P ) and the width w(P ) of P are the cardinalities of the largest
chain and the largest antichain in P , respectively.

• For every positive integer i, let Ai := {x ∈ P : the longest chain L with maxL = x has i elements}.

• Let Gi be the bipartite graph on the vertex set Ai ∪Ai+1 whose edges are all pairs xy with x ∈ Ai and
y ∈ Ai+1 such that x ≤ y.

• For i ∈ [h(P )] and x ∈ Ai, let ui(x) be the number of chains L ⊆ P of length h− i+ 1 with minL = x.

• We define A′i := {x ∈ Ai : ui(x) ≥ 1}, Σi :=
∑
x∈Ai

ui(x), and Bi+1 := {y ∈ A′i+1 : degGi
(y) = 1}.

• The k-surplus sk(P ) of P is defined by sk(P ) := n−h(P )k. It measures the distance between a poset P
and a union of k chains.

Outline of the proof of Theorem 4:

• We proceed by induction on n tacitly assuming h(P ) ≥ w(P ).

• Each x ∈ P that is contained in at least mk(τk,n)−mk(τk,n−1) homogenous (k+ 1)-sets can be removed.

• We first show that if P is ‘far’ from being a union of k chains (or k antichains), then mk(P ) is much
larger than mk(τk,n) (Corollary 7).

• We prove a sequence of lower bounds on Σ1. By Lemma 8, for each i such that Ai ∪Ai+1 contains an
antichain of length k+ 1 either Σi−Σi+1 is large or Ai ∪Ai+1 contains many (k+ 1)-element antichains.
Each of these situations implies hk(P ) > mk(τk,n). Here, Corollary 10 translates lower bounds on Σ1 to
lower bounds on hk(P ). The proof of each of the bounds on Σ1 relies on the analysis of the graphs Gi.

• If P does not satisfy any of these conditions, then P becomes greatly restricted. A careful case analysis
then shows that hk(P ) ≥ mk(τk,n) and this is strict unless n = k2 + k + 1 and P (or P ∗) belongs to
one of the two special families of posets.

Lemma 5. Suppose that a ≥ b > 0, let F be an arbitrary family of a-element sets, and define

∂bF := {B : |B| = b and B ⊆ A for some A ∈ F}.

Then |∂bF| ≥ min{|F|/2, 2b}.

Lemma 6. Let d, k, and s be integers satisfying 1 ≤ d ≤ k and suppose that P is a poset such that sk(P ) ≥ s
and deletion of no s/2 elements reduces the height of P . Then P contains either at least 2d antichains with
k + 1 elements or at least 2bs/(2d)c chains of length h(P ).

Corollary 7. Let k and t be integers satisfying 0 < t ≤ k/2 and suppose that P is a poset of order dimension

at most two such that h(P ) ≥ w(P ) and sk(P ) ≥ 3t. Then P contains at least 2
√
t−1 homogenous (k+ 1)-sets.

Lemma 8 (Key lemma). Let ` := dn/ke − k − 1 and F := {i ∈ [k + `] : |Ai| ≥ k + 1}. If i ∈ F ∩ [k + `− 1],
then Ai ∪Bi+1 contains at least 2min{k,|Bi+1|} antichains with k + 1 elements and

Σi ≥ Σi+1 +
∑

y∈A′
i+1\Bi+1

ui+1(y) ≥ Σi+1 + |A′i+1| − |Bi+1|.

Lemma 9. Suppose that M is a positive integer, X and Y are arbitrary sets, and f1, . . . , fM : X → Y are
pairwise different functions. There exist sets X1, . . . , XM ⊆ X with |Xi| ≤ log2M for all i ∈ [M ] such that

fi �Xi∪Xj
6= fj �Xi∪Xj

for all i 6= j.

Corollary 10. Let k, `, and M be positive integers, let P be a poset of height k + `, and suppose that
m := log2M + 1 ≤ k/4.

(i) If P contains at least M chains of length k + `, then it contains at least

exp

(
−2(`− 1)m

k

)
·M
(
k + `

k + 1

)
chains of length k + 1.

(ii) Given any y ∈ P , (i) still holds if we replace ‘chains’ with ‘chains containing y’.


